
ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 1

Proceedings of the ASME – Greek Section,
 First National Conference on

Recent Advances in Mechanical Engineering
September 17-20, 2001, Patras, Greece

ANG1/P094

MATHEMATICA-BASED NATURAL LANGUAGE PROCESSING
 IN APPLIED MECHANICS

Nikolaos I. Ioakimidis
 Division of Applied Mathematics and Mechanics,

School of Engineering, University of Patras,
 P.O. Box 1120, GR-261.10 Patras, Greece

Tel.: +30 61 432-257, Fax: +30 61 433-962, E-mail: ioakimidis@otenet.gr

ABSTRACT
The probably novel possibility of using the computer al-

gebra system Mathematica in NLP (natural language process-
ing) is briefly studied in few elementary applications from ap-
plied mechanics. At first, Buchberger’s Mathematica-based
Theorema system was found able to lead to a completely natu-
ral proof of an elementary propositional-type example from
applied mechanics. The same system, Theorema, was also
found useful for the syntactic analysis of related very simple
sentences, a classical field of application of the Prolog logic-
oriented language. The next step has been to use Prolog itself
as an external package to Mathematica. Finally, elementary
NLP has been achieved directly with Mathematica. The pres-
ent results show that NLP is within Mathematica’s reach, of-
fering the further advantage of performing symbolic computa-
tions (contrary to logic-oriented languages). Therefore, proba-
bly, gradually, Mathematica (independently of Theorema and
Prolog) could lead to an automated environment of both text
and formula checking (including symbols and computations)
in applied mechanics and mechanical engineering in general.

KEYWORDS

Applied mechanics. Natural language processing. Compu-
tational semantics. Mathematica. Theorema. Prolog.

INTRODUCTION

As is extremely well known, computer algebra systems
have played (and still play) a very important role in applied
mechanics and mechanical engineering in general long ago.
Among these systems, we will pay again attention to Wolf-
ram’s Mathematica [1], which is the most recent (the first ver-

sion was released in 1988) and powerful one (especially in its
latest versions; here we will use version 4). Thanks to (i) its
own efficient logical commands (such as LogicalExpand), (ii)
the very recent and extremely powerful Mathematica-based
theorem proving Theorema system [2] by Buchberger and the
Theorema Group (1997-today), (iii) Maeder's Prolog inter-
preter for Mathematica [3] (released in 1994) as well as (iv)
the ability of Mathematica to run external programs too (e.g.
standard Prolog and McCune’s OTTER, which we extensively
used in [4], both based on resolution), Mathematica is com-
pletely able to undertake difficult computational tasks related
not only to algebra, but also to logic. We have already seen in
the companion paper [5] that Mathematica can verify logical
and algebraic formulae by using one of the above approaches.

It is this author’s impression that Mathematica could also
become much more friendly to its user if it could be possible
for it to accept its logical input commands in a more natural,
human language. For example, in the companion paper [5], we
met the logical formula Fracture ⇒⇒⇒⇒ Replacement (as a frac-
ture axiom, better an assumption, there). Most probably, it
would be much better if it could be possible for us to write this
formula in a more natural form, i.e. “fracture causes re-
placement”. Similarly, if we have a helical spring S in ma-
chine design [6], we are obliged to write the Mathematica
commands Spring[S] and Helical[S] or, preferably, their logi-
cal conjunction Spring[S] ∧ ∧ ∧ ∧ Helical[S] and, next, proceed to
our reasoning with the help of Mathematica. This is the ap-
proach having been followed so far. Alternatively, instead of
this approach, in this paper we simply suggest the use of a
more NL (natural language) in Mathematica, e.g. simply by

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 2

writing: “S is a helical spring” and letting Mathematica pro-
ceed with this much more natural, human sentence.

Of course, when using Prolog (see, e.g., [7, 8] and for en-
gineering applications [9]), which is the favorite language of
the related scientific area of computational linguistics (called
Natural Language Processing or, simply, NLP), this approach
is very well known. There is a huge amount of results in NLP
(see, e.g., [10-20]), but essentially all of them concerning the
actual use of a computer give a preference to Prolog (see, e.g.,
[15-20]) and this author knows nothing about any attempt of
transfer of this approach to Mathematica and computer algebra
systems in general. Under these circumstances, in this paper
we will present few elementary examples of application of
NLP with Mathematica so that simple NL (natural language)
sentences can be used as an input and further processed by
Mathematica purely logically exactly as in the previous paper.
Yet, the “translation” from the natural (human) language (even
for a small fragment of English sentences) by no means is it a
trivial task although we were able to make some progress.

One way of working is to try to transform NL sentences
into logical formulae (commands), correctly understood by
Mathematica, through their transformation by using standard
Mathematica string commands. This rather naïve approach can
be used in very elementary sentences and is not of sufficient
generality. Therefore, the preferable approach is to use the al-
ready available Prolog programs in computational linguistics:
NLP (more explicitly, in computational semantics), such as the
elementary ones by Cooper, Lewin and Black [19] and the
more general ones by Blackburn and Bos [20] through an ap-
propriate call of Prolog from inside Mathematica so that the
natural language sentences can be transformed into logical
formulae and, next, to bring the Prolog output back to Mathe-
matica for further processing. This approach has been success-
ful in simple cases, but it requires a kind of interface between
Mathematica and Prolog and back, which is non-trivial espe-
cially inside a completely automated working environment.
Yet, with this approach we have been already able to work
with simple NL sentences inside Mathematica.

The third (preferable) way of working consists in an at-
tempt to prepare our own programs inside Mathematica itself
either by using Maeder’s Prolog interpreter or, better, directly
with standard Mathematica commands. Naturally, we always
need to have a lexicon, a grammar and a parser, to use λ-
calculus, etc. (exactly as in Prolog). We have been moderately
successful in our experiments so far and we present the related
results in simple examples obtained from applied mechanics.

Of course, it should also be emphasized that Mathematica
is much more powerful than Prolog in numerical and symbolic
computations (but, surely, not in logic), graphics, interface fa-
cilities, Mathematica notebooks, etc. and, therefore, in general
it cannot be substituted by Prolog in applied mechanics and
mechanical engineering problems. Furthermore, it can also be
mentioned that beyond ordinary words (such as determiners,
nouns, pronouns, adjectives, verbs, adverbs, etc.) it is also
convenient to use mathematical symbols in our applications
(such as k for the constant of the helical spring S [6] above) as

a separate category of words, yet quite similar to proper names
in computational linguistics. In the future, it is hoped that the
present results may prove useful for a more direct and simple
communication between the user and Mathematica and, more-
over, they can easily be extended to questions in natural lan-
guage (already so popular with Prolog) and analogous replies
by Mathematica, to discourses, etc.

The dream is to prepare an applied mechanics and/or me-
chanical engineering simple text (let’s say a paragraph of ordi-
nary text) including mathematical symbols and elementary op-
erations (such as arithmetic operations, differentiation, integra-
tion, etc.) in a completely natural (human) language and let
Mathematica proceed with this text (after transforming it into
its own language and syntax) and provide us with its conclu-
sions (e.g. about the truth or the falsity of the statements in this
text) and further computations (e.g. numerical, symbolic and
logical calculations, equation solutions, etc.) automatically.
Nevertheless, naturally, we are still far away from this dream
and much work has to be done even for a small applied-
mechanics-oriented fragment of English. Perhaps, after one
decade, but we wish to believe in this dream and be optimists!

A THEOREMA COMPLETELY NATURAL PROOF

As a first (and the most elementary) application of Math-
ematica to NLP, we reconsider the fracture mechanics problem
of propositional logic in the companion paper [5], but now in
an attempt to improve the Theorema [2] assumptions and its
natural proof from the NL point of view. More explicitly, the
Theorema assumptions in this problem [5] include the implica-
tion sign (⇒⇒⇒⇒), which is quite clear from the mathematical-
logical point of view, but not from the NL point of view. Simi-
larly, the original automated proof of Theorema (not displayed
here for the sake of space) is really perfect both from the logi-
cal point of view as well as from the text accompanying it and,
therefore, completely clear. Yet, this proof includes the impli-
cation sign (⇒⇒⇒⇒) as well. In this section, we will show that in
this particular fracture mechanics problem, quite natural sen-
tences (free from any mathematical sign) could be used in the
assumptions and, after some more effort, in the Theorema
proof itself. Therefore, the whole proof can essentially consist
only of text. This approach will be demonstrated in brief in the
present section.

At this point it should be emphasized that the Theorema
version having been used here is the a-version. Much more
improved and powerful versions will appear in the near future.

To the above-described aim, we decided to employ the
word “causes” instead of the implication sign (⇒⇒⇒⇒). Therefore,
the modified, NL, Theorema assumptions (denoted by Ass1 to
Ass4) get the following forms:

Assumptions[“Fracture NLP”, “excessive loading
 causes very high stress intensity factor” “Ass1”
“very high stress intensity factor causes fracture” “Ass2”]
“fracture causes replacement” “Ass3”
“replacement causes cost and delay” “Ass4”

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 3

(Unfortunately, the typing of the above Theorema command
does not exactly correspond to the real Theorema input.)

Next, what is of actual interest here, we have been able to
transform the above assumptions into the standard format ac-
ceptable by Theorema. This has been made just by isolating
both the subjects and the objects in the sentences constituting
the above assumptions, replacing the verb “causes” by the
implication sign (⇒⇒⇒⇒), essentially the Implies command in
Mathematica and the similar ™Implies command in Theo-
rema. This can be rather easily done through string operations
by using standard Mathematica commands. The details (to be
sincere of a somewhat technical nature) are displayed below:

m = Assumptions[“Fracture NLP”][[4]]//Length;
Table[a[i] = Assumptions[“Fracture NLP”][[4,i,2]], {i,m}];
sp = Table[StringPosition[a[i], “causes”][[1]], {i, m}];
s1 = Table[StringTake[a[i], sp[[i, 1]] - 2, {i, m}];
s2 = Table[StringTake[a[i], {sp[[i, 2]] + 2,
 StringLength[a[i]]}], {i, m}];
Table[b[i] = ™Implies[s1[[i]], s2[[i]], {i, m}];
sb1 = Table[a[i] -> b[i], {i, m}];
sb2 = Table[b[i] -> a[i], {i, m}];

We can add that the last two commands constitute just
substitutions from the original, NL (natural language) present
notation of the assumptions to the Mathematica/Theorema
standard notation. This is necessary for the transformation of
our NL assumptions into the Mathematical/Theorema mathe-
matical notation (the sb1 substitutions) so that the Theorema
proof can be achieved in the ordinary, formal, non-NL way
and back (the sb2 substitutions) so that the same proof can
contain NL sentences (essentially the above original, NL as-
sumptions) instead of ordinary logical formulae (i.e. without
the implication sign in favor of the ordinary verb “causes”).
The derived proof is rather interesting from the NLP point of
view, but (for the sake of space) it will not be displayed here.

A SYNTACTIC PROOF WITH THEOREMA

A sufficiently different possible use of Theorema is in the
syntactic analysis of relatively simple NL (natural language)
sentences. We considered the extremely small fragment of
English consisting of the following three Theorema elemen-
tary assumptions, denoted as Grammar (with the symbols p1,
p2 and p3 in them referring to sequences inside lists)

(NounPhrase[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉] ∧ ∧ ∧ ∧ VerbPhrase[〈〈〈〈p2〉〉〉〉, 〈〈〈〈p3〉〉〉〉])
 ⇒⇒⇒⇒ Sentence[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p3〉〉〉〉] “SD”
(Determiner[w1] ∧ ∧ ∧ ∧ Adjective[w2] ∧∧∧∧ Noun[w3])
 ⇒⇒⇒⇒ NounPhrase[〈〈〈〈w1, w2, w3, p1〉〉〉〉, 〈〈〈〈p1〉〉〉〉] “NPD”
(Verb[w1] ∧ ∧ ∧ ∧ NounPhrase[〈〈〈〈p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉])
 ⇒⇒⇒⇒ VerbPhrase[〈〈〈〈w1, p1〉〉〉〉, 〈〈〈〈p2〉〉〉〉] “VPD”

which express the well-known syntactic rules that (i) a noun
phrase and a verb phrase (in this order) constitute a sentence,
(ii) a determiner, an adjective and a noun constitute a noun

phrase, and (iii) a verb and a noun phrase constitute a verb
phrase. (Obviously, there are many more ways to form noun
phrases, verb phrases and sentences beyond the above ones!)

Beyond these assumptions (the rules of our grammar for
an extremely small fragment of sentences), we must also have
a lexicon, denoted as Lexicon in our present session. The
adopted (very small and so incomplete lexicon) has been

Determiner[the] “the”
Determiner[a] “a”
Noun[loading] “loading”
Noun[yielding] “yielding”
Adjective[excessive] “excessive”
Adjective[direct] “direct”
Verb[caused] “caused”

Then Theorema has been able (on the basis of both the
Grammar and the Lexicon) at first to prove the lemma that
the phrase “the excessive loading” is a noun phrase, whereas
the phrase “caused a direct yielding” is a verb phrase through
the use of its predicate prover. Next, Theorema also proved the
Proposition that the phrase (complete sentence) “the exces-
sive loading caused a direct yielding” is really a sentence,
based both on the grammar and on the above lemma. (The re-
lated details and proofs will not be displayed here.)

Naturally, a much more detailed grammar and lexicon
could, possibly, permit a more expanded variety of lemmata
and propositions concerning natural language (from the syn-
tactic point of view) to be proved, but it is also clear that the
Theorema possibilities (at least in its available a-version) are
limited in this task especially compared to those of Prolog.

A BEAM CONCLUSION WITH THEOREMA /PROLOG

The standard computer language being used in NLP is
surely Prolog. In this section, we will continue to use Mathe-
matica as our main computer language and Theorema for our
proofs, but we will also use Prolog (in fact SICStus Prolog)
for the derivation of the semantics of our elementary NL
(natural language) sentences so that they can next be imported
into Theorema. Our present four assumptions (Ass1 to Ass4
(denoted as “Beam assumptions” to Theorema), concerning
two separate beams in strength of materials, have as follows:

beam[beam1] “Ass1”, beam[beam2] “Ass2”,
straight[beam1] “Ass3”, elastic[beam2] “Ass4”,

i.e. both objects, beam1 and beam2, are beams and, moreover,
beam1 is assumed to be straight, whereas beam2 to be elas-
tic. Naturally, the predicate prover (PredicateProver) of
Theorema is easily able to prove conclusions on the basis of
these assumptions such as the composite “Beam conclusion”

beam[beam1] ∧∧∧∧ beam[beam2]
 ∧∧∧∧ straight[beam1] ∧∧∧∧ elastic[beam2]

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 4

Our aim here is simply to declare the same assumptions in
a much more natural way such as “Beam assumptions NLP”

“beam1 is a beam” “Ass1”, “beam2 is a beam” “Ass2”,
“beam1 is straight” “Ass3”, “beam2 is elastic” “Ass4”

From the typesetting point of view, obviously, this is di-
rect, but, naturally, Theorema cannot understand NL (natural
language). Therefore, we have to process these assumptions so
that they can be transformed into the natural way of writing in
Theorema (as well as in Mathematica). At first, we can isolate
these NL assumptions through the Mathematica commands

m = Assumptions[“Beam assumptions NLP”][[4]]//Length;
Table[a[i] = Assumptions[“Beam assumptions NLP”]
 [[4, i, 2]], {i, m}]//InputForm

Then we obtain the related list (with four elements a[i])

{“beam1 is a beam”, “beam2 is a beam”,
 “beam1 is straight”, “beam2 is elastic”}

ready to be processed through Prolog (NLP: natural language
processing). Surely, there are so many ready NLP Prolog pro-
grams, which be called from inside Mathematica with their
outputs brought back to Mathematica by using appropriate in-
put/output files. (The use of MathLink for this connection and
collaboration between Mathematica and Prolog, in our case
SICStus Prolog, is a more difficult task not having been under-
taken so far, but it is based on the same principles, i.e. to ask
Prolog to proceed to the NLP of our NL Mathematica sen-
tences and send the non-NL results back to Mathematica.)

The Prolog program we have adopted in this task has
been prepared by Cooper, Lewin and Black [19]. In this
Prolog program, the employed operators are defined, next, the
definitions and rules for well-formed logic formulae, terms, λ-
terms and quantifiers, etc. are given, β-conversion and reduc-
tion are also undertaken and, finally, what is most important in
our NLP problem, an elementary English grammar is defined
(for simple phrases and sentences such as those in our above
assumptions). For example, the Prolog rule for a sentence is

sn(NP*VP) - -> np(NP), vp(VP).

which simply means that a noun phrase (np) NP and a verb
phrase (vp) VP constitute a sentence. Other similar rules ex-
plain that a determiner d and a noun n constitute a noun phrase
np, etc. The determiners “every” and “a” (or “an”) are
somewhat special using the predicates forall and exists, re-
spectively, in their definitions and having the following
Prolog-rule forms:

d(Q^P^forall(X, Q*X - - -> P*X)) - -> [every].
d(Q^P^exists(X, Q*X & P*X)) - -> [a]; [an].

(Naturally, it is confessed that a little experience with Prolog
and NLP in Prolog is required for the understanding of these
rules! The interested reader can consult References [15, 16].)

Finally, the above Prolog program makes also extensive
use of lexical definitions (with the predicate lex for lexicon)
for the various categories of words used through their type
(e.g. pn for proper names, tv for transitive verbs, etc.). Beyond
these general definitions of lexical terms, we had also to intro-
duce our own special word lexical definitions such as

lex(beam1, pn, beam1).
lex(beam, n, X^beam(X)).
lex(isotropic, a, X^isotropic(X)).
lex(has, tv, Y^X^have(X, Y)).
lex(is, av, be)

these lexical examples referring to a proper name (pn), a noun
(n), an adjective (a), a transitive verb (tv) and the auxiliary
verb av “is”, respectively. Additional words have also been
introduced and, alternatively, an actual special-purpose lexicon
for this task could be used. What seems to be of much impor-
tance here is the logical formula defining each word we intro-
duced (frequently in λ-calculus form, such as X^beam(X) for
a beam), which constitutes the basis for the transformation of
the NL phrases into the corresponding logical forms.

In any case, Prolog and the above composite program
have been easily able to transform our NL assumptions into
their equivalent logical forms (through the appropriate use of
related input and output files from Mathematica), e.g.,
beam(beam1), beam(beam2), straight(beam1) and elas-
tic(beam2), respectively. Finally, a quite technical detail
(based on the Mathematica commands StringReplace and
ToExpession) concerns the slight change of notation (mainly
from parentheses to brackets, e.g. beam[beam1]) so that our
assumptions are completely ready to be used in Mathematica
and Theorema now and, in fact, they essentially coincide with
the above-displayed forms really accepted by Theorema. The
NL forms have been already denoted by a[i], whereas the
corresponding logical forms are denoted by b[i]. The related
Mathematica final substitution commands are again

sb1 = Table[a[i] -> b[i], {i, m}];
sb2 = Table[b[i] -> a[i], {i, m}];

and, therefore, the last step of the whole approach is to use
these substitutions in the Theorema Prove command so that
the NL assumptions can be inserted in it (but next transformed
into their logical equivalents). The Theorema proof (naturally
using the logical forms of the assumptions) can, next, be
brought back to the NL form by using the sb2 substitutions:

Show[Prove[Proposition[“Beam conclusion”],
 using -> Assumptions[“Beam assumptions NLP”]/.sb1,
 by -> PredicateProver, presentation -> “SuccessBranch”,
 in-notebook -> “Separate”/.sb2]

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 5

This is the command actually having been used in Theorema
and the sole indications of the NLP approach are the substitu-
tions (/.sb1 and /.sb2) in this command. Of course, a similar
method can be used for the propositions to be proved, etc.

At this point, we can also add that beyond the above
rather simple assumptions, we can also consider (and actually
did) more complicated assumptions such as those including
the usual quantifiers “for all” (∀∀∀∀) and “exists” (∃∃∃∃). For exam-
ple, we may consider the two assumptions (Ass1 and Ass2)

“beam[beam1]” and “∀∀∀∀x (beam[x] ⇒⇒⇒⇒ elastic[x])”

wishing to prove the simple conclusion Conclusion that

“elastic[beam1]”

In this case, we have also used the quantifier “for all” (∀∀∀∀) in
the second of our assumptions and, naturally, Theorema has
been actually and easily able to prove our conclusion Conclu-
sion. But, perhaps, the NL-equivalent writing of these state-
ments (both the assumptions and the conclusion)

“beam1 is a beam”, “every beam is elastic”,
“beam1 is elastic”

is sufficiently more natural, the elimination of the direct use of
the quantifier ∀∀∀∀ taken also into account (in favor of the simple
word “every”). Inversely, by providing the NL forms of our
assumptions and conclusion, we have been able to derive their
logical equivalents through the aforementioned Prolog pro-
gram and, next, use them in Theorema (exactly in the way al-
ready described) in order to obtain a natural proof not only in
the text, but also in the logical formulae used too, which are
now exactly human sentences, e.g. “every beam is elastic”.

To become a little more concrete, in this way of working,
we received the following Theorema proof (again by using the
predicate prover) in completely NL (natural language):

Prove:
 (Conclusion) beam1 is elastic
under the assumptions:
 (Ass1) beam1 is a beam,
 (Ass2) every beam is elastic.
For proving (Conclusion), by (Ass2), it suffices to prove
 (2) beam1 is a beam.
Formula (2) is true because it is identical to (Ass1).

Naturally, this has been a simple proof, but much more com-
plicated similar Theorema proofs can also be obtained.

A typical somewhat more complicated example concerns
the case when we have both quantifiers (∀∀∀∀ and ∃∃∃∃) inside the
same formula. For example, following the same NL approach,
we could simply give the assumption (or even the conclusion)

“every beam has an end”

instead of its logically equivalent (but more complex) form

∀∀∀∀x (beam[x] ⇒⇒⇒⇒ ∃∃∃∃y (end[y] ∧ ∧ ∧ ∧ has[x, y]))

which is logically correct, but, undoubtedly, not so easy for the
user of Mathematica and/or Theorema (e.g. the engineer) to
declare. Therefore, the first writing seems to be preferable, the
task of transforming it into the second one left to Prolog and
the related Mathematica interface as was already explained.

It is also understood that the present approach is of limited
applicability so far and generalizations to much more compli-
cated cases are indispensable and, possibly, they will be under-
taken in the future. Finally, it is clear that transforming NL
sentences into their logical equivalents in Mathematica [1] is
not of an exclusive importance for Theorema [2], but it can
also be used in any Mathematica logical computations such as
those in the companion paper [5], partially based on Maeder’s
Prolog interpreter [3] in Mathematica and not in Theorema.

In the next section, we will very briefly illustrate the pos-
sibility of performing the task of transformation of NL
phrases/sentences into their logical equivalents inside Mathe-
matica (i.e. without any resort to Prolog), but this has been
achieved-implemented only in few simple cases so far.

SIMPLE NLP INSIDE MATHEMATICA

In this section, we will transfer to Mathematica few of the
NLP well-known methods traditionally used in Prolog. At
first, we can mention that Mathematica offers the not so popu-
lar command Function (with an arguments list and a body),
which can be used for the logical equivalents of the lexicon
words and the further work in computational semantics for
phrases and sentences (just as in the popular λ-calculus).

Beginning with the lexicon, a first possibility is to use the
new command Lex (with two arguments), e.g.

Lex[beam1] = {pn[beam1], {}};
Lex[beam] = {n[beam], Function[X, beam[X]]};
Lex[straight] = {a[straight], Function[X, straight[x]]};
Lex[has] = {v[has], Function[X, have[X]]};
Lex[is] = {cop[is], Function[X, X]};
Lex[every] = {d[every],
 Function[P, Function[Q, ∀∀∀∀x (P[X] ⇒⇒⇒⇒ Q[x])]]};
Lex[one] = {d[one],
 Function[P, Function[Q, ∃∃∃∃x (P[X] ∧∧∧∧ Q[x])]]};

From this short sample of lexical terms (words), at first
we observe that these are classified into categories, i.e. as
proper names (pn), nouns (n), adjectives (a), verbs (v), the
copula (cop), determiners (d), etc. (e.g. pronouns not illus-
trated here). What are also very important are the logical ex-
pressions of these words, generally including the command
Function although we could also have used the symbol λ in-
stead (for lambda expressions) through the command

λ[x_, y_] := Function[x, y]

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 6

but, evidently, this is of minor importance.
In engineering texts, it is also clear that instead of proper

names (pn), it is preferable to use a new category of objects:
mathematical symbols (ms), e.g. beam1 above (for a beam), L
(for the length of the beam), EI (for its stiffness), y (for its de-
flection), etc., etc. What should also not be ignored is the spe-
cial interpretation of the copula (is), which essentially means
that this is ignored (through the identity function defining it),
e.g. the phrase “beam1 is elastic” is logically transformed
into “elastic[beam1]” (with the verb “is” not appearing in it).
It can also be mentioned that the definitions of the determiners
“every” and “one” are somewhat complicated (with the quan-
tifiers “for all” and “exists” appearing in them plus the impli-
cation and conjunction symbols, respectively). We can also
add that a simpler way of working is through lists of words:

Adjectives = {anisotropic, clamped, curvilinear, dynamic,
elastic, fixed, free, isotropic, long, static, straight, vertical};

etc. etc. and proceeding to the logical definition of these words
(here adjectives, a) in a uniform way inside a Lex module, e.g.

If[MemberQ[Adjectives, w], Return[{a[w], λ[X, w[X]]}]];

We have also prepared simple (although not complete and
Prolog-competitive) Mathematica modules (for the semantic
analysis of noun phrases, verb phrases and sentences), which
can be used both for parsing and for semantics of simple NL
phrases and whole sentences so that both their structure and
their logic equivalent can be derived. For example, for the
simple sentence “every beam has one end”, we obtained

{sn[np[d[every], n[beam]], vp[tv[has], np[d[one], n[end]]]],
∀∀∀∀x Implies[beam[x], ∃∃∃∃y (end[y] && has[x, y])]};

with the first line above referring to the syntactic analysis of
this sentence and the second line to its meaning, which, it is
believed, is not trivial to write down manually especially in
more complicated cases (e.g. with more than two quantifiers).

CONCLUSIONS
Concluding, we feel that the present results may be of

some mechanical engineering interest and possible applicabil-
ity especially when whole technical paragraphs (including
text, symbols and formulae) are to be automatically logically
analyzed (and, hopefully, proved syntactically meaningful and
both logically and computationally correct) with the aid of the
computer. Naturally, such an integrated task is not expected to
take place in the near future in spite of the present and (we be-
lieve) moderately encouraging preliminary results.

ACKNOWLEDGMENTS
Again the author is extremely thankful to Professor Bruno

Buchberger and the Theorema Group for their having given
him the opportunity to use Theorema in its preliminary, α-
version.

REFERENCES
[1] Wolfram, S., 1999, The Mathematica Book, 4th edition

(Mathematica, version 4), Wolfram Media, Champaign, IL,
and Cambridge University Press, Cambridge, UK.

[2] Buchberger, B. et al. 1997, “A Survey on the Theo-
rema Project”, Proceeding of the International Symposium on
Symbolic and Algebraic Computation (ISSAC) ‘97, Maui, HI.

[3] Maeder, R. E., 1996, The Mathematica Programmer
II, Academic Press, San Diego, CA, Chapter 2, pp. 21-56.

[4] Ioakimidis, N. I., 1998, “Elementary Engineering Me-
chanics Applications of the OTTER Automated Reasoning
System”, Proceedings of the 5th National Congress on Me-
chanics (ed. by P. S. Theocaris, D. I. Fotiadis and C. V. Mas-
salas), The University of Ioannina Press, Vol. 2, pp. 759-766.

[5] Ioakimidis, N. I., 2001, “Mathematica-Based Formula
Verification in Applied Mechanics”, Proceedings of the ASME
– Greek Section: First National Conference on Recent Ad-
vances in Mechanical Engineering, Sep. 2001, Patras, Greece.

[6] Dimarogonas, A. D., 1989, Computer Aided Machine
Design, Prentice Hall, New York.

[7] Sterling, L. and Shapiro, E., 1994, The Art of Prolog:
Advanced Programming Techniques, 2nd ed., The MIT Press,
Cambridge, MA.

[8] Bratko, I., 1990, Prolog Programming for Artificial
Intelligence, 2nd ed., Addison-Wesley, Harlow, England.

[9] Syrmakezis, C. A. and Mikroudis, G. K., 1991, Appli-
cation of Expert Systems to Problems of Structures (in Greek),
Technical Chamber of Greece, Athens.

[10] Partee, B. H., ter Meulen, A. and Wall, R. E., 1993,
Mathematical Methods in Linguistics, Kluwer, Dordrecht.

[11] Carpenter, B., 1997, Type-Logical Semantics, The
MIT Press, Cambridge, MA.

[12] Heim, I. and Kratzer, A., 1998, Semantics in Genera-
tive Grammar, Blackwell, Malden, MA.

[13] Ralli, A., Grigoriadou, M., Philokyprou, G., Christo-
doulakis, D. and Galiotou, E., 1997, Working Papers in Natu-
ral Language Processing (in English), Diavlos, Athens.

[14] Allen, J., 1995, Natural Language Understanding,
2nd ed., Benjamin/Cummings, Redwood City, CA.

[15] Pereira, F. C. N. and Shieber, S. M., 1987, Prolog
and Natural-Language Analysis, Center for the Study of Lan-
guage and Information (CSLI), Menlo Park, CA.

[16] Matthews, C., 1998, An Introduction to Natural Lan-
guage Processing Through Prolog, Longman, London.

[17] Dougherty, R. C., 1994, Natural Language Comput-
ing: An English Generative Grammar in Prolog, Lawrence
Erlbaum Associates, Hillsdale, NJ.

[18] Dik, S. C., 1992, Functional Grammar in Prolog: An
Integrated Implementation for English, French and Dutch,
Mouton de Gruyter, Berlin.

[19] Cooper, R., Lewin, I. and Black, A. W., 1992-93,
Prolog and Natural Language Semantics: Notes for AI3/4
Computational Semantics (available on the Web).

[20] Blackburn, P. and Bos, J., 1999, Representation and
Inference for Natural Language: A First Course in Computa-
tional Semantics, Saarbruecken (available on the Web).

