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General frame

Integrable defects (quantum level) impose severe constraints on
relevant algebraic and physical quantities (such as on scattering
amplitudes) (Delfino, Mussardo, Simonetti, Konic, LeClair, ....)

In discrete integrable systems there is a systematic description of
local defects based on QISM.

In integrable field theories a defect is introduced as discontinuity
together with gluing conditions (Bowcock, Corrigan, Zambon,...), the
integrability issue not systematically addressed.

Aim is to develop a systematic algebraic means to investigate
integrable filed theories with point like defects. Recent attempts by
(Habibullin, Kundu), but integrability still open issue
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Outline

Introduce the discrete non-liner Schrodinger model. Recall the
L-matrix and the associated classical quadratic algebra. Recall the
local I.M. and the Lax pair construction based on purely algebraic
grounds.

Extract local integrals of motion, the relevant Lax pairs and the
corresponding equations of motion in the presence of defect.

Consider a consistent continuum limit of the model under
consideration. First glimpse on the continuum model. First step in
order to compare with earlier results (Corrigan, Zambon).

Discussion on possible future applications of the proposed
methodology.
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The DNLS model

The DNLS Lax operator (Kundu, Ragnisco):

L(λ) =

(
λ+ Nj xj
−Xj 1

)
Nj = 1− xjXj and {xi , Xj} = δij . The L matrix satisfies the:

Classical quadratic algebra{
Lan(λ1), Lbm(λ2)

}
=
[
rab(λ1 − λ2), Lan(λ1)Lbm(λ2)

]
δnm.

The classical r matrix satisfies the CYBE (Semenov-Tian-Shansky)

[r12, r13] + [r12, r23] + [r13, r23] = 0.

The classical r -matrix in this case in the Yangian (Yang): r(λ) = P
λ .
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The DNLS model

The one-dimensional DNLS model; the generating function of all
integrals of motion:

The transfer matrix

t(λ) = Tra Ta(λ) where Ta(λ) = LaN(λ)LaN−1(λ) . . . La1(λ).

T is the monodromy matrix also satisfying the quadratic algebra.
Expansion of the log of the t(λ) provides the local IM:

H1 =
N∑
i=1

Ni ,

H2 = −
N∑
i=1

xi+1Xi −
1

2

N∑
i=1

N2
i

H3 = −
N∑
i=1

xi+2Xi +
N∑
i=1

(Ni + Ni+1)xi+1Xi +
1

3

N∑
i=1

N3
i .
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Lax pair formulation

Introduce the Lax pair (L, A) for discrete integrable models, and the
associated discrete:

Auxiliary linear problem

ψj+1 = Lj ψj

ψ̇j = Aj ψj .

From the latter equations one may immediately obtain the discrete zero
curvature condition as a compatibility condition:

Zero curvature condition

L̇j = Aj+1 Lj − Lj Aj .

Based on the underlying algebras construct the Lax pair.
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Lax pair formulation

Necessary first to formulate, using the classical algebra:{
ln t(λ), Lbj(µ)

}
= t−1 Tra

(
Ta(N, j + 1;λ) rab(λ− µ) Ta(j , 1;λ)

)
Lbj(µ)

− Lbj(µ) t−1 Tra
(
Ta(N, j ;λ) rab(λ− µ) Ta(j − 1, 1;λ)

)
.

Notation: T (i , j ;λ) = Li (λ)...Lj(λ), i > j .
Recalling the classical equations of motion

L̇j(µ) =
{
ln t(λ), Lj(µ)

}
,

and comparing the latter expressions we have:

The A-operator

Aj(λ, µ) = t−1(λ) tra
[
Ta(N, j ;λ) rab(λ− µ) Ta(j − 1, 1;λ)

]
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Lax pair formulation

Substituting the Yangian r -matrix into the latter expression:

The A-operator (Yangian)

Aj(λ, µ) =
t−1(λ)

λ− µ
T (j − 1, 1;λ) T (N, j ;λ).

Expand the latter expression in powers of 1
λ to obtain the Lax pairs

associated to each one of the I.M.:

A(1)
j (µ) =

(
1 0
0 0

)
, A(2)

j (µ) =

(
µ xj

−Xj−1 0

)
,

A(3)
j =

(
µ2 + xjXj−1 µxj − xjNj + xj+1

−µXj−1 + Xj−1Nj−1 − Xj−2 −xjXj−1

)
.

Zero curvature condition leads to E.M.
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The Defect

Introduce the defect located an site n:

L̃an = λ+

(
αn βn
γn δn

)
the index n denotes the position of the defect on the one dimensional
spin chain. The entries of the above L̃ matrix may be parameterized as:

αn = −δn =
1

2
cos(2θn), βn =

1

2
sin(2θn)e2iφn , γn =

1

2
sin(2θn)e−2iφn

It is shown via the quadratic algebra that αn, βn, γn, δn satisfy:

{αn, βn} = βn

{αn, γn} = −γn
{βn, γn} = 2αn

typical sl2 exchange relations.
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The Defect

Inserting the defect at the n site of the one dimensional lattice the
corresponding monodromy matrix is expressed as:

Monodromy with defect

Ta(λ) = LaN(λ)LaN−1(λ) . . . L̃an(λ) . . . La1(λ).

The L̃-operator is required to satisfy the same fundamental algebraic
relation as the monodromy matrix, so

t(λ) = trT (λ)

provides a family of Poisson commuting operators. Model integrable by

construction.
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Local Integrals of motion

Expansion of the log of the transfer matrix in powers of 1
λ provides the

local I.M. Give here the first three:

H1 =
∑
j 6=n

Nj + αn

H2 = −
∑

j 6=n,n−1

xj+1Xj −
1

2

∑
j 6=n

N2
j − xn+1Xn−1 − βnXn−1 + γnxn+1 −

α2
n

2

H3 = −
∑

j 6=n,n±1

xj+1Xj−1 +
∑

j 6=n,n−1

(Nj + Nj+1)xj+1Xj +
1

3

∑
j 6=n

N3
j

+ x̃n,n+1Nn−1Xn−1 + X̃n,n−1xn+1Nn+1 + αnx̃n,n+1Xn−1

+ αnX̃n,n−1xn+1 − x̃n,n+1Xn−2 − xn+2X̃n,n−1 +
αn

3

3
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The associated Lax pair

The generic expression of Lax pairs, and expansion leads to: Lax pair

A(1)
j the same as in the bulk for all sites, A(2)

j for j 6= n, n + 1 is given by
the bulk, but

A(2)
n =

(
µ βn + xn+1

−Xn−1 0

)
, A(2)

n+1 =

(
µ xn+1

γn − Xn−1 0

)
A(3)

j for j 6= n, n ± 1, n + 2 is given by the bulk and:

A(3)
n−1 =

(
µ2 + xn−1Xn−2 µxn−1 + x̃n,n+1 − Nn−1xn−1

−µXn−2 − Xn−3 + Nn−2Xn−2 −Xn−2xn−1

)
A(3)

n =

(
µ2 + x̃n,n+1Xn−1 µx̃n,n+1 + xn+1 − Nn+1xn+1 + f

−µXn−1 − Xn−2 + Nn−1Xn−1 −x̃n,n+1Xn−1

)
A(3)

n+1 =

(
µ2 + xn+1X̃n,n−1 µxn+1 + xn+2 − Nn+1xn+1

−µX̃n,n−1 − Xn−1 + Nn−1Xn−1 + g −X̃n,n−1xn+1

)
A(3)

n+2 =

(
µ2 + xn+2Xn+1 µxn+2 + xn+3 − Nn+2xn+2

−µXn+1 − X̃n,n−1 + Nn+1Xn+1 −Xn+1xn+2

)
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Equations of motion

For j 6= n, n ± 1, n ± 2 E.M. provided by the bulk equation, whereas for
the points around the impurity are suitably modified. On the defect point
in particular:

Zero curvature for defect point

˙̃Ln(λ) = An+1(λ) L̃n(λ)− L̃n(λ) An(λ)

and the entailed equations of motion for the defect point are completely
modified due to the presence of the defect degrees of freedom.
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The continuum limit

Introduce the spacing parameter ∆ in the L-matrix of the discrete NLS
model as well as in the L̃ matrix of the defect:

L(λ) =

(
1 + ∆λ−∆2xX ∆x

−∆X 1

)

L̃(λ) = ∆λ+

(
α β
γ δ

)
where we now define:

α = −δ =
1

2
cos(2∆θ), β =

1

2
sin(2∆θ)e2iφ, γ =

1

2
sin(2∆θ)e−2iφ,

also
θe2iφ = y , θe−2iφ = Y ,
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The continuum limit

Let us first introduce the following notation. In particular, we set:

Identifications

xj → x−(x), Xj → X−(x), 1 ≤ j ≤ n − 1, x ∈ (−∞, x0)

xj → x+(x), Xj → X+(x), n + 1 ≤ j ≤ N, x ∈ (x0, ∞).

where x0 is the defect position in the continuum theory. To perform the
continuum limit we bear in mind:

The limit

∆
n−1∑
j=1

fj →
∫ x−0

−∞
dx f −(x)

∆
N∑

j=n+1

fj →
∫ ∞
x+
0

dx f +(x).

Also: fj+1 → f (x + ∆)
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The continuum limit

The continuum limit of the first integral of motion is then given as:

The first carge

H(1) = −
∫ x−0

−∞
dx x−(x)X−(x)−

∫ ∞
x+
0

dx x+(x)X+(x).

The first integral proportional to ∆, whereas the second one of order ∆2.
The respective continuum quantity reads as:

The second charge

H(2) = −
∫ x−0

−∞
dx x−

′
(x)X−(x)−

∫ ∞
x+
0

dx x+
′
(x)X+(x) +

1

2
y(x0)Y (x0)

+ x−(x0)X−(x0)− x+(x0)X−(x0) + x+(x0)Y (x0)− y(x0)X−(x0)

the prime denotes derivative with respect to x .
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The continuum limit

Consider the identifications:

Ln → 1 + ∆U(x), An → V(x), An+1 → V(x + ∆)

The discrete zero curvature condition:

L̇j = Aj+1 Lj − Lj Aj .

Then takes the familiar continuum form:

Continuum zero curvature

U̇− V′ +
[
U, V

]
= 0.

We have kept terms proportional to ∆ in the discrete zero curvature

condition.
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The continuum limit

The Lax pair associated to the first integral coincides with the bulk one.
The Lax pair associated to the second integral of motion is given by:

V(2)(µ, x) =

(
µ x−(x)

−X−(x) 0

)
x ∈ (−∞, x−0 ],

V(2)(µ, x) =

(
µ x+(x)

−X+(x) 0

)
x ∈ (x+0 , ∞)

V(2)(µ, x0) =

(
µ x+(x0) + y(x0)

−X−(x0) 0

)
,

V(2)(µ, x+0 ) =

(
µ x+(x0)

Y (x0)− X−(x0) 0

)
.

Due to continuity requirements at the points x+0 , x
−
0 , we end up with the

following sewing conditions associated to the defect point:

Sewing conditions

y(x0) = x−(x0)− x+(x0),

Y (x0) = X−(x0)− X+(x0).
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The continuum limit

The continuity argument successfully applied to the points around
the defect; a discontinuity (jump) is observed on the defect point.
At x0 (i.e. L → L̃), leading to discontinuity in the zero curvature
condition at x0.

It is straightforward to show that if the sewing conditions are valid
then:

Commutativity

{H1, H2} = 0

A first indication of the preservation of the integrability in the
continuum case. In the discrete an ultra local algebra; t in the
continuum limit possibly a generalized non-ultra local algebra to
efficiently describe the point like defect at x0.
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Systematic construction

Recall
Lai = 1 + δUai +O(δ2) ,

Then the monodromy matrix is expanded as:

Ta = 1 + δ
∑
i

Uai + δ2
∑
i<j

UaiUaj + . . . .

Which leads to the familiar continuum expression

The continuum monodromy

T = P exp

(∫ A

0

dx U(x)

)
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Systematic construction

Then the discrete monodromy matrix in the presence of defect:

Ta(λ) = LaN(λ) . . . L̃an(λ) . . . La1(λ)

according to previous analysis T will be formally expressed at the
continuum limit:

The defect monodromy

T (λ) = P exp
(∫ x−0

0

dx U−(x)
)
L̃(λ) P exp

(∫ A

x+
0

dx U+(x)
)

Algebraic constraints on L̃? Non ultra-locality ensued?
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Discussion

Examine higher integrals of motion and check their involution in the
continuum limit. Check also the consistency of higher gluing
conditions (higher derivatives are involved).

Systematically establish the underlying Poisson structure governing
this type of models. Integrability then naturally follows.

Extend the study to other discrete integrable models associated e.g.
to (an)isotropic Heisenberg chains, and higher rank generalizations.

At the quantum level: derive the associated transmission amplitudes
via the Bethe ansatz equations.
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