pp 1053-1065

POLYNOMIAL SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS

EUGENIA N. PETROPOULOU

Department of Engineering Sciences
Division of Applied Mathematics and Mechanics
University of Patras, 26500 Patras. Greece

Panayiotis D. Siafarikas

Department of Mathematics University of Patras, 26500 Patras, Greece

(Communicated by Igor Kukavica)

ABSTRACT. In this paper it is proved that the condition

$$\lambda = a_1(n-2)(n-1) + \gamma_1(m-2)(m-1) + \beta_1(n-1)(m-1) + \delta_1(n-1) + \epsilon_1(m-1).$$

where n = 1, 2, ..., N, m = 1, 2, ..., M is a necessary and sufficient condition for the linear partial differential equation

$$(a_1x^2 + a_2x + a_3)u_{xx} + (\beta_1xy + \beta_2x + \beta_3y + \beta_4)u_{xy} + (\gamma_1y^2 + \gamma_2y + \gamma_3)u_{yy} + (\delta_1x + \delta_2)u_x + (\epsilon_1y + \epsilon_2)u_y = \lambda u,$$

where a_i , β_j , γ_i , δ_s , ϵ_s , i = 1, 2, 3, j = 1, 2, 3, 4, s = 1, 2 are real or complex constants, to have polynomial solutions of the form

$$u(x,y) = \sum_{n=1}^{N} \sum_{m=1}^{M} u_{nm} x^{n-1} y^{m-1}.$$

The proof of this result is obtained using a functional analytic method which reduces the problem of polynomial solutions of such partial differential equations to an eigenvalue problem of a specific linear operator in an abstract Hilbert space. The main result of this paper generalizes previously obtained results by other researchers.