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ABSTRACT 
The probably novel possibility of using the computer al-

gebra system Mathematica in NLP (natural language process-
ing) is briefly studied in few elementary applications from ap-
plied mechanics. At first, Buchberger’s Mathematica-based 
Theorema system was found able to lead to a completely natu-
ral proof of an elementary propositional-type example from 
applied mechanics. The same system, Theorema, was also 
found useful for the syntactic analysis of related very simple 
sentences, a classical field of application of the Prolog logic-
oriented language. The next step has been to use Prolog itself 
as an external package to Mathematica. Finally, elementary 
NLP has been achieved directly with Mathematica. The pres-
ent results show that NLP is within Mathematica’s reach, of-
fering the further advantage of performing symbolic computa-
tions (contrary to logic-oriented languages). Therefore, proba-
bly, gradually, Mathematica (independently of Theorema and 
Prolog) could lead to an automated environment of both text 
and formula checking (including symbols and computations) 
in applied mechanics and mechanical engineering in general. 
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INTRODUCTION 

As is extremely well known, computer algebra systems 
have played (and still play) a very important role in applied 
mechanics and mechanical engineering in general long ago. 
Among these systems, we will pay again attention to Wolf-
ram’s Mathematica [1], which is the most recent (the first ver-

sion was released in 1988) and powerful one (especially in its 
latest versions; here we will use version 4). Thanks to (i) its 
own efficient logical commands (such as LogicalExpand), (ii) 
the very recent and extremely powerful Mathematica-based 
theorem proving Theorema system [2] by Buchberger and the 
Theorema Group (1997-today), (iii) Maeder's Prolog inter-
preter for Mathematica [3] (released in 1994) as well as (iv) 
the ability of Mathematica to run external programs too (e.g. 
standard Prolog and McCune’s OTTER, which we extensively 
used in [4], both based on resolution), Mathematica is com-
pletely able to undertake difficult computational tasks related 
not only to algebra, but also to logic. We have already seen in 
the companion paper [5] that Mathematica can verify logical 
and algebraic formulae by using one of the above approaches. 

It is this author’s impression that Mathematica could also 
become much more friendly to its user if it could be possible 
for it to accept its logical input commands in a more natural, 
human language. For example, in the companion paper [5], we 
met the logical formula Fracture ⇒⇒⇒⇒ Replacement (as a frac-
ture axiom, better an assumption, there). Most probably, it 
would be much better if it could be possible for us to write this 
formula in a more natural form, i.e. “fracture causes re-
placement”. Similarly, if we have a helical spring S in ma-
chine design [6], we are obliged to write the Mathematica 
commands Spring[S] and Helical[S] or, preferably, their logi-
cal conjunction Spring[S] ∧ ∧ ∧ ∧ Helical[S] and, next, proceed to 
our reasoning with the help of Mathematica. This is the ap-
proach having been followed so far. Alternatively, instead of 
this approach, in this paper we simply suggest the use of a 
more NL (natural language) in Mathematica, e.g. simply by 
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writing: “S is a helical spring” and letting Mathematica pro-
ceed with this much more natural, human sentence. 

Of course, when using Prolog (see, e.g., [7, 8] and for en-
gineering applications [9]), which is the favorite language of 
the related scientific area of computational linguistics (called 
Natural Language Processing or, simply, NLP), this approach 
is very well known. There is a huge amount of results in NLP 
(see, e.g., [10-20]), but essentially all of them concerning the 
actual use of a computer give a preference to Prolog (see, e.g., 
[15-20]) and this author knows nothing about any attempt of 
transfer of this approach to Mathematica and computer algebra 
systems in general. Under these circumstances, in this paper 
we will present few elementary examples of application of 
NLP with Mathematica so that simple NL (natural language) 
sentences can be used as an input and further processed by 
Mathematica purely logically exactly as in the previous paper. 
Yet, the “translation” from the natural (human) language (even 
for a small fragment of English sentences) by no means is it a 
trivial task although we were able to make some progress. 

One way of working is to try to transform NL sentences 
into logical formulae (commands), correctly understood by 
Mathematica, through their transformation by using standard 
Mathematica string commands. This rather naïve approach can 
be used in very elementary sentences and is not of sufficient 
generality. Therefore, the preferable approach is to use the al-
ready available Prolog programs in computational linguistics: 
NLP (more explicitly, in computational semantics), such as the 
elementary ones by Cooper, Lewin and Black [19] and the 
more general ones by Blackburn and Bos [20] through an ap-
propriate call of Prolog from inside Mathematica so that the 
natural language sentences can be transformed into logical 
formulae and, next, to bring the Prolog output back to Mathe-
matica for further processing. This approach has been success-
ful in simple cases, but it requires a kind of interface between 
Mathematica and Prolog and back, which is non-trivial espe-
cially inside a completely automated working environment. 
Yet, with this approach we have been already able to work 
with simple NL sentences inside Mathematica. 

The third (preferable) way of working consists in an at-
tempt to prepare our own programs inside Mathematica itself 
either by using Maeder’s Prolog interpreter or, better, directly 
with standard Mathematica commands. Naturally, we always 
need to have a lexicon, a grammar and a parser, to use λ-
calculus, etc. (exactly as in Prolog). We have been moderately 
successful in our experiments so far and we present the related 
results in simple examples obtained from applied mechanics. 

Of course, it should also be emphasized that Mathematica 
is much more powerful than Prolog in numerical and symbolic 
computations (but, surely, not in logic), graphics, interface fa-
cilities, Mathematica notebooks, etc. and, therefore, in general 
it cannot be substituted by Prolog in applied mechanics and 
mechanical engineering problems. Furthermore, it can also be 
mentioned that beyond ordinary words (such as determiners, 
nouns, pronouns, adjectives, verbs, adverbs, etc.) it is also 
convenient to use mathematical symbols in our applications 
(such as k for the constant of the helical spring S [6] above) as 

a separate category of words, yet quite similar to proper names 
in computational linguistics. In the future, it is hoped that the 
present results may prove useful for a more direct and simple 
communication between the user and Mathematica and, more-
over, they can easily be extended to questions in natural lan-
guage (already so popular with Prolog) and analogous replies 
by Mathematica, to discourses, etc.  

The dream is to prepare an applied mechanics and/or me-
chanical engineering simple text (let’s say a paragraph of ordi-
nary text) including mathematical symbols and elementary op-
erations (such as arithmetic operations, differentiation, integra-
tion, etc.) in a completely natural (human) language and let 
Mathematica proceed with this text (after transforming it into 
its own language and syntax) and provide us with its conclu-
sions (e.g. about the truth or the falsity of the statements in this 
text) and further computations (e.g. numerical, symbolic and 
logical calculations, equation solutions, etc.) automatically. 
Nevertheless, naturally, we are still far away from this dream 
and much work has to be done even for a small applied-
mechanics-oriented fragment of English. Perhaps, after one 
decade, but we wish to believe in this dream and be optimists! 
 
A THEOREMA COMPLETELY NATURAL PROOF  

As a first (and the most elementary) application of Math-
ematica to NLP, we reconsider the fracture mechanics problem 
of propositional logic in the companion paper [5], but now in 
an attempt to improve the Theorema [2] assumptions and its 
natural proof from the NL point of view. More explicitly, the 
Theorema assumptions in this problem [5] include the implica-
tion sign (⇒⇒⇒⇒), which is quite clear from the mathematical-
logical point of view, but not from the NL point of view. Simi-
larly, the original automated proof of Theorema (not displayed 
here for the sake of space) is really perfect both from the logi-
cal point of view as well as from the text accompanying it and, 
therefore, completely clear. Yet, this proof includes the impli-
cation sign (⇒⇒⇒⇒) as well. In this section, we will show that in 
this particular fracture mechanics problem, quite natural sen-
tences (free from any mathematical sign) could be used in the 
assumptions and, after some more effort, in the Theorema 
proof itself. Therefore, the whole proof can essentially consist 
only of text. This approach will be demonstrated in brief in the 
present section. 

At this point it should be emphasized that the Theorema 
version having been used here is the a-version. Much more 
improved and powerful versions will appear in the near future. 

To the above-described aim, we decided to employ the 
word “causes” instead of the implication sign (⇒⇒⇒⇒). Therefore, 
the modified, NL, Theorema assumptions (denoted by Ass1 to 
Ass4) get the following forms: 

 
Assumptions[“Fracture NLP”,  “excessive loading   
  causes very high stress intensity factor”                  “Ass1”                
“very high stress intensity factor causes fracture”   “Ass2”] 
“fracture causes replacement”                                   “Ass3” 
“replacement causes cost and delay”                         “Ass4” 
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(Unfortunately, the typing of the above Theorema command 
does not exactly correspond to the real Theorema input.) 

Next, what is of actual interest here, we have been able to 
transform the above assumptions into the standard format ac-
ceptable by Theorema. This has been made just by isolating 
both the subjects and the objects in the sentences constituting 
the above assumptions, replacing the verb “causes” by the 
implication sign (⇒⇒⇒⇒), essentially the Implies command in 
Mathematica and the similar ™Implies command in Theo-
rema. This can be rather easily done through string operations 
by using standard Mathematica commands. The details (to be 
sincere of a somewhat technical nature) are displayed below: 
 
m = Assumptions[“Fracture NLP”][[4]]//Length; 
Table[a[i] = Assumptions[“Fracture NLP”][[4,i,2]], {i,m}]; 
sp = Table[StringPosition[a[i], “causes”][[1]], {i, m}]; 
s1 = Table[StringTake[a[i], sp[[i, 1]] - 2, {i, m}]; 
s2 = Table[StringTake[a[i], {sp[[i, 2]] + 2,          
        StringLength[a[i]]}], {i, m}]; 
Table[b[i] = ™Implies[s1[[i]], s2[[i]], {i, m}]; 
sb1 = Table[a[i] -> b[i], {i, m}]; 
sb2 = Table[b[i] -> a[i], {i, m}]; 
 

We can add that the last two commands constitute just 
substitutions from the original, NL (natural language) present 
notation of the assumptions to the Mathematica/Theorema 
standard notation. This is necessary for the transformation of 
our NL assumptions into the Mathematical/Theorema mathe-
matical notation (the sb1 substitutions) so that the Theorema 
proof can be achieved in the ordinary, formal, non-NL way 
and back (the sb2 substitutions) so that the same proof can 
contain NL sentences (essentially the above original, NL as-
sumptions) instead of ordinary logical formulae (i.e. without 
the implication sign in favor of the ordinary verb “causes”). 
The derived proof is rather interesting from the NLP point of 
view, but (for the sake of space) it will not be displayed here.  

 
A SYNTACTIC PROOF WITH THEOREMA 

A sufficiently different possible use of Theorema is in the 
syntactic analysis of relatively simple NL (natural language) 
sentences. We considered the extremely small fragment of  
English consisting of the following three Theorema elemen-
tary assumptions, denoted as Grammar (with the symbols p1, 
p2 and p3 in them referring to sequences inside lists) 

  
(NounPhrase[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉] ∧ ∧ ∧ ∧ VerbPhrase[〈〈〈〈p2〉〉〉〉, 〈〈〈〈p3〉〉〉〉])  
     ⇒⇒⇒⇒ Sentence[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p3〉〉〉〉]                                            “SD” 
(Determiner[w1] ∧ ∧ ∧ ∧ Adjective[w2] ∧∧∧∧ Noun[w3]) 
     ⇒⇒⇒⇒ NounPhrase[〈〈〈〈w1, w2, w3, p1〉〉〉〉, 〈〈〈〈p1〉〉〉〉]                 “NPD” 
(Verb[w1] ∧ ∧ ∧ ∧ NounPhrase[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉])  
     ⇒⇒⇒⇒ VerbPhrase[〈〈〈〈w1, p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉]                               “VPD” 
 
which express the well-known syntactic rules that (i) a noun 
phrase and a verb phrase (in this order) constitute a sentence, 
(ii) a determiner, an adjective and a noun constitute a noun 

phrase, and (iii) a verb and a noun phrase constitute a verb 
phrase. (Obviously, there are many more ways to form noun 
phrases, verb phrases and sentences beyond the above ones!) 

Beyond these assumptions (the rules of our grammar for 
an extremely small fragment of sentences), we must also have 
a lexicon, denoted as Lexicon in our present session. The 
adopted (very small and so incomplete lexicon) has been 
 
Determiner[the]         “the” 
Determiner[a]            “a” 
Noun[loading]            “loading” 
Noun[yielding]           “yielding” 
Adjective[excessive]  “excessive” 
Adjective[direct]       “direct” 
Verb[caused]              “caused” 

 
Then Theorema has been able (on the basis of both the 
Grammar and the Lexicon) at first to prove the lemma that 
the phrase “the excessive loading” is a noun phrase, whereas 
the phrase “caused a direct yielding” is a verb phrase through 
the use of its predicate prover. Next, Theorema also proved the 
Proposition that the phrase (complete sentence) “the exces-
sive loading caused a direct yielding” is really a sentence, 
based both on the grammar and on the above lemma. (The re-
lated details and proofs will not be displayed here.) 

Naturally, a much more detailed grammar and lexicon 
could, possibly, permit a more expanded variety of lemmata 
and propositions concerning natural language (from the syn-
tactic point of view) to be proved, but it is also clear that the 
Theorema possibilities (at least in its available a-version) are 
limited in this task especially compared to those of Prolog. 

 
A BEAM CONCLUSION WITH THEOREMA /PROLOG 

The standard computer language being used in NLP is 
surely Prolog. In this section, we will continue to use Mathe-
matica as our main computer language and Theorema for our 
proofs, but we will also use Prolog (in fact SICStus Prolog) 
for the derivation of the semantics of our elementary NL 
(natural language) sentences so that they can next be imported 
into Theorema. Our present four assumptions (Ass1 to Ass4 
(denoted as “Beam assumptions” to Theorema), concerning 
two separate beams in strength of materials, have as follows: 

 
beam[beam1]       “Ass1”,           beam[beam2]       “Ass2”, 
straight[beam1]   “Ass3”,           elastic[beam2]      “Ass4”, 
 
i.e. both objects, beam1 and beam2, are beams and, moreover, 
beam1 is assumed to be straight, whereas beam2 to be elas-
tic. Naturally, the predicate prover (PredicateProver) of 
Theorema is easily able to prove conclusions on the basis of 
these assumptions such as the composite “Beam conclusion” 
 
beam[beam1] ∧∧∧∧ beam[beam2]  
       ∧∧∧∧ straight[beam1] ∧∧∧∧ elastic[beam2]  
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Our aim here is simply to declare the same assumptions in 
a much more natural way such as “Beam assumptions NLP” 

 
“beam1 is a beam”   “Ass1”,     “beam2 is a beam”  “Ass2”, 
“beam1 is straight”  “Ass3”,     “beam2 is elastic”    “Ass4” 
 

From the typesetting point of view, obviously, this is di-
rect, but, naturally, Theorema cannot understand NL (natural 
language). Therefore, we have to process these assumptions so 
that they can be transformed into the natural way of writing in 
Theorema (as well as in Mathematica). At first, we can isolate 
these NL assumptions through the Mathematica commands 
 
m = Assumptions[“Beam assumptions NLP”][[4]]//Length;  
Table[a[i] = Assumptions[“Beam assumptions NLP”] 
                     [[4, i, 2]], {i, m}]//InputForm 
 
Then we obtain the related list (with four elements a[i]) 
 
{“beam1 is a beam”,  “beam2 is a beam”, 
  “beam1 is straight”,  “beam2 is elastic”} 
 
ready to be processed through Prolog (NLP: natural language 
processing). Surely, there are so many ready NLP Prolog pro-
grams, which be called from inside Mathematica with their 
outputs brought back to Mathematica by using appropriate in-
put/output files. (The use of MathLink for this connection and 
collaboration between Mathematica and Prolog, in our case 
SICStus Prolog, is a more difficult task not having been under-
taken so far, but it is based on the same principles, i.e. to ask 
Prolog to proceed to the NLP of our NL Mathematica sen-
tences and send the non-NL results back to Mathematica.) 

The Prolog program we have adopted in this task has 
been prepared by Cooper, Lewin and Black [19]. In this 
Prolog program, the employed operators are defined, next, the 
definitions and rules for well-formed logic formulae, terms, λ-
terms and quantifiers, etc. are given, β-conversion and reduc-
tion are also undertaken and, finally, what is most important in 
our NLP problem, an elementary English grammar is defined 
(for simple phrases and sentences such as those in our above 
assumptions). For example, the Prolog rule for a sentence is 
 
sn(NP*VP)  - ->  np(NP), vp(VP). 

which simply means that a noun phrase (np) NP and a verb 
phrase (vp) VP constitute a sentence. Other similar rules ex-
plain that a determiner d and a noun n constitute a noun phrase 
np, etc. The determiners “every” and “a” (or “an”) are 
somewhat special using the predicates forall and exists, re-
spectively, in their definitions and having the following 
Prolog-rule forms: 
 
d(Q^P^forall(X, Q*X  - - ->  P*X))  - ->  [every]. 
d(Q^P^exists(X, Q*X  &  P*X))  - ->  [a]; [an]. 
 

(Naturally, it is confessed that a little experience with Prolog 
and NLP in Prolog is required for the understanding of these 
rules! The interested reader can consult References [15, 16].) 

Finally, the above Prolog program makes also extensive 
use of lexical definitions (with the predicate lex for lexicon) 
for the various categories of words used through their type 
(e.g. pn for proper names, tv for transitive verbs, etc.). Beyond 
these general definitions of lexical terms, we had also to intro-
duce our own special word lexical definitions such as 

 
lex(beam1, pn, beam1). 
lex(beam, n, X^beam(X)). 
lex(isotropic, a, X^isotropic(X)). 
lex(has, tv, Y^X^have(X, Y)). 
lex(is, av, be) 

these lexical examples referring to a proper name (pn), a noun 
(n), an adjective (a), a transitive verb (tv) and the auxiliary 
verb av “is”, respectively. Additional words have also been 
introduced and, alternatively, an actual special-purpose lexicon 
for this task could be used. What seems to be of much impor-
tance here is the logical formula defining each word we intro-
duced (frequently in λ-calculus form, such as X^beam(X) for 
a beam), which constitutes the basis for the transformation of 
the NL phrases into the corresponding logical forms.  

In any case, Prolog and the above composite program 
have been easily able to transform our NL assumptions into 
their equivalent logical forms (through the appropriate use of 
related input and output files from Mathematica), e.g., 
beam(beam1), beam(beam2), straight(beam1) and elas-
tic(beam2), respectively. Finally, a quite technical detail 
(based on the Mathematica commands StringReplace and 
ToExpession) concerns the slight change of notation (mainly 
from parentheses to brackets, e.g. beam[beam1]) so that our 
assumptions are completely ready to be used in Mathematica 
and Theorema now and, in fact, they essentially coincide with 
the above-displayed forms really accepted by Theorema. The 
NL forms have been already denoted by a[i], whereas the 
corresponding logical forms are denoted by b[i]. The related 
Mathematica final substitution commands are again 

 
sb1 = Table[a[i] -> b[i], {i, m}]; 
sb2 = Table[b[i] -> a[i], {i, m}]; 
 
and, therefore, the last step of the whole approach is to use 
these substitutions in the Theorema Prove command so that 
the NL assumptions can be inserted in it (but next transformed 
into their logical equivalents). The Theorema proof (naturally 
using the logical forms of the assumptions) can, next, be 
brought back to the NL form by using the sb2 substitutions: 
 
Show[Prove[Proposition[“Beam conclusion”], 
   using -> Assumptions[“Beam assumptions NLP”]/.sb1, 
   by -> PredicateProver, presentation -> “SuccessBranch”, 
   in-notebook -> “Separate”/.sb2] 
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This is the command actually having been used in Theorema 
and the sole indications of the NLP approach are the substitu-
tions (/.sb1 and /.sb2) in this command. Of course, a similar 
method can be used for the propositions to be proved, etc.  

At this point, we can also add that beyond the above 
rather simple assumptions, we can also consider (and actually 
did) more complicated assumptions such as those including 
the usual quantifiers “for all” (∀∀∀∀) and “exists” (∃∃∃∃). For exam-
ple, we may consider the two assumptions (Ass1 and Ass2) 

 
“beam[beam1]”   and   “∀∀∀∀x (beam[x] ⇒⇒⇒⇒ elastic[x])” 
 
wishing to prove the simple conclusion Conclusion that 
 
“elastic[beam1]” 
 
In this case, we have also used the quantifier “for all” (∀∀∀∀) in 
the second of our assumptions and, naturally, Theorema has 
been actually and easily able to prove our conclusion Conclu-
sion. But, perhaps, the NL-equivalent writing of these state-
ments (both the assumptions and the conclusion) 
 
“beam1 is a beam”,    “every beam is elastic”, 
“beam1 is elastic” 
 
is sufficiently more natural, the elimination of the direct use of 
the quantifier ∀∀∀∀ taken also into account (in favor of the simple 
word “every”). Inversely, by providing the NL forms of our 
assumptions and conclusion, we have been able to derive their 
logical equivalents through the aforementioned Prolog pro-
gram and, next, use them in Theorema (exactly in the way al-
ready described) in order to obtain a natural proof not only in 
the text, but also in the logical formulae used too, which are 
now exactly human sentences, e.g. “every beam is elastic”.  

To become a little more concrete, in this way of working, 
we received the following Theorema proof (again by using the 
predicate prover) in completely NL (natural language): 

 
Prove: 
    (Conclusion)  beam1 is elastic 
under the assumptions: 
    (Ass1)  beam1 is a beam, 
    (Ass2)  every beam is elastic. 
For proving (Conclusion), by (Ass2), it suffices to prove 
    (2)  beam1 is a beam. 
Formula (2) is true because it is identical to (Ass1). 
 
Naturally, this has been a simple proof, but much more com-
plicated similar Theorema proofs can also be obtained. 

A typical somewhat more complicated example concerns 
the case when we have both quantifiers (∀∀∀∀ and ∃∃∃∃) inside the 
same formula. For example, following the same NL approach, 
we could simply give the assumption (or even the conclusion) 

 
“every beam has an end” 
 

instead of its logically equivalent (but more complex) form 
 
∀∀∀∀x (beam[x] ⇒⇒⇒⇒ ∃∃∃∃y (end[y] ∧ ∧ ∧ ∧ has[x, y])) 
 
which is logically correct, but, undoubtedly, not so easy for the 
user of Mathematica and/or Theorema (e.g. the engineer) to 
declare. Therefore, the first writing seems to be preferable, the 
task of transforming it into the second one left to Prolog and 
the related Mathematica interface as was already explained.  

It is also understood that the present approach is of limited 
applicability so far and generalizations to much more compli-
cated cases are indispensable and, possibly, they will be under-
taken in the future. Finally, it is clear that transforming NL 
sentences into their logical equivalents in Mathematica [1] is 
not of an exclusive importance for Theorema [2], but it can 
also be used in any Mathematica logical computations such as 
those in the companion paper [5], partially based on Maeder’s 
Prolog interpreter [3] in Mathematica and not in Theorema.  

In the next section, we will very briefly illustrate the pos-
sibility of performing the task of transformation of NL 
phrases/sentences into their logical equivalents inside Mathe-
matica (i.e. without any resort to Prolog), but this has been 
achieved-implemented only in few simple cases so far. 

 
SIMPLE NLP INSIDE MATHEMATICA 

In this section, we will transfer to Mathematica few of the 
NLP well-known methods traditionally used in Prolog. At 
first, we can mention that Mathematica offers the not so popu-
lar command Function (with an arguments list and a body), 
which can be used for the logical equivalents of the lexicon 
words and the further work in computational semantics for 
phrases and sentences (just as in the popular λ-calculus). 

Beginning with the lexicon, a first possibility is to use the 
new command Lex (with two arguments), e.g. 

 
Lex[beam1] = {pn[beam1], {}}; 
Lex[beam] = {n[beam], Function[X, beam[X]]}; 
Lex[straight] = {a[straight], Function[X, straight[x]]}; 
Lex[has] = {v[has], Function[X, have[X]]}; 
Lex[is] = {cop[is], Function[X, X]}; 
Lex[every] = {d[every],  
            Function[P, Function[Q, ∀∀∀∀x (P[X] ⇒⇒⇒⇒ Q[x])]]}; 
Lex[one] = {d[one],  
            Function[P, Function[Q, ∃∃∃∃x (P[X]  ∧∧∧∧ Q[x])]]}; 
 

From this short sample of lexical terms (words), at first 
we observe that these are classified into categories, i.e. as 
proper names (pn), nouns (n), adjectives (a), verbs (v), the 
copula (cop), determiners (d), etc. (e.g. pronouns not illus-
trated here). What are also very important are the logical ex-
pressions of these words, generally including the command 
Function although we could also have used the symbol λ in-
stead (for lambda expressions) through the command 

 
λ[x_, y_] := Function[x, y] 
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but, evidently,  this is of minor importance. 
In engineering texts, it is also clear that instead of proper 

names (pn), it is preferable to use a new category of objects: 
mathematical symbols (ms), e.g. beam1 above (for a beam), L 
(for the length of the beam), EI (for its stiffness), y (for its de-
flection), etc., etc. What should also not be ignored is the spe-
cial interpretation of the copula (is), which essentially means 
that this is ignored (through the identity function defining it), 
e.g. the phrase “beam1 is elastic” is logically transformed 
into “elastic[beam1]” (with the verb “is” not appearing in it). 
It can also be mentioned that the definitions of the determiners 
“every” and “one” are somewhat complicated (with the quan-
tifiers “for all” and “exists” appearing in them plus the impli-
cation and conjunction symbols, respectively). We can also 
add that a simpler way of working is through lists of words:  
 
Adjectives = {anisotropic, clamped, curvilinear, dynamic, 
elastic, fixed, free, isotropic, long, static, straight, vertical}; 
 
etc. etc. and proceeding to the logical definition of these words 
(here adjectives, a) in a uniform way inside a Lex module, e.g. 
 
If[MemberQ[Adjectives, w], Return[{a[w], λ[X, w[X]]}]]; 
 

We have also prepared simple (although not complete and 
Prolog-competitive) Mathematica modules (for the semantic 
analysis of noun phrases, verb phrases and sentences), which 
can be used both for parsing and for semantics of simple NL 
phrases and whole sentences so that both their structure and 
their logic equivalent can be derived.  For example, for the 
simple sentence “every beam has one end”, we obtained  

 
{sn[np[d[every], n[beam]], vp[tv[has], np[d[one], n[end]]]], 
∀∀∀∀x Implies[beam[x], ∃∃∃∃y (end[y] && has[x, y])]}; 
 
with the first line above referring to the syntactic analysis of 
this sentence and the second line to its meaning, which, it is 
believed, is not trivial to write down manually especially in 
more complicated cases (e.g. with more than two quantifiers).  

CONCLUSIONS 
Concluding, we feel that the present results may be of 

some mechanical engineering interest and possible applicabil-
ity especially when whole technical paragraphs (including 
text, symbols and formulae) are to be automatically logically 
analyzed (and, hopefully, proved syntactically meaningful and 
both logically and computationally correct) with the aid of the 
computer. Naturally, such an integrated task is not expected to 
take place in the near future in spite of the present and (we be-
lieve) moderately encouraging preliminary results. 
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