Analytical Bethe ansatz for integrable open spin chains

Annecy, September 2005

To Daniel

Anastasia Doikou LAPTH, Annecy-Le-Vieux

Work in collaboration with:

D. Arnaudon, J. Avan, N. Crampe, L. Frappat, E. Ragoucy

The programm

- Treat classes of integrable spin chains with open boundaries. Two main parts:
- (i) osp(n|m), (so(n), sp(m)).
- (ii) gl(n) two distinct types of b.c. (SP. and SNP), deal also with any irrep of $\mathcal{Y}(gl(n))$.
- ullet Main aims classification of solutions of the RE \to derive the corresponding open spin chain.
- ullet Then find the spectrum and BAE via the analytical BA method (the gl(n) case results obtained for any rep.). Also boundary scattering via the study in the thermodynamic limit.

A.
$$osp(n|m)$$
, $so(n)$, $sp(m)$

The R matrix of the corresponding (super) Yangian,

$$R(\lambda) = \lambda(\lambda + i\rho)\mathbb{I} + (\lambda + i\rho)\mathcal{P} - \lambda Q$$

$$\mathcal{P}^2 = \mathbb{I}, \quad Q^2 = \Theta_0(n-m)Q, \quad \mathcal{P}Q = Q\mathcal{P} = \Theta_0Q$$

$$\rho = \Theta_0 \frac{-n+m-2}{2}, \quad \Theta_0 = \pm 1,$$

Solution of the Yang-Baxter equation (Baxter '72)

$$R_{12}(\lambda_1 - \lambda_2) R_{13}(\lambda_1) R_{23}(\lambda_2) = R_{23}(\lambda_2) R_{13}(\lambda_1) R_{12}(\lambda_1 - \lambda_2)$$

Also satisfies

- ullet Unitarity $R(\lambda)$ $R(-\lambda) \propto \mathbb{I}$
- Crossing $V_1 R_{12}(-\lambda i\rho)^{t_2} V_1 = R_{12}(\lambda)$.

The open spin chain

Introduce the K matrix, solution of the reflection equation (Cherednik '84)

$$R_{12}(\lambda_1 - \lambda_2) K_1(\lambda_1) R_{21}(\lambda_1 + \lambda_2) K_2(\lambda_2)$$

= $K_2(\lambda_2) R_{12}(\lambda_1 - \lambda_2) K_1(\lambda_1) R_{21}(\lambda_1 - \lambda_2)$

Then (for any K) (Sklyanin '88)

$$T(\lambda) = T(\lambda) K(\lambda) T^{-1}(-\lambda), \quad T(\lambda) = R_{0N}(\lambda) \cdots R_{01}(\lambda)$$

T o tensor rep. of (super) Yangian, $\mathcal{T} o$ tensor rep. of RA.

Define the transfer matrix

$$t(\lambda) = Tr_0\{K^+(\lambda) \ \mathcal{T}(\lambda)\}\$$

and

$$[t(\lambda), t(\lambda')] = 0$$

Integrability ensured.

Diagonal solutions of the RE

D2.
$$K(\lambda) = diag(\alpha, \beta, \dots, \beta, \gamma)$$
 (no for $sp(n)$)

$$\alpha = \frac{-\lambda + i\xi_1}{\lambda + i\xi_1}, \quad \beta = 1, \quad \gamma = \frac{-\lambda + i\xi_n}{\lambda + i\xi_n}, \quad \xi_1 + \xi_n = \rho - 1$$

$$\mathbf{D3.} \ K(\lambda) = diag(\underbrace{\alpha, \dots, \alpha}_{p}, \underbrace{\beta, \dots, \beta}_{n-2p}, \underbrace{\alpha, \dots, \alpha}_{p})$$

$$\alpha = -\lambda + i\xi, \quad \beta = \lambda + i\xi, \text{ and } \xi = \frac{n}{4} - \rho \text{ fixed}$$

D4.
$$K(\lambda) = diag(\alpha, \beta, \gamma, \delta)$$
, for $so(4)$

$$\alpha = (-\lambda + i\xi_+)(-\lambda + i\xi_-), \quad \beta = (\lambda + i\xi_+)(-\lambda + i\xi_-)$$

$$\gamma = (-\lambda + i\xi_+)(\lambda + i\xi_-), \quad \delta = (\lambda + i\xi_+)(\lambda + i\xi_-)$$

Analytical Bethe ansatz

Objective: find spectrum and BAE via analytical BA (Reshetikhin '83, Mezincescu, Nepomechie '92), exploit requirements

- 1. Reference state
- 2. Crossing symmetry $t(\lambda) = t(-\lambda i\rho)$
- 3. Constraints from fusion
- 4. Analyticity requirements
- 5. Symmetry, from the asymptotics $\to t(\lambda)$ associated to the certain conserved quantities (e.g diagonal gen of the algebra).

There exists an obvious reference state:

$$|\Omega\rangle = \bigotimes_{i=1}^{N} \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}_{i}$$

The ref. state eigenstate of t with eigenvalue

$$\Lambda^{0}(\lambda) = a^{2N} g_{0}(\lambda) + \sum_{i} b^{2N} g_{1}(\lambda) + c^{2N} g_{n+m-1}(\lambda)$$

 g_i depend on the choice of boundaries.

Conjecture:

$$\Lambda(\lambda) = a^{2N} g_0 D_0 + \sum_i b^{2N} g_i D_i + c^{2N} g_{n+m-1} D_{n+m-2}$$

 D_i to be determined by implementing the aforementioned constraints.

Bethe ansatz equations

Determine D_i and spectrum, analyticity requirements \to BAE: e.g. for so(2k+1) $(K=\mathbb{I})$, k equations (no. of roots)

$$e_1^{2N+1}(\lambda_i^{(1)}) = -\prod_{j=1}^{M^{(1)}} \hat{e}_2(\lambda_i^{(1)}; \lambda_j^{(1)}) \prod_{j=1}^{M^{(2)}} \hat{e}_{-1}(\lambda_i^{(1)}; \lambda_j^{(2)})$$

$$e_1(\lambda_i^{(l)}) = -\prod_{j=1}^{M^{(l)}} \hat{e}_2(\lambda_i^{(l)}; \lambda_j^{(l)}) \prod_{\tau=\pm 1} \prod_{j=1}^{M^{(l+\tau)}} \hat{e}_{-1}(\lambda_i^{(l)}; \lambda_j^{(l+\tau)})$$

 $l \in \{2, \dots, k-1\}$

$$e_{1/2}(\lambda_i^{(k)}) = -\prod_{j=1}^{M^{(k)}} \hat{e}_1(\lambda_i^{(k)}; \lambda_j^{(k)}) \prod_{j=1}^{M^{(k-1)}} \hat{e}_{-1}(\lambda_i^{(k)}; \lambda_j^{(k-1)})$$

where

$$e_n(\lambda) = \frac{\lambda + \frac{in}{2}}{\lambda - \frac{in}{2}}, \quad \hat{e}_n(\lambda_i; \lambda_j) = e_n(\lambda_i - \lambda_j)e_n(\lambda_i + \lambda_j)$$

for so(2k) similar the last three equations are modified according to Dynkin diagram, similarly for sp(2k) last 2 equ. modified:

$$e_{1}(\lambda_{i}^{(k-1)}) = -\prod_{j=1}^{M^{(k-1)}} \hat{e}_{2}(\lambda_{i}^{(k-1)}; \lambda_{j}^{(k-1)}) \prod_{j=1}^{M^{(k-2)}} \hat{e}_{-1}(\lambda_{i}^{(k-1)}; \lambda_{j}^{(k)})$$

$$\times \prod_{j=1}^{M^{(k)}} \hat{e}_{-2}(\lambda_{i}^{(k-1)}; \lambda_{j}^{(k)})$$

$$e_{2}(\lambda_{i}^{(k)}) = -\prod_{j=1}^{M^{(k)}} \hat{e}_{4}(\lambda_{i}^{(k)}; \lambda_{j}^{(k)}) \prod_{j=1}^{M^{(k-1)}} \hat{e}_{-2}(\lambda_{i}^{(k)}; \lambda_{j}^{(k-1)})$$

Comments

- ullet From asymptotics: $M^{(i)}$ associated to the diagonal gens. of so(n), (sp(n)).
- BAE 'doubled' compared to the bulk ones found in (Ogievetsky, Reshetikhin, Wiegmann '87).
- ullet For osp(n|m) the equ corresponding to the fermionic root changes as well.
- ullet Different diagonal boundaries \to multipl. factors in the LHS of BAE.
- Boundary scattering computed for various diagonal b.c., and bulk scattering computed compared with previous results (Ogievetsky, Reshetikhin, Wiegmann '87)

B. The gl(n) case

The R matrix

$$R(\lambda) = \lambda + i\mathcal{P}$$

R satisfies unitarity but not crossing, therefore define:

$$\bar{R}_{12}(\lambda) = V_1 R_{12}(-\lambda - i\rho)^{t_2} V_1$$

- \rightarrow 2 types of b.c. (SP and SNP)
- (I) SP deal with solutions of the usual reflection equation (reflection algebra)(e.g. de Vega, Gonzalez-Ruiz '94)
- (II) SNP (twisted Yangian) (classically intro. Bowckock, Corrigan, Dorey, Rietdijk '95, quantum A.D. '00)

$$R_{12}(\lambda_1 - \lambda_2) K_1(\lambda_1) \bar{R}_{21}(\lambda_1 + \lambda_2) K_2(\lambda_2)$$

= $K_2(\lambda_2) \bar{R}_{12}(\lambda_1 - \lambda_2) K_1(\lambda_1) R_{21}(\lambda_1 - \lambda_2)$

The Yangian $\mathcal{Y}(gl(n))$

Let $\mathcal{L}(\lambda) \in \mathsf{End}(\mathbb{C}^n) \otimes \mathcal{Y}$, satisfying

$$R_{12}(\lambda_1 - \lambda_2) \mathcal{L}_{13}(\lambda_1) \mathcal{L}_{23}(\lambda_2) = \mathcal{L}_{23}(\lambda_2) \mathcal{L}_{13}(\lambda_1) R_{12}(\lambda_1 - \lambda_2)$$

Via $\mathcal{Y} \rightarrow gl(n)$ simply write:

$$\mathcal{L}(\lambda) = \sum_{i,j=1}^{n} E_{ij} \otimes \mathcal{L}_{ij}(\lambda), \quad \mathcal{L}_{ij} \in gl(n)$$

 $\Delta: \mathcal{Y} \to \mathcal{Y} \otimes \mathcal{Y}$

$$\Delta(\mathcal{L}_{ij}(\lambda)) = \sum_{k=1}^{n} \mathcal{L}_{ik}(\lambda) \otimes \mathcal{L}_{kj}(\lambda).$$

Tensor representation of ${\mathcal Y}$

$$T_0(\lambda) = \mathcal{L}_{0N}(\lambda) \dots \mathcal{L}_{01}(\lambda) \in \mathsf{End}(\mathbb{C}^n) \otimes \mathcal{Y}^{\otimes N}$$

auxiliary space repr. via evaluation rep.

Useful to define:

$$\hat{\mathcal{L}}_{0i}(\lambda) = V_0^{t_0} \, \mathcal{L}_{0i}^{t_0}(-\lambda - i\rho) \, V_0^{t_0}$$

Derive tensor representations of RA and twisted Yangian:

(I) SP (reflection algebra)

$$\mathcal{T}(\lambda) = T(\lambda) \ K(\lambda) \ \hat{T}(\lambda), \quad \hat{T}(\lambda) = T^{-1}(-\lambda)$$

(II) SNP (twisted Yangian)

$$\mathcal{T}(\lambda) = T(\lambda) K(\lambda) \hat{T}(\lambda), \quad \hat{T}(\lambda) = \hat{\mathcal{L}}_{01} \dots \hat{\mathcal{L}}_{0N}.$$

The transfer matrix:

$$t(\lambda) = Tr_0 \Big\{ K^+(\lambda) \ \mathcal{T}(\lambda) \Big\} \in \mathcal{Y}^{\otimes N}$$

Depending on V, t for SNP is associated to so(n) or sp(n)

Focus on diagonal solutions

(SP)
$$K = \mathbb{I} \ gl(n)$$
 symmetry or

$$K(\lambda) = diag(\underbrace{\alpha, \ldots, \alpha}_{k}, \underbrace{\beta, \ldots, \beta}_{n-k})$$

$$\alpha = -\lambda + i\xi, \quad \beta = \lambda + i\xi \text{ (de Vega, Gonzalez-Ruiz '94)}$$

$$gl(n-k)\otimes gl(k)$$
 symmetry.

(SNP) $K = \mathbb{I} \ so(n) \ \text{or} \ sp(k) \ \text{symmetry}$

Apply analytical BA.

Reference state (highest weight):

$$T_{ij}, \ \hat{T}_{ij} \ u^{+} = 0, \quad i > j$$

$$T_{kk}(\lambda) \ u^{+} = P_{k}(\lambda) \ u^{+}, \qquad \hat{T}_{kk}(\lambda) = \hat{P}_{k}(\lambda) \ u^{+},$$

 P_k Drinfeld Polynomials introduced for the classification of reps of \mathcal{Y} .

Using the highest weight and the underlying algebra (RA or TY) $\rightarrow u^+$ eigenstate of t, for both b.c., and also compute eigenvalue.

Pseudo vacuum eigenvalue:

$$\Lambda^{0}(\lambda) = \sum_{k=1}^{n} g_{k}(\lambda) \, \beta_{k}(\lambda)$$

 g_k depend on b.c., β_k depend on rep.

Conjecture:

$$\Lambda(\lambda) = \sum_{k=1}^{n} g_k(\lambda) \ \beta_k(\lambda) \ D_k(\lambda)$$

Via the analytical BA constraints determine D_k and spectrum.

Note crossing holds for SNP only, not for SP. For SP one needs an 'auxiliary' \bar{t} : $\bar{t}(\lambda)=t(-\lambda-i\rho)$.

Bethe ansatz equations

(SP) n-1 equations

$$\frac{g_l(\lambda_i^{(l)} - \frac{l}{2})\beta_l(\lambda_i^{(l)} - \frac{l}{2})}{g_{l+1}(\lambda_i^{(l)} - \frac{l}{2})\beta_{l+1}(\lambda_i^{(l)} - \frac{l}{2})} = -\prod_{j=1}^{M^{(l)}} \hat{e}_2(\lambda_i^{(l)}; \lambda_j^{(l)}) \prod_{\tau = \pm 1} \prod_{j=1}^{M^{(l+\tau)}} \hat{e}_{-1}(\lambda_i^{(l)}; \lambda_j^{(l+\tau)})$$

$$l \in \{1, \dots, n-1\}$$

(SNP) Similarly as in SP. Only the last equation is modified: (i) n = 2k + 1

$$\frac{g_k(\lambda_i^{(k)} - \frac{k}{2})\beta_k(\lambda_i^{(k)} - \frac{k}{2})}{g_{k+1}(\lambda_i^{(k)} - \frac{k}{2})\beta_{k+1}(\lambda_i^{(k)} - \frac{k}{2})} = - \prod_{j=1}^{M^{(k)}} \hat{e}_2(\lambda_i^{(k)}; \lambda_j^{(k)}) e_{-1}(\lambda_i^{(k)}; \lambda_j^{(k)}) \\
\times \prod_{j=1}^{M^{(k-1)}} \hat{e}_{-1}(\lambda_i^{(k)}; \lambda_j^{(k-1)})$$

BAE as in osp(1|2k).

(ii)
$$n=2k$$

$$\frac{g_k(\lambda_i^{(k)} - \frac{k}{2})\beta_k(\lambda_i^{(k)} - \frac{k}{2})}{g_{k+1}(\lambda_i^{(k)} - \frac{k}{2})\beta_{k+1}(\lambda_i^{(k)} - \frac{k}{2})} = -\prod_{j=1}^{M^{(k)}} \hat{e}_2(\lambda_i^{(k)}; \lambda_j^{(k)}) \prod_{j=1}^{M^{(k-1)}} \hat{e}_{-1}^2(\lambda_i^{(k)}; \lambda_j^{(k-1)})$$

The boundaries modify the bulk behavior in SNP. In SP BAE 'doubled compared to the bulk case.

Discussion

- \bullet The super sl(n|m) case has been also studied in the same spirit.
- ullet Non diagonal boundaries also treated for gl(n) via simple gauge transformations (SP). BAE preserve their structure
- ullet The $U_q(gl_n)$ case work in progress for both types of b.c.
- Non-diagonal boundaries (q-deformed case). Symmetry plays crucial role (boundary non-local charges ((SNP) Delius, Mackay '02, (SP) A.D. '04)). Ref. state via local gauge transformation and symmetry arguments \rightarrow spectrum.