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Abstract

Basic notions regarding classical integrable systems are reviewed. An algebraic descrip-

tion of the classical integrable models together with the zero curvature condition description

is presented. The classical r-matrix approach for discrete and continuum classical integrable

models is introduced. Using this framework the associated classical integrals of motion and

the corresponding Lax pair are extracted based on algebraic considerations. Our attention

is restricted to classical discrete and continuum integrable systems with periodic boundary

conditions. Typical examples of discrete (Toda chain, discrete NLS model) and contin-

uum integrable models (NLS, sine-Gordon models and affine Toda field theories) are also

discussed.

∗This article is based on a series of lectures presented at the University of

Oldenburg in July 2011.
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1 Introduction

This is a pedagogical review aiming at introducing basic notions regarding classical integrable

models. It is based on a series of Lectures given at the University of Oldenburg. These

lectures are mainly addressed to graduate students or other researchers who wish to acquire

some fundamental knowledge on certain topics within classical integrability [1]–[10].

The notion of complete integrability goes back to the celebrated Liouville’s theorem for

a system with a finite number of degrees of freedom [11]. In 70’s the notion of integrability

was extended to models with infinite degrees of freedom, that is 1+1 integrable field theories

with generic non-linear interactions; such typical examples, which will be reviewed here are

the non-linear Schrodinger model (NLS), the sine-Gordon model and its generalizations, the

affine Toda field theories (ATFT), among others (see e.g. [1, 3] and references therein). The

idea of quantum integrability is relevant to the so called quantum inverse scattering method,

an elegant algebraic technique mainly developed by the St. Petersburg group (see e.g.

[12]–[18], for a recent review see [19] and references therein). Perhaps the greatest appeal

of integrability is that it offers an exact framework for the investigation of a wide range

of physical systems without resort to perturbative methods, which are the most common

techniques when studying any physical system. In addition to the significance of these models

per se, and their rich mathematical structure there are various immediate applications and

connections with other related areas of research, such as string and gauge theories, condensed

matter physics, gravity etc.

The main focus in this presentation lies on the description of classical discrete and con-

tinuum integrable systems via the Hamiltonian formalism based on the classical r-matrix

approach [20, 21]. More precisely, the outline of this article is as follows: in the next Sec-

tion some preliminary notions such as the Poisson structure are introduced, and Liouville’s

theorem is briefly reviewed. In Section 3 linear Poisson algebraic structures are introduced

and integrable models ruled by linear algebras, such as the Toda chain are described. In

particular, the first integrals on motion are extracted and the time components of the corre-

sponding Lax pairs are explicitly constructed from first principles. In section 4 we introduce

the notion of quadratic Poisson structure, and through this notion we construct discrete one-

dimensional discrete integrable models. An explicit construction of the conserved quantities

and the associate Lax pairs is presented as well. In the next Section typical examples of

physical systems ruled by quadratic classical algebras, such as the discrete NLS model as
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well as the Toda chain (via the “dual” quadratic description due to Sklyanin), are presented.

In Section 6 we describe classical continuum integrable models in the spirit presented in the

previous sections, based again on quadratic Poisson structures. Typical examples such as

the NLS and sine-Gordon models, affine Toda field theories (ATFT) and the Liouville model

are reviewed in Section 7. In the last section a systematic prescription for obtaining suitable

continuum limits of discrete integrable models in such a way that integrability is preserved is

outlined. A considerable number of relevant exercises are provided for the interested reader

throughout the text.

2 Preliminaries

The notion of Poisson bracket, which is used to define a Poisson algebra (see e.g. [1, 3, 11]

and references therein) is briefly reviewed. Consider a phase space G2n endowed with

Poisson structure { , } and local canonical variables qi, pi. Given any two functions

f({qi}, {pi}), g({qi}, {pi}) of the canonical variables associated to the Poisson bracket

takes by definition the form:

{
f, g

}
=

n∑
i=1

( ∂f

∂pi

∂g

qi

− ∂f

∂qi

∂g

∂pi

)
(2.1)

and clearly

{
qi, qj

}
=

{
pi, pj

}
= 0,

{
pi, qj

}
= δij. (2.2)

For any three functions f, g, h of the canonical variables the so called Jacobi identity

holds, that is:

{
f,

{
g, h

}}
+

{
g,

{
h, f

}}
+

{
h,

{
f, g

}}
= 0. (2.3)

Also, Leibniz’s law, known as Poisson property applies:

{
f, gh

}
= g

{
f, h

}
+

{
f, g

}
h. (2.4)

Hamilton’s equations of motion may be derived in terms of the Poisson brackets. Let a

function f({qi}, {pi}, t), then

df

dt
=

n∑
i

∂f

qi

q̇i +
n∑
i

∂f

pi

ṗi +
∂f

∂t
. (2.5)
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But

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

(2.6)

(the dot denotes derivative with respect to time) therefore we conclude:

df

dt
=

{
H, f

}
+

∂f

∂t
. (2.7)

For f being a constant of motion one then has

{
f, H

}
+

∂f

∂t
= 0. (2.8)

In order for a system to be integrable all the integrals of motion should be in mutual

involution. i.e. to Poisson commute. More precisely, let us recall the celebrated Liouville’s

theorem (see e.g. [3, 11]): consider a system with n degrees of freedom in the phase space

G2n with coordinates q1, . . . , qn, p1 . . . , pn, let also H({qi}, {pi}) be the Hamiltonian of

the system. The system is completely integrable if there exist n independent functions

Ii({qi}, {pi}) defined on the phase space such that:

{
H, Ii

}
= 0,

{
Ii, Ij

}
= 0, (2.9)

Ii are in fact charges in involution and they are known as integrals of motions or conserved

quantities given that they satisfy:

dIj

dt
=

{
H, Ij

}
= 0. (2.10)

In this case it is possible to introduce a complementary set of functions ϕi({qj}, {pj}),
i, j ∈ {1, . . . , n} [11], and we may then describe the change of coordinates on the phase

space:

(
qi, pi

)
7→

(
Ii, ϕi

)
. (2.11)

The new coordinates
(
Ii, ϕi

)
define the so-called action-angle variables, and the equations

of motion become:

dIj

dt
=

{
H, Ij

}
= 0 ⇒ Ij(t) = constant

dϕj

dt
=

{
H, ϕj

}
= ωj ⇒ ϕj(t) = ωj t + ϕj(0) (2.12)

for certain functions ωj({Ii}). The time evolution of an integrable system is linear if we

choose a suitable set of coordinates (angle-action). Although the existence of
(
Ii, ϕi

)
is
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guaranteed from Liouville’s theorem (see e.g. [11]) their explicit construction is an intriguing

task depending on the specifics of the integrable system under consideration

Having introduced the basic notions on the Poisson structures we are now ready to pro-

ceed with the description of the algebraic setting underlying classical discrete and continuous

integrable systems.

3 Linear Poisson structure

We start our review considering integrable models that obey linear algebraic Poisson struc-

tures. A typical example in this category is the Toda chain. We first introduce the Lax pair

[6] associated to such a system. It is a pair of elements of a Lie algebra G, (L, A) satisfying

the so called zero curvature condition:

dL

dt
=

[
L, A

]
. (3.1)

Assuming G is a loop algebra G ⊗C(λ), the associated spectral problem is then expressed as

L(λ) ψ = u ψ

det
(
L(λ)− u

)
= 0. (3.2)

The integrals of motion associated to such a system are then naturally provided by the traces

of powers of L i.e. (see also [3, 22] and references therein),

t(n)(λ) = tr (Ln(λ)). (3.3)

Expansion in powers of λ (or 1
λ
) is expected to provide all required integrals of motion of

the system under consideration.

It is quite straightforward to show that the latter provide a family of mutually Poisson

quantities as long as L satisfies the following linear algebraic relations:

{
La(λ), Lb(µ)

}
=

[
rab(λ− µ), La(λ) + Lb(µ)

]
(3.4)

L is in general an n × n matrix with entries being fields, representations of the underlying

classical algebra, and r is an n2×n2 matrix which satisfies the classical Yang-Baxter equation

[21]

[
r12(λ1 − λ2), r13(λ1) + r23(λ2)

]
+

[
r13(λ1), r23(λ2)

]
= 0. (3.5)
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The r-matrix acts on the tensor product V ⊗ V . In general the notation that will be used

henceforth is: A1 = A⊗ I, B2 = I⊗ B and A1 B2 = A⊗ B. Moreover, it is clear that the

classical Yang-Baxter equation acts on V⊗V⊗V and r12 = r⊗ I i.e. the r matrix acts non

trivially on the first two spaces, r23 = I⊗ r and so on.

Proposition 3.1. Based on the linear relations (3.4) show that:

{
t(n)(λ), t(m)(µ)

}
= 0. (3.6)

Proof: We recall the definition of t(n) and substitute:

trab

{
Ln

a(λ), Lm
b (µ)

}
= nm trab

(
Ln−1

a (λ)
{

La(λ), Lb(µ)
}

Lm−1
b (µ)

)
= . . . (3.7)

The latter expression becomes after recalling (3.4)

. . . = nm trab

(
Ln−1

a (λ)
[
rab(λ− µ), La(λ) + Lb(µ)

]
Lm−1

b (µ)
)

= nm trab

(
Ln−1

a (λ)Lm−1
b (µ)rab(λ− µ)(La(λ) + Lb(µ))

)

− nm trab

(
Ln−1

a (λ)Lm−1
b (µ)(La(λ) + Lb(µ))rab(λ− µ)

)
= 0 (3.8)

and this concludes our proof. ¤

The construction of the Lax pair associated to each one of the integrals of motion utilizing

the underlying classical algebra expressed through (3.4) is illustrated in what follows. Recall

that all the charges in involution are obtained via the transfer matrices defined in (3.3); also

the classical equations of motion are expressed as:

dL(µ)

dt
=

{
t(n)(λ), L(µ)

}
. (3.9)

To identify the corresponding expression for A we need to formulate the following expression:

{
tra Ln

a(λ), Lb(µ)
}

= n tra

(
Ln−1

a (λ)
{

La(λ), Lb(µ)
})

= n tra

(
Ln−1

a (λ)
[
rab(λ− µ), La(λ) + Lb(µ)

])

n tra

(
Ln−1

a (λ) rab(λ− µ)
)

Lb(µ)− Lb(µ) n tra

(
Ln−1

a (λ) rab(λ− µ)
)
. (3.10)

Comparing (3.1) with (3.9) through (3.10) we conclude that [21, 3]

A(λ, µ) = n tra

(
Ln−1

a (λ) rab(λ− µ)
)
. (3.11)
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In the case where the r-matrix is the Yangian matrix [23]

r(λ) =
1

λ
P (3.12)

P the permutation operator P (~a⊗~b) = ~b⊗ ~a, the expression (3.11) is modified as:

A(λ) =
n

λ− µ
Ln−1(λ). (3.13)

Example. Let us discuss a typical example associated to linear Poisson structures, that is

the classical Toda chain. Consider the classical Toda chain [24]. The associated L-matrix is

given as:

L(λ) = ue
q1−qN

2 e1N + u−1e
q1−qN

2 eN1 +
N∑

j=1

pjejj +
N−1∑
j=1

e
qj+1−qj

2 ejj+1 +
N−1∑
j=1

e
qj+1−qj

2 ej+1j

(3.14)

where we define: u = e2λ, and (eij)kl = δikδjl. The Lax operator (3.14) satisfies (3.4) with

the r-matrix given by [25, 26]

r(λ) =
u1 + u2

u1 − u2

N∑
j=1

ejj ⊗ ejj +
1

u1 − u2

(
u1

N∑

k>j

+u2

N∑

k<j

)
ejk ⊗ ekj (3.15)

where ui = e2λi .

The momentum and Hamiltonian of the system may be now extracted. This may be

achieved by just considering the first two generating functions trL, trL2 and expand in

powers of u. It is convenient for our purposes here to express the L-matrix in a more

compact form as:

L(λ) ∝ u2A + uB + D (3.16)

then

trL(λ) ∝ u2 trA + u trB + trD (3.17)

but due to the structure of the matrices A, B, D (3.14) we immediately conclude:

I1 = trB =
N∑

j=1

pj. (3.18)
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To obtain the second integral of motion we expand

trL2(λ) ∝ u4 tr(A2) + u3 tr(AB + BA) + u2 tr(AD + DA + B2) + u tr(DB + BD) + tr(D2).

(3.19)

Recalling the form of the involved matrices via (3.14) we conclude that the first non-trivial

contribution, which essentially corresponds to the Hamiltonian, is given by the zero order

terms, i.e.

I2 = −1

2
tr(AD + DA + B2) = . . . = −1

2

N∑
j=1

p2
j −

N∑
j=1

eqj+1−qj . (3.20)

It is clear from the preceding discussion that by construction

{
I1, I2

}
= 0. (3.21)

We shall come back to the Toda model in a subsequent section providing a “dual” description

of the model due to Sklyanin [32]-[34].

Exercise 3.1. Derive the exchange relations among qj, pj.

Tip: use the following useful identity:

eij ekl = δjk eil. (3.22)

4 Quadratic Poisson structure: the discrete case

Our main aim in this and the next section is to present a systematic means for constructing

discrete and continuum integrable theories [1, 2]. Based on solely algebraic considerations

we shall provide the general setting for building such systems as well as explain in detail

how the associated charges in involution together with the corresponding Lax pairs may be

extracted from the generating functional i.e. the transfer matrix of the system. We shall

first focus on one-dimensional discrete integrable models and then shall go on and deal with

1+1 dimensional integrable field theories. Both discrete and continuum integrable theories

share the same underlying algebra described by certain quadratic relations, which will be

introduced below.
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4.1 Local integrals of motion

Recall first the auxiliary linear problem in the case of discrete integrable models based on

quadratic Poisson algebras. Lax representation of classical dynamical evolution equations [6]

is one key ingredient in the theory of classical integrable systems [1]–[10] together with the

associated notion of classical r-matrix [20, 21]. Introduce the Lax pair (L, A) for discrete

integrable models [9], and the associated auxiliary problem (see e.g. [1])

ψn+1 = Ln ψn

ψ̇n = An ψn. (4.1)

From the latter equations one may immediately obtain the discrete zero curvature condition:

L̇n = An+1 Ln − Ln An. (4.2)

The monodromy matrix arises from the first equation (4.1) (see e.g. [1, 2])

Ta(λ) = LaN(λ) LaN−1(λ) . . . La1(λ) (4.3)

where the index a denotes the auxiliary space, and the indices 1, . . . , N denote the sites of the

one dimensional classical discrete model. Expansion of the transfer matrix in powers of the

spectral parameter gives rise to the charges in involution. Usually as will be transparent in

the examples that follow the ln of the transfer matrix provides the local integrals of motion.

Consider a skew symmetric classical r-matrix, which is a solution of the classical Yang-

Baxter equation, and let L satisfy the associated Sklyanin bracket

{
Lan(λ), Lbm(µ)

}
=

[
rab(λ− µ), Lan(λ) Lbm(µ)

]
δnm. (4.4)

The following proposition for the monodromy matrix may be then stated.

Proposition 4.1. Show that the monodromy matrix defined in (4.3) also satisfies the

quadratic algebra (4.4):

{
Ta(λ), Tb(λ)

}
=

[
rab(λ− µ), Ta(λ) Tb(µ)

]
. (4.5)
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Proof: From the LHS of the latter equation and the definition of the monodromy matrix:

{
LaN(λ) . . . La1(λ), LbN(µ) . . . Lb1(µ)

}
=

∑
n

LaN(λ) . . . Lan+1LbN(µ) . . . Lbn+1(µ)
{

Lan(λ), Lbn(µ)
}

Lan−1(λ) . . . La1(λ)Lbn−1(µ) . . . Lb1(µ) =

∑
n

LaN(λ) . . . Lan+1LbN(µ) . . . Lbn+1(µ)
[
rab, Lan(λ)Lbn(µ)

]
Lan−1(λ) . . . La1(λ)Lbn−1(µ) . . . Lb1(µ) =

∑
n

LaN(λ) . . . Lan+1LbN(µ) . . . Lbn+1(µ)rabLan(λ) . . . La1(λ)Lbn(µ) . . . Lb1(µ)−
∑

n

LaN(λ) . . . LanLbN(µ) . . . Lbn(µ)rabLan−1(λ) . . . La1(λ)Lbn−1(µ) . . . Lb1(µ), (4.6)

but notice two consecutive terms with opposite signs cancel each other, so the only terms

that survive in the sum are the very first and the last ones. Thus the expression above

becomes:

{
Ta(λ), Tb(λ)

}
= rab(λ− µ) Ta(λ) Tb(µ)− Ta(λ) Tb(µ) rab(λ− µ), (4.7)

which concludes our proof. ¤

Proposition 4.2. Define the transfer matrix of the discrete system as:

t(λ) = traTa(λ). (4.8)

Then show that it provides the charges in involution, that is:

{
t(λ), t(λ′)

}
= 0. (4.9)

Proof: The proof is straightforward based on the fundamental quadratic algebra defined by

(4.5), and the definition of the transfer matrix:

{
t(λ), t(λ′)

}
=

{
traTa(λ), trbTb(λ

′)
}

= trab

{
Ta(λ), Tb(λ

′)
}

= trab

[
rab(λ− λ′), Ta(λ) Tb(λ

′)
]

= trab

(
rab(λ− λ′) Ta(λ) Tb(λ

′)− Ta(λ) Tb(λ
′) rab(λ− λ′)

)
= 0(4.10)

and this concludes our proof. ¤
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4.2 Lax pair construction

Let us now briefly review how the Lax pair associated to each local integral of motion is

derived via the r-matrix formulation (see also [1, 3]). Recall the Lax pair (L, A) for discrete

integrable models, and the associated discrete auxiliary linear problem (4.1).

First some necessary notation is introduced. We define for i > j:

Ta(i, j; λ) = Lai(λ) Lai−1(λ) . . . Laj(λ). (4.11)

Proposition 4.3. The operator A(λ) of the Lax pair L, A is identified as:

An(λ, µ) = t−1(λ) tra

[
Ta(N, n; λ) rab(λ− µ) Ta(n− 1, 1; λ)

]
. (4.12)

Proof: To be able to construct the Lax pair we should first formulate the following Poisson

structure [1]:

{
Ta(λ), Lbj(µ)

}
= LaN(λ) . . . Lan+1(λ)

{
Lan(λ), Lbn(µ)

}
Lan−1(λ) . . . La1(λ)

= LaN(λ) . . . Lan+1(λ)
(
rab(λ− µ)Lan(λ)Lbn(µ)− Lan(λ)Lbn(µ)rab(λ− µ)

)
Lan−1(λ) . . . La1(λ)

= Ta(N, n + 1; λ) rab(λ− µ) Ta(n, 1; λ) Lbn(µ)− Lbn(µ) T (N, n; λ) rab(λ− µ) Ta(n− 1, 1; λ).

(4.13)

It then immediately follows for the generating function of the local integrals of motion:

{
ln t(λ), Lbn(µ)

}
= t−1(λ) tra

(
Ta(N,n + 1; λ) rab(λ− µ) Ta(n, 1; λ)

)
Lbn(µ)

− Lbn(µ) t−1(λ) tra

(
Ta(N,n; λ) rab(λ− µ) Ta(n− 1, 1; λ)

)
.(4.14)

Recalling the classical equation of motion

L̇n(µ) =
{

ln t(λ), Ln(µ)
}

(4.15)

and comparing with expression (4.14) we obtain expression (4.12), which concludes our proof.

¤

In the special case where the r-matrix is r(λ) = 1
λ
P [23], the operator A of the Lax pair

becomes:

An(λ, µ) =
t−1(λ)

λ− µ
T (n− 1, 1; λ) T (N, n; λ). (4.16)
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Expansion of the latter expression in powers of 1
λ

(or λ) gives rise to the time components

of the Lax pairs corresponding to each local integral of motion:

A(λ, µ) =
∑

j

A(j)(µ)

λj
. (4.17)

5 Examples of discrete integrable models

5.1 The discrete NLS system or DST model

The construction presented in the previous section will be exemplified with the study of

the discrete version of the NLS model. This model is also know as discrete-self-trapping

(DST) model describing the non-linear behavior of small of big molecules (see [27]–[34]). We

introduce the associated Lax operator given by (see e.g. [30, 31]):

Laj(λ) = λDj + Aj

=

(
λ + Nj xj

−Xj 1

)
(5.1)

where Nj = 1− xjXj. It also turns out, via the quadratic algebraic relation satisfied by the

L operator, that x, X are canonical variables, i.e.

{xi, Xj} = δij. (5.2)

To derive the local integrals of motion one should expand the ln t(λ) in powers of 1
λ
. Let

us expand the monodromy matrix:

T (λ →∞) ∝ DN . . . D1 +
1

λ

N∑
i=1

DN . . . Di+1AiDi−1 . . . D1

+
1

λ2

∑
i>j

DN . . . Di+1AiDi−1 . . . Dj+1Aj . . . D1

+
1

λ3

∑

i>j>k

DN . . . Di+1AiDi−1 . . . Dj+1Aj . . . Dk+1Ak . . . D1

+ . . . (5.3)

Taking into account the latter expansion we conclude:

ln t(λ →∞) ∝ 1

λ
I1 +

1

λ2
I2 +

1

λ3
I3 + . . . (5.4)

12



where the extracted integrals of motion have the following familiar form (see also e.g. [30,

31, 35])

I1 =
N∑

i=1

Ni,

I2 = −
N∑

i=1

xi+1Xi − 1

2

N∑
i=1

N2
i

I3 = −
N∑

i=1

xi+2Xi +
N∑

i=1

(Ni + Ni+1)xi+1Xi +
1

3

N∑
i=1

N3
i . (5.5)

The latter provide the first three integrals of motion (number of particles, momentum and

Hamiltonian respectively) of the whole hierarchy for the NLS model. The continuum limits

of the above quantities provide the corresponding integrals of motion of the continuum NLS

model [30, 31, 35] as will be also transparent later in the text. It is worth noting that the

latter expressions are valid in the quantum case as well (see e.g. [30, 31, 35]).

The associated Lax pairs may be now identified. As already noted expansion of the

expression (4.16) in powers of 1
λ

provides the Lax pairs associated to each one of the local

integrals of motion (see also [22]):

A(1)
j (µ) =

(
1 0

0 0

)
, A(2)

j (µ) =

(
µ xj

−Xj−1 0

)
,

A(3)
j =

(
µ2 + xjXj−1 µxj − xjNj + xj+1

−µXj−1 + Xj−1Nj−1 − Xj−2 −xjXj−1

)
. (5.6)

Both the Lax pair via the zero curvature condition, and the Hamiltonian description

give rise to the same equations of motion. Consider for instance the equations of motion

associated to I3 (and the Lax pair L, A(3)). Indeed from

ẋj = {I3, xj}, Ẋj = {I3, Xj}, (5.7)

and via the zero curvature condition for the pair L, A(3) we obtain the following set of

difference equations:

ẋj = xj+2 − 2xj+1Nj − xj+1Nj+1 + xjN2
j + x2

jXj−1 + xj+1

Ẋj = −Xj−2 + 2Xj−1Nj + Xj−1Nj−1 − XjN2
j − X2

jxj+1 − Xj−1. (5.8)

With this we conclude our brief review on the periodic discrete NLS model.
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5.2 The Toda model

The Toda model may be also obtained as a suitable limit of the DST model. Then the

harmonic oscillator algebra formed by (x, X, xX) reduces to the Euclidean algebra generated

by (eq, p) (see [32]–[34]). The associated Lax operator for the Toda model is given by:

Laj(λ) =

(
λ− pj eqj

−e−qj 0

)
. (5.9)

Exercise 5.1. Show that the first two local integrals of motion (momentum and Hamilto-

nian) for the Toda chain are given by the following expressions:

I1 =
N∑

j=1

pj,

I2 = −1

2

N∑
j=1

p2
j −

N∑
j=1

eqj+1−qj . (5.10)

Extract also the associated equations of motion.

Recall the linear description of the Toda chain presented in section 3; the expressions for

the momentum and Hamiltonian clearly coincide.

Exercise 5.2. Extract the Lax pair associated to the Hamiltonian I2 of the Toda model,

and show that is given as

Aj(λ) =

(
λ eqj

−eqj−1 0

)
. (5.11)

Show also that the corresponding equations of motion are given by:

pj = q̇j, q̈j = eqj+1−qj − eqj−qj−1 . (5.12)

6 Quadratic Poisson structure: the continuous case

6.1 Local integrals of motion

The basic notions regarding the Lax pair and the zero curvature condition for a continuous

integrable model are reviewed following essentially [1]. Define Ψ as being a solution of the
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following set of equations (see e.g. [1])

∂Ψ

∂x
= U(x, t, λ)Ψ (6.1)

∂Ψ

∂t
= V(x, t, λ)Ψ (6.2)

U, V being in general n × n matrices with entries defined as functions of complex valued

dynamical fields, their derivatives, and the spectral parameter λ. The monodromy matrix

from (6.1) may be written as:

T (x, y, λ) = P exp
{ ∫ x

y

U(x′, t, λ)dx′
}

. (6.3)

The fact that T also satisfies equation (6.1) will be extensively used to get the relevant

integrals of motion. Compatibility conditions of the two differential equations (6.1), (6.2)

lead to the zero curvature condition [8]–[10]

U̇− V′ +
[
U, V

]
= 0, (6.4)

giving rise to the corresponding classical equations of motion of the system under consider-

ation.

Hamiltonian formulation of the equations of motion is available under the r-matrix ap-

proach. In this picture the underlying classical algebra is manifestly analogous to the quan-

tum case. The existence of the Poisson structure for U realized by the classical r-matrix,

satisfying the classical Yang-Baxter equation, guarantees the integrability of the classical

system. Indeed, assuming that the operator U satisfies the following ultra-local form of

Poisson brackets

{
Ua(x, λ), Ub(y, µ)

}
=

[
rab(λ− µ), Ua(x, λ) + Ub(y, µ)

]
δ(x− y), (6.5)

then T (x, y, λ) satisfies (4.4), and consequently one may readily show for a system on the

full line:

{
ln tr{T (x, y, λ1)}, ln tr{T (x, y, λ2)}

}
= 0 (6.6)

i.e. the system is integrable, and the charges in involution –local integrals of motion– are

obtained by expansion of the generating function ln tr{T (x, y, λ)}, based essentially on the

fact that T satisfies (6.1).
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6.2 Lax pair construction

The construction of the time component V of the Lax pair associated to the local integrals

of motion is outlined below. The first step is to formulate the following expression:

{
Ta(L,−L, λ), Ub(x, µ)

}
=

∂Ma(x, λ, µ)

∂x
+

[
Ma(x, λ, µ), Ub(x, µ)

]
(6.7)

where we define

Ma(x, λ, µ) = Ta(L, x, λ) rab(λ− µ) Ta(x,−L, λ). (6.8)

For more details on the proof we refer the interested reader to [1], but the latter is an

immediate consequence of the process followed in the discrete case after considering the

continuum limit. We shall discuss in more detail the continuum limit of integrable discrete

models in a subsequent section.

Bearing also in mind the definition of t(λ), and (6.7) it is straightforward to show:

{
ln t(λ), U(x, µ)

}
=

∂V(x, λ, µ)

∂x
+

[
V(x, λ, µ), U(x, µ)

]
, (6.9)

where we define

V(x, λ, µ) = t−1(λ) traMa(x, λ, µ). (6.10)

Special examples of classical integrable field theories are presented in the subsequent

section.

7 Examples of integrable field theories

7.1 The NLS model

A particular example associated to the rational r-matrix [23], that is the non-linear Schrodinger

(NLS) model will be investigated below. The Lax operator for the system is given by the

following expressions [1, 36]:

U =

(
λ
2

ψ̄

ψ −λ
2

)
, (7.1)

and it is shown via the linear algebra (6.5) that ψ, ψ̄ satisfy

{
ψ(x), ψ̄(y)

}
= δ(x− y). (7.2)
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Our main aim is to extract the first couple of local integrals of motion via the expansion of

ln t(λ) in powers of 1
λ
. We shall start this construction recalling that the classical monodromy

matrix satisfies the fundamental quadratic algebra (4.5). Consider also the following ansatz

for the monodromy matrix:

T (x, y, λ) = (1 + W (x, λ)) eZ(x,y,λ) (1 + W (y, λ))−1, (7.3)

W and Z are purely off-diagonal and diagonal matrices respectively. We also assume that

W, Z are expressed as:

W (x, λ) =
∞∑

n=1

Wn(x)

λn
, Z(x, y, λ) =

∞∑
n=−1

Zn(x, y)

λn
. (7.4)

Our aim henceforth is to identify the elements Wn, Zn, and hence the integrals of motion.

It is technically convenient to split the Lax operator into a diagonal and an off-diagonal part

as

U = Ud + Ua ≡ λ

2

(
1 0

0 −1

)
+

(
0 ψ̄

ψ 0

)
. (7.5)

Substituting the ansatz (7.3) into (6.1), and splitting the resulting equation into a diagonal

and an off-diagonal part one obtains

∂W

∂x
+ WUd − UdW + WUaW − Ua = 0,

∂Z

∂x
= Ud + UaW. (7.6)

We may now solve the latter equations for each order and determine all W (n), Z(n) and

consequently the local integrals of motion. More precisely, recall the generating function of

the local integrals of motion

G(λ) = ln
(
trT (λ)

)
(7.7)

due to the ansatz (7.3) we can substitute the monodromy matrix accordingly and obtain:

G(λ) = ln tr
[
(1 + W (L)) eZ(L,−L) (1 + W (−L))−1

]
, (7.8)

but due to the choice of periodic boundary conditions we conclude that:

G(λ) = ln tr
[
eZ(L,−L,λ)

]
. (7.9)
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Let us first evaluate the first couple of W (i)’s,

W (1) =

(
−ψ̄(x)

ψ(x)

)
, W (2) =

(
−ψ̄′(x)

−ψ′(x)

)

W (3) =

(
−ψ̄′′(x) + |ψ(x)|2ψ̄(x)

ψ′′(x)− |ψ(x)|2ψ(x)

)
. (7.10)

Similarly, through (7.6) the diagonal elements Z(i) are given as:

Z(−1) =

(
L

−L

)
, Z(1) =

(∫ L

−L
dx ψ(x)ψ̄(x)

− ∫ L

−L
dx ψ(x)ψ̄(x)

)

Z(2) =

(
− ∫ L

−L
dx ψ′(x)ψ̄(x)

− ∫ L

−L
dx ψ(x)ψ̄′(x)

)

Z(3) =




∫ L

−L
dx

(
ψ′′(x)ψ̄(x)− |ψ(x)|4

)

− ∫ L

−L
dx

(
ψ̄′′(x)ψ(x)− |ψ(x)|4

)

 .(7.11)

The expansion of the generating function G in powers of 1
λ

provides the local integrals

of motion of the model under consideration. Note that due to the fact that for λ →∞ the

leading contribution comes from Z
(−1)
11 , all the local integrals of motion are given essentially

by the quantities Z
(n)
11 . More precisely the first three integrals of motion –number of particles,

momentum and Hamiltonian – may be respectively expressed as

N =

∫ L

−L

dx ψ(x)ψ̄(x)

P =
1

2

∫ L

−L

dx
(
ψ̄′(x)ψ(x)− ψ̄(x)ψ′(x)

)

H = −
∫ L

−L

dx
(
|ψ(x)|4 + ψ′(x)ψ̄′(x)

)
. (7.12)

The next natural step is the construction of the relevant Lax pair, in particular the asso-

ciated V operators. Recall the generic expression of the V-operator derived in the previous

section:

V(x, λ, µ) = t−1(λ) tra

(
Ta(L, x, λ) rab(λ− µ) Ta(x,−L, λ)

)
. (7.13)

Recall that in this case the relevant r-matrix is the Yangian, so substituting r(λ) = P
λ

in the

latter expression we end up:

V(x, λ, µ) =
t−1(λ)

λ− µ
T (x,−L, λ) T (L, x, λ). (7.14)
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Ultimately we wish to expand T (λ) in powers of λ−1 in order to determine the relevant

Lax pairs from (7.14). Recall the ansatz for the classical monodromy matrix (7.3), after

substituting (7.3) in the expression (7.14) and recalling that the leading contribution comes

from the Z11 term, we conclude:

V(λ) =
1

λ− µ
(1 + W (x, λ)) D (1 + W (x, λ))−1 (7.15)

where we define

D =

(
1 0

0 0

)
. (7.16)

We then expand expression (7.15) in powers of 1
λ
, and thus we identify the corresponding

V-operators. Indeed,

V(λ, µ) =
∞∑

n=1

V(n)

λn
. (7.17)

We provide here the quantities associated to the first three integrals of motion:

V(1) = D, V(2)(µ) =

(
µ ψ̄

ψ 0

)

V(3)(µ) =

(
µ2 − ψ ψ̄ µψ̄ + ψ̄′

µψ − ψ′ ψ ψ̄

)
, . . . (7.18)

Details on the computation of these quantities are left as an exercise to the interested reader.

It is now straightforward to obtain the equations of motion relevant to each integral of

motions. Focus for instance on the Hamiltonian of the system H (7.12). From the zero

curvature condition for the pair U, V(3) one has:

U̇− V(3)′ +
[
U, V(3)

]
= 0, (7.19)

which leads to the following familiar equations of motion

ψ̇(x) =
∂2ψ(x)

∂x2
− 2|ψ(x)|2ψ(x)

˙̄ψ(x) =
∂2ψ̄(x)

∂x2
− 2|ψ(x)|2ψ̄(x). (7.20)

It is clear that the same equations of motion are entailed

ψ̇(x) =
{
H, ψ(x)

}
, ˙̄ψ(x) =

{
H, ψ̄(x)

}
, (7.21)
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and this of course verifies the consistency of the whole process. Results on the generalized

vector gl(n) NLS model are presented in [35].

Exercise 7.1. Introduce the isotropic Landau-Lifshitz (classical Heisenberg) model with

Lax operator (see e.g. [1, 37]):

U(x) =
1

λ

(
S3

2
S−

S+ −S3

2

)
≡ 1

2λ
S. (7.22)

satisfying the linear algebra with r matrix being the Yangian, and thus the Poisson structure

of the phase space for the physical quantities Si(x) is given by the Poisson brackets

{Sa(x), Sb(y)} = 2iεabcSc(x)δ(x− y), (7.23)

where εabc is the totally antisymmetric Levi-Civita tensor with value ε123 = 1. Based on the

knowledge of the Lax operator U:

(i) Determine the first two integrals of motion from the expansion of the ln trT (λ) in powers

of λ:

ln trT (λ) =
∞∑

n=0

I(n)

λn
. (7.24)

These are the momentum and Hamiltonian and are given as:

I(0) ∝ P =

∫ L

−L

S1
∂S2

∂x
− S2

∂S1

∂x

1 + S3

dx,

I(1) ∝ H = −1

4

∫ L

−L

((
∂S1

∂x

)2

+

(
∂S2

∂x

)2

+

(
∂S3

∂x

)2
)

dx. (7.25)

(ii) Derive the V-operator associated to the Hamiltonian and show that is of the form:

V(x) =
1

2λ2
S − 1

2λ

∂S
∂x
S. (7.26)

(iii) Show that the equations of motion relevant to the Hamiltonian are give by:

∂~S

∂t
= i~S ∧ ∂2~S

∂x2
. (7.27)

7.2 Affine Toda field theories

We focus on a physically interesting class of integrable models that is the affine Toda field

theories. The first model in this hierarchy is the well known sine-Gordon model. Suitable
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massless limits of these theories give rise to the Liouville model and to its higher rank

generalizations (massless ATFTs). We shall exemplify our study by considering the first two

models of the hierarchy, i.e. the A
(1)
1 (sine(sinh)-Gordon) and the A

(1)
2 ATFT’s, as well as

the Liouville theory.

7.2.1 The Kac-Moody Â
(1)
n algebra

Before we discuss the affine Toda field theories in detail it will be useful for what is described

in the subsequent sections to recall the basic definitions regarding the Kac-Moody Â
(1)
n

algebra. Let

aij = 2δij − (δi j+1 + δi j−1 + δi1 δjn+1 + δin+1 δj1), i, j ∈ {1, . . . , n + 1} (7.28)

be the Cartan matrix of the affine Lie algebra ŝln+1
1 [38]. Also define:

[m]! =
m∏

k=1

k,

[
m

n

]
=

[m]!

[n]! [m− n]!
, m > n > 0. (7.30)

Definition. The affine enveloping algebra ŝln+1 has the Chevalley-Serre generators ei, fi,

hi, i ∈ {1, . . . , n + 1} obeying the defining relations:
[
hi, hj

]
= 0

[
hi, ej

]
= aij ej

[
hi, fj

]
= −aij fj ,

[
ei, fj

]
= δij hi, i, j ∈ {1, . . . , n} (7.31)

and the Serre relations

1−aij∑
n=0

(−1)n

[
1− aij

n

]

q

χ
1−aij−n
i χj χn

i = 0, χi ∈ {ei, fi}, i 6= j. (7.32)

Remark: The generators ei, fi, hi for i ∈ {1, . . . , n} form the sln+1 algebra. Also, hi = εi−εi+1,

where the elements εi belong to gln+1. Recall that gln+1 is derived by adding to sln+1 the

elements εi i ∈ {1, . . . , n+1} so that
∑n

i=1 εi belongs to the center. Furthermore, there exist

the elements Eij ∈ gln+1 i 6= j, with Ei i+1 = ei, Ei+1 i = fi i ∈ {1, . . . n− 1} and

Eij = Eik Ekj − Ekj Eik, j ≶ k ≶ i, i, j ∈ {1, . . . , n + 1}. (7.33)

1For the ŝl2 case in particular

aij = 2δij − 2(δi1 δj2 + δi2 δj1), i, j ∈ {1, 2} (7.29)
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It is clear that Eij ∈ gln+1 because they can be written solely in terms of the generators ei,

fi, i ∈ {1, . . . , n}. ¤

We also provide explicit expressions of the simple roots and the Cartan generators for

A
(1)
n [39], in order to express the Kac-Moody algebra in the Cartan-Weyl basis. The vectors

αi = (α1
i , . . . , αn

i ) are the simple roots of the Lie algebra of rank n + 1 normalized to unity

αi · αi = 1, i.e.

αi =
(
0 , . . . , 0 ,−

√
i− 1

2i
,

ith

↓√
i + 1

2i
, 0 , . . . , 0

)
, i ∈ {1, . . . n} (7.34)

Also define the fundamental weights µk = (µ1
k , . . . , µn

k) , k = 1 , . . . , n as (see, e.g., [39]).

αj · µk =
1

2
δj,k . (7.35)

The extended (affine) root an+1 is provided by the relation

n+1∑
i=1

ai = 0. (7.36)

The Â
(1)
n algebra in the Cartan-Weyl basis is expressed as:

[
H, E±αi

]
= ±αi E±αi

,

[
Eαi

, E−αi

]
=

2

α2
i

αi ·H. (7.37)

We provide below the Cartan-Weyl generators in the defining representation:

Eαi
7→ ei i+1 , E−αi

7→ ei+1 i , Eαn+1 7→ −en+1 1 , E−αn+1 7→ −e1 n+1

Hi 7→
n∑

j=1

µi
j(ejj − ej+1 j+1) , i = 1 , . . . , n. (7.38)

For A
(1)
2 in particular we have:

α1 = (1, 0), α2 = (−1

2
,

√
3

2
), α3 = (−1

2
, −

√
3

2
) (7.39)

define also the following 3× 3 generators

E1 = Et
−1 = e12, E2 = Et

−2 = e23, E3 = Et
−3 = −e31, (7.40)

where we recall the matrices eij: (eij)kl = δik δjl. The diagonal Cartan generators H1,2 are

H1 =
1

2
(e11 − e22), H2 =

1

2
√

3
(e11 + e22 − 2e33). (7.41)
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7.2.2 The A
(1)
n ATFT: preliminaries

Basic notions relevant to the derivation of the local integrals of motion and the corresponding

Lax pairs in ATFT’s are reviewed. Recall first the Lax pair for a generic A
(1)
n theory [40]–[44]:

V(x, t, u) =
β

2
∂xΦ ·H +

m

4

(
u e

β
2
Φ·H E+ e−

β
2
Φ·H − 1

u
e−

β
2
Φ·H E− e

β
2
Φ·H

)

U(x, t, u) =
β

2
Π ·H +

m

4

(
u e

β
2
Φ·H E+ e−

β
2
Φ·H +

1

u
e−

β
2
Φ·H E− e

β
2
Φ·H

)
(7.42)

u = e
2λ

n+1 is the multiplicative spectral parameter, and Φ, Π are n-vector fields, with

components φi, πi, i ∈ {1, . . . , n} which are canonical i.e.

{
φi(x), πj(y)

}
= δij δ(x− y). (7.43)

Also define:

E+ =
n+1∑
i=1

Eαi
, E− =

n+1∑
i=1

E−αi
(7.44)

αi are the simple roots, H (n-vector) and E±αi
are the algebra generators in the Cartan-Weyl

basis corresponding to simple roots defined in (7.38).

The associated classical r-matrix is given by [25, 26]:

r(λ) =
cosh(λ)

sinh(λ)

n+1∑
i=1

eii ⊗ eii +
1

sinh(λ)

n+1∑

i6=j=1

e[sgn(i−j)−(i−j) 2
n+1

]λeij ⊗ eji. (7.45)

Notice that the Lax pair has the following behavior:

Vt(x, t,−u−1) = V(x, t, u), Ut(x, t, u−1) = U(x, t, u) (7.46)

where t denotes usual transposition.

To recover the local integrals of motion of the system under consideration we shall follow

the quite standard procedure, and expand ln trT (u) in powers of u−1. To expand the transfer

matrix and derive the local integrals of motion we shall need the expansion of T (x, y, u). In

what follows in the present section we basically introduce the necessary preliminaries for

such a derivation, and later in the text we reproduce the known integrals of motion for the

A
(1)
1 , A

(1)
2 ATFT’s on the full line.

Following the logic described in [1] for the sine-Gordon model, we aim at expressing

the part associated to E+ in U, independently of the fields, after applying a suitable gauge
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transformation. More precisely, consider the following gauge transformation:

T (x, y, u) = Ω(x) T̃ (x, y, u) Ω−1(y), Ω(x) = e
β
2
Φ(x)·H . (7.47)

Then from equation (6.1) we obtain that the gauge transformed operator U may be expressed

as:

Ũ(x, t, u) = Ω−1(x) U(x, t, u) Ω(x)− Ω−1(x)
dΩ(x)

dx
. (7.48)

After implementing the gauge transformations the operator Ũ take the following simple form:

Ũ(x, t, u) =
β

2
Θ ·H +

m

4

(
uE+ +

1

u
X−

)
, (7.49)

where we define:

Θ = Π− ∂xΦ, X− = e−βΦ·H E− eβΦ·H , (7.50)

Θ is a n-vector with components θi, and it is clear that T̃ now satisfies:

dT̃ (x, y, λ)

dx
= Ũ(x, λ) T̃ (x, y, λ). (7.51)

Consider now the following ansatz for T̃ as |u| → ∞ [1]

T̃ (x, y, u) = (I+ W (x, u)) exp[Z(x, y, u)] (I+ W (y, u))−1, (7.52)

where W, Ŵ are off diagonal matrices i.e. W =
∑

i6=j WijEij, and Z, Ẑ are purely diagonal

Z =
∑n+1

i=1 ZiiEii. Also

Z(u) =
∞∑

k=−1

Z(k)

uk
, Wij =

∞∑

k=0

W (k)

uk
. (7.53)

Inserting the latter expressions (7.53) in (7.51) one may identify the coefficients W
(k)
ij and

Z
(k)
ii . Indeed from (6.1) we obtain the following fundamental relations:

dZ

dx
= Ũ(D) + (Ũ(O) W )(D)

dW

dx
+ W Ũ(D) − Ũ(D)W + W (Ũ(O)W )(D) − Ũ(O) − (Ũ(O)W )(O) = 0, (7.54)

where the superscripts O, D denote off-diagonal and diagonal part respectively. We shall

come back to the solution of the latter set of equations in the subsequent sections when

investigating particular physical examples.
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7.2.3 The sine-Gordon and Liouville models

Note that we focus here on the sine-Gordon and not the sinh-Gordon model, as one would

expect from the notation of the previous section, where we introduce real ATFT’s. In

fact the only difference compared to the notation introduced previously is that β → iβ;

this is basically the only modification occurring between real and imaginary ATFT’s. The

associated classical r-matrix [25, 26] in this case is expressed as

r(λ) =
1

sinh λ

(
(σz+1

2
) cosh λ σ−

σ+ (−σz+1
2

) cosh λ

)
(7.55)

and the Lax operator for the sine-Gordon is now given as

U(x, t, u) =
β

4i
π(x)σz +

mu

4i
e

iβ
4

φσz

σye−
iβ
4

φσz − mu−1

4i
e−

iβ
4

φσz

σye
iβ
4

φσz

, (7.56)

σx,y,z are the familiar 2-dimensional Pauli matrices, u = eλ. U satisfies the fundamental

quadratic algebraic relation with the classical r-matrix (7.55), which gives rise to:

{
φ(x), π(y)

}
= δ(x− y). (7.57)

To consider the formal series expansion of T we shall need the following symmetry of the

Lax operator:

U(u−1, φ, π) = U(−u.− φ, π) (7.58)

and consequently

T (u−1, φ, π) = T (−u,−φ, π). (7.59)

As in the previous section we aim at expressing the term of order u in U independently of

the fields, after applying a suitable gauge transformation [1]. More precisely, consider the

gauge transformation (7.47) with

Ω = e
iβ
4

φσz

, (7.60)

then the gauge transformed operator Ũ is expressed as:

Ũ(x, t, u) =
β

4i
f(x)σz +

mu

4i
σy − mu−1

4i
e−

iβ
2

φσz

σye
iβ
2

φσz

(7.61)

where we define

f(x, t) = π(x, t) + φ′(x, t). (7.62)
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We consider the decomposition (7.52) for T̃ , as |u| → ∞ [1]. W, is off diagonal matrix

and Z is purely diagonal, and are expressed as in (7.53). Inserting expressions (7.53) in

(7.51) one may identify the matrices W (k) and Z(k), via (7.54).

It is sufficient for our purposes here to identify only the first couple of terms of the

expansions. Indeed based on equation (7.54) we conclude (see also [1]):

W (0) = iσx, W (1) = −iβ

m
f(x)σx,

W (2) =
2iβf′

m2
σy − i sin(βφ) σy − β2f2

2im2
σx. (7.63)

Then, as in the previous example we also identify the diagonal elements Z(n). In particular

from the first of the equations (7.54) we extract the following expressions (x = L, y = −L):

Z(−1) = −imL

2
σz,

Z(1) =
m

4

(
− ∫ L

−L
dx W

(2)
21 (x) ∫ L

−L
dx W

(2)
12 (x)

)
− m

4

(
−i

∫ L

−L
dx e−iβφ

i
∫ L

−L
dx eiβφ

)
.

(7.64)

Notice again that for −iu →∞ the leading contribution comes from the Z11 elements, due

to the form of Z(−1), see also similar argument for the NLS model described previously.

Then recalling the expression for the generating function of integrals of motion, intro-

duced in the previous example, we conclude that

I(1) = Z
(1)
11 = −m

4i

∫ L

−L

dx
(
− β2

2m2
f2 + cos βφ

)
. (7.65)

If we now do the same kind of expansion but for λ → −∞ we basically end up to a similar

expression as before, by simply exploiting the basic symmetry of the monodromy matrix

T (u−1, φ, π) = T (−u, −φ, π) (7.66)

we find that

I(−1) = −m

4i

∫ L

−L

dx
(
− β2

2m2
f̂2 + cos βφ

)
, (7.67)

where we define

f̂(φ, π) = f(−φ, π). (7.68)
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In fact it is clear that any combination of the quantities I(1), I(−1) is also one of the charges

in involution. So we find that the Hamiltonian is

I(1) + I(−1) ∝ H =

∫ L

−L

dx
(1

2
(π2 + φ

′2)− m2

β2
cos βφ

)
, (7.69)

and we may also identify the momentum as:

I(1) − I(−1) ∝ P =

∫ L

−L

dx φ′(x) π(x). (7.70)

Let us also identify the V operator associated to the Hamiltonian and momentum of the

sine-Gordon model. Recall the generic expression for V

V(x, λ, µ, x) = t−1(λ)tra

(
Ta(L, x, λ) rab(λ− µ) Ta(x,−L, λ)

)
. (7.71)

Recall the ansatz for T̃ (7.52), and that the leading contribution comes from the Z11, then

the latter formula may be expressed as:

V(x, λ, µ) =
[
(1 + Wa(x))−1 Ω−1(x) rab(λ− µ) Ω(x) (1 + Wa(x))

]
11

. (7.72)

Our aim now is to expand the latter expression in powers of u−1 (recall u = eλ). The

r-matrix is expanded as

Ω−1(x) r(λ− µ) Ω(x) = r̃(0) + u−1r̃(1) +O(u−2) (7.73)

and

1 + W (x) = A + u−1W (1) +O(u−2)

(1 + W (x))−1 = A−1 + u−1f (1) +O(u−2), (7.74)

where we define:

r̃(0) =
1

2

(
σz + 1 0

0 −σz + 1

)
r̃(1) = 2v

(
0 e−

iβφ
2 σ−

e
iβφ
2 σ+ 0

)

f (1) =
β

2m
f(x)I, A =

(
1 i

i 1

)
A−1 =

1

2

(
1 −i

−i 1

)
, (7.75)

v = eµ.

We keep for our purposes here only the first terms of the expansion; these are sufficient to

provide the relevant V quantities. Gathering all the information from the latter expression

we eventually obtain:

V(1)(x, µ) =
β

2m
f(x, t)σz + vΩ(x, t)σyΩ−1(x, t). (7.76)
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Similar computation for the expansion in powers of u can be made and the final result in his

case is directly given as:

V(−1)(x, µ) = − β

2m
f̂(x, t)σz + v−1Ω−1(x, t)σyΩ(x, t). (7.77)

By adding the two expressions above we end to the desired result (we have also multiplied

with an overall factor m
4i

)

V(H) =
β

4i
φ′(x, t)σz +

mv

4i
Ω(x, t)σyΩ−1(x, t) +

mv−1

4i
Ω−1(x, t)σyΩ(x, t). (7.78)

Similarly, subtraction of the two quantities V(1), V(−1) leads to the time component of the

Lax pair associated to the momentum, which coincides with U.

Note that appropriate massless limit of the sine-Gordon model gives rise to the Liouville

theory through a particular limiting process (see e.g. [45, 46]). The entailed Lax pair of the

Liouville theory takes the form:

U(λ) =
1

2

(
−iπ(x) −2e−λ−iφ(x)

4 sinh(λ− iφ(x)) iπ(x)

)
, V(λ) =

1

2

(
−iφ′(x) 2e−λ−iφ(x)

4 cosh(λ− iφ(x)) iφ′(x)

)
.(7.79)

The Lax pair satisfies the zero curvature condition, which leads to the corresponding equa-

tions of motion i.e.

sine-Gordon model: φ̈(x)− φ′′(x) +
m2

β
sin(βφ(x)) = 0

Liouville model: φ̈(x)− φ′′(x)− 4ie−2iφ(x) = 0. (7.80)

Exercise 7.2. Starting from the U operator of the Liouville model derive the energy and mo-

mentum of the model well as the associated V operators. Determine also the corresponding

equations of motion.

7.2.4 The A
(1)
2 ATFT

We shall now study the second member of the ATFT hierarchy, i.e. the A
(1)
2 model. It will

be useful in what follows to introduce some notation (see also [49, 50]):

β

2
Θ ·H = diag(a, b, c),

β

2
Θ̂ ·H = diag(â, b̂, ĉ), eβαi·Φ = γi (7.81)
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Θ̂(Φ, Π) = Θ(−Φ, Π) explicit expression of a, b, c and γi can be found in Appendix A.

From the first of equations (7.54) we may derive the matrices Z, Ẑ. Indeed one may easily

show that:

dZ(0)

dx
=

m

4




W
(1)
21 + ζa

W
(1)
32 + ζb

−W
(1)
13 + ζc


 = 0

dẐ(0)

dx
=

m

4



−Ŵ

(1)
31 + ζâ

Ŵ
(1)
12 + ζb̂

Ŵ
(1)
23 + ζĉ


 = 0. (7.82)

It is clear that the latter quantities are zero because of the form of W
(1)
ij , Ŵ

(1)
ij see Appendix

A. Also the higher order Z(k), Ẑ(k) are given by:

dZ(k)

dx
=

m

4




W
(k+1)
21 − γ3W

(k−1)
31

W
(k+1)
32 + γ1W

(k−1)
12

−W
(k+1)
13 + γ2W

(k−1)
23




dẐ(k)

dx
=

m

4



−Ŵ

(k+1)
31 + γ1Ŵ

(k−1)
21

Ŵ
(k+1)
12 + γ2Ŵ

(k−1)
32

Ŵ
(k+1)
23 − γ3Ŵ

(k−1)
13




k > 0. (7.83)

The computation of W, Ŵ is essential for defining the diagonal elements. First it is important

to discuss the leading contribution of the above quantities as |u| → ∞. To achieve this we

shall need the explicit form of Z(−1), Ẑ(−1):

Z(−1)(x, y) =
m(x− y)

4




e
iπ
3

e−
iπ
3

−1


 , Ẑ(−1)(x, y) =

m(x− y)

4




e−
iπ
3

e
iπ
3

−1


 .

(7.84)

The information above will be extensively used subsequently. From the formulas (7.54),

(7.83) the matrices W (k), Ŵ (k), Z(k), Ẑ(k) may be determined (see Appendix for details).

The local local integrals of motion in the periodic case, emerge as usually from the

expansion (|u| → ∞) of:

ln [trT (u)] = ln
[
tr

{
(1 + W (L, u)) eZ(L,−L,u) (1 + W (−L, u))−1

}]
. (7.85)
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Notice that in the case of periodic boundary conditions we put our system in the ‘whole’

line (x = L, y = −L), and consider Schwartz boundary conditions, i.e. the fields and their

derivatives vanish at the end points ±L. Bearing in mind that as u → −∞ the leading

contribution of eZ , (eẐ) (see (7.84)) comes from the eZ33 , (eẐ33) term, the expression above

becomes

ln [trT (u → −∞)] =
∑

k=−1

Z
(k)
33

uk
. (7.86)

To reproduce the familiar local integrals of motion we shall need both Z(L,−L, u), Ẑ(L,−L, u).

Let

I(1) = −12m

β2
Z

(1)
33 (L,−L, u) =

∫ L

−L

dx
( 2∑

i=1

θ2
i +

m2

β2

3∑
i=1

eβαi·Φ
)
,

I(−1) = −12m

β2
Ẑ

(1)
33 (L,−L, u) =

∫ L

−L

dx
( 2∑

i=1

θ̂2
i +

m2

β2

3∑
i=1

eβαi·Φ
)

(7.87)

the momentum and Hamiltonian (and the higher conserved quantities) of the ATFT are

given by:

P1 =
1

2
(I(−1) − I(1)) =

∫ L

−L

dx

2∑
i=1

(
πi φ′i − π′i φi

)

H1 =
1

2
(I(1) + I(−1)) =

∫ L

−L

dx
( 2∑

i=1

(π2
i + φ

′2
i ) +

m2

β2

3∑
i=1

eβαi·Φ
)
.

(7.88)

Note that the boundary terms are absent in the expressions above, since we considered

Schwartz type boundary conditions at ±L. Also, in the generic situation, for any A
(1)
n , the

sum in the momentum P1 and the kinetic term of the Hamiltonian H1 runs from 1 to n,

whereas the sum in the potential term of the Hamiltonian runs from 1 to n + 1. A study of

generic integrable boundary conditions in ATFT’s is presented in [47]–[50].

Exercise 7.2. Based on the process described for the derivation of Lax pairs, determine

the V-operator associated to the integral of motion H1 (7.88).

30



8 The continuum integrable limit

The main aim in this section is to introduce a consistent continuum limit of integrable

discrete models in such a way that integrability is preserved (see also [51]). The starting

point is the lattice monodromy matrix, which is expressed as:

Ta = LaN LaN−1 . . . La1. (8.1)

Assume that L admits an expansion in powers of δ as

Lai = 1 + δUai +O(δ2) , (8.2)

then consider the product:

Ta =
N∏

i=1

(1 + δUai +
∞∑

n=2

δnU(n)
ai )) . (8.3)

Expanding the expression above in powers of δ, we get

Ta = 1 + δ
∑

i

Uai + δ2
∑
i<j

Uai
Uaj + δ2

∑
i

U(2)
ai + . . . . (8.4)

These, multiple in general, infinite series of the products of local terms, are characterized by

two indices: the overall power n of δ, and the number m of the set of indices i over which

the series is summed. Note that, in the T expansion one always has n > m. The continuum

limit soon to be defined more precisely, will entail the limit δ → 0 with O(N) = O(1/δ). We

now formulate the following power-counting rule, that is terms of the form (see also [51])

δn
∑

i1<i2<...im

U(n1)
ai1

...U(nm)
aim

,

m∑
j=1

nj = n , (8.5)

with n > m are omitted in the continuum limit. The latter is defined by

δ
∑

i

Uai →
∫ L

−L

dx Ua(x) (8.6)

and similarly for multiple integrals. Here 2L is the length of the continuous interval defined

as the limit of Nδ. In other words, contributions to the continuum limit may only come

from the terms with n = m for which the power δn can be exactly matched by the “scale”

factor Nm of the m-multiple sum over m indices i. In particular, only terms of order one in

the δ expansion of local classical matrices Lai will contribute to the continuum limit. Any
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other contribution acquires a scale factor δn−m → 0, when the continuum limit is taken (see

also [51]). This argument is of course valid term by term in the double expansion, and it

always has to be checked for consistency.

The continuous limit of T , hereafter denoted T , is then immediately identified as the

path-ordered exponential from y = −L to x = L

T = P exp

(∫ L

−L

dx U(x)

)
, (8.7)

where suitable (quasi) periodicity conditions on the continuous variables of the classical

matrix U(x) are assumed. Of course the derivation of a continuous limit requires that the

L-matrices are not too inhomogeneous (e.g. L-matrices at neighbor sites should not be too

different.

The above identification of T has been built so that to straightforwardly generate the

classical continuous limit of the Hamiltonians from the analytic expansion

tr(T (λ)) ≡
∞∑

n=1

(λ− λ0)
nH(n) . (8.8)

We thus characterize U(x) as a local Lax matrix yielding the hierarchy of continuous Hamil-

tonians H(n). In order for this statement to agree with the key assumption of preservation

of integrability we are now lead to require a Poisson structure for U compatible with the

demand of classical integrability of the continuous Hamiltonians. Indeed, such a structure

is deduced as the ultra-local Poisson bracket

{
U1(x, λ1), U2(y, λ2)

}
=

[
r12(λ1 − λ2), U1(x, λ1) + U2(y, λ2)

]
δ(x− y) , (8.9)

where r is the classical matrix characterizing the exchange algebra of the L-operators. More

specifically, recalling that Lai = 1 + δUai +O(δ2), plugging it into (4.4) and assuming ultra-

locality of Poisson brackets one gets

{
Uai(λ1), Ubj(λ2)

}
=

[
rab(λ1 − λ2), Uai(λ1) + Ubj(λ2)

]δij

δ
. (8.10)

One then identifies, in the continuum limit δ → 0, the factor δij/δ with δ(x−y). Reciprocally,

it is a well known result (see, for instance [1]) that if U(x) has a such an ultra-local linear

Poisson bracket (8.9) the full monodromy matrix between −L and L has the quadratic

Poisson bracket structure, thereby guaranteeing Poisson commutation of the Hamiltonians.

We now focus on the continuum limit of the zero curvature condition, and recover the

continuum expression as a suitable continuum limit of the discrete one. Moreover, the generic
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continuum expression for the V-operator is also ensued via this process. Recall the discrete

zero curvature condition:

L̇n(λ) = An+1(λ)Ln(λ)− Ln(λ)An(λ). (8.11)

Consider the following identifications:

Ln → 1 + δU(x), An → V(x), An+1 → V(x + δ) (8.12)

then expressing

V(x + δ) = V(x) + δV′(x) +O(δ2) (8.13)

and keeping the first non trivial contribution which is of order δ we conclude:

U̇(λ, x)− V′(λ, x) +
[
U(λ, x), V(λ, x)

]
= 0, (8.14)

which is nothing else but the familiar continuum zero curvature condition.

Example. Let us work out a particular example to demonstrate how this process may

be applied. Consider the discrete NLS model; first introduce the spacing parameter δ in the

Lax operator (see also [52] and references therein):

L(λ) =

(
δλ + 1− δ2xX δx

−δX 1

)
(8.15)

we have essentially rescaled the fields x, X and the spectral parameter as:

λ → δλ, x → δx, X → δX. (8.16)

After the aforementioned rescaling the first local integrals of motion become:

I1 =
∑

j

(1− δ2xjXj)

I2 = −δ2

N−1∑
j=1

xj+1Xj − 1

2

N∑
j=1

(1− δ2xjXj)
2. (8.17)

We shall consider the continuum limit of the first two integrals just to illustrate how this

works. Bear in mind the following identifications:

xj → x(x), Xj → X(x)

xj+1 → x(x + δ), Xj+1 → X(x + δ), (8.18)
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also consider the approximation for the sum

δ

N∑
j=1

fj →
∫ L

−L

dx f(x). (8.19)

It is then straightforward to show that the first integral of motion, after keeping the first

non trivial contributions of order δ, becomes in the continuum limit:

I1 =

∫ L

−L

x(x)X(x). (8.20)

Similarly, the second integral becomes after taking the continuum limit and keeping the next

nontrivial order δ2,

I2 =
1

2

∫ L

−L

dx
(
x′(x)X(x)− x(x)X′(x)

)
. (8.21)

It is also clear that the continuum limit of the associated Lax operator (8.15) takes the

desired form:

L(λ) → 1 + δU(x) +O(δ2), (8.22)

where we define

U(x) =

(
λ
2

x(x)

−X(x) −λ
2

)
, (8.23)

notice that U may be always derived up to an additive constant. Take also the continuum

limit of the A operator associated to the second charge H2 this then becomes via (8.16),

(8.18)

An → V(x), V(x) =

(
λ x(x)

−X(x) 0

)
. (8.24)

By identifying

x(x) ≡ ψ̄(x), X(x) ≡ −ψ(x) (8.25)

we end up to the familiar continuum expressions extracted in the previous section. In par-

ticular, I1 and I2 are proportional to N and P respectively. This is a strong consistency

check verifying the validity of the applied continuum limit process.

Exercise 8.1. Determine the continuum limit of the discrete NLS Hamiltonian I3.
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A W and Z matrices for the A
(1)
2 ATFT

We write below explicit expressions of the W (n), Z(n) matrices for the first orders:

W (0) = Ŵ (0) =




0 e
iπ
3 1

e
iπ
3 0 −1

e
2iπ
3 e−

iπ
3 0


 ,

m

4
W (1) =




0 e
2iπ
3 a c

−a 0 b

e
iπ
3 c −b 0


 ,

m

4
Ŵ (1) =




0 −b̂ −â

−e−
iπ
3 b̂ 0 −ĉ

â −e
iπ
3 ĉ 0


 . (A.1)

The higher order quantities are more complicated and we give the matrix entries below for

W (2), Ŵ (2) (define also, ζ = 4
m

):

W
(2)
12 =

1

3
(−2γ3 + γ1 + γ2) +

ζ2

3
(2a′ + b′) +

ζ2

3
(−2a2 − bc),

W
(2)
21 =

e−
iπ
3

3
(−2γ3 + γ1 + γ2) +

ζ2e−
iπ
3

3
(a′ − c′) +

ζ2e−
iπ
3

3
(c2 − ab)

W
(2)
13 =

1

3
(−2γ2 + γ1 + γ3) +

ζ2

3
(−b′ + c′) +

ζ2

3
(b2 − ac),

W
(2)
31 =

1

3
(2γ2 − γ1 − γ3) +

ζ2

3
(−a′ − 2c′) +

ζ2

3
(2c2 + ab),

W
(2)
23 = −1

3
(2γ1 − γ2 − γ3) +

ζ2

3
(2b′ + c′) +

ζ2

3
(−2b2 − ac)

W
(2)
32 = −e

iπ
3

3
(2γ1 − γ2 − γ3) +

ζ2e
iπ
3

3
(−a′ + b′) +

ζ2e
iπ
3

3
(a2 − bc) (A.2)

and

Ŵ
(2)
12 =

e−
iπ
3

3
(−2γ2 + γ1 + γ3) +

ζ2e−
iπ
3

3
(b̂′ − ĉ′) +

ζ2e−
iπ
3

3
(ĉ2 − âb̂),

Ŵ
(2)
21 =

1

3
(−2γ2 + γ1 + γ3) +

ζ2

3
(2b̂′ + â′) +

ζ2

3
(−2b̂2 − âĉ)

Ŵ
(2)
13 = −1

3
(−2γ1 + γ3 + γ2)− ζ2

3
(2â′ + ĉ′) +

ζ2

3
(2â2 + b̂ĉ),

W
(2)
31 =

e
iπ
3

3
(2γ1 − γ2 − γ3) +

ζ2e
iπ
3

3
(b̂′ − â′) +

ζ2e
iπ
3

3
(−b̂2 + âĉ),

Ŵ
(2)
23 = −1

3
(−2γ3 + γ2 + γ1) +

ζ2

3
(â′ − ĉ′) +

ζ2

3
(−â2 + b̂ĉ)

Ŵ
(2)
32 =

1

3
(−2γ3 + γ1 + γ2) +

ζ2

3
(b̂′ + 2ĉ′) +

ζ2

3
(−2ĉ2 − âb̂) (A.3)
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where the prime denotes derivative with respect to x, also a, b, c, and γi are defined in

(7.81) and have the following explicit forms:

a =
β

2
(
θ1

2
+

θ2

2
√

3
), b =

β

2
(−θ1

2
+

θ2

2
√

3
), c = −β

2

θ2√
3
,

γ1 = eβφ1 , γ2 = eβ(− 1
2
φ1+

√
3

2
φ2), γ3 = eβ(− 1

2
φ1−

√
3

2
φ2). (A.4)

Moreover using the expressions above and (7.83) we have:

dZ
(1)
11

dx
=

e−
iπ
3

3

m

4
(γ1 + γ2 + γ3) +

ζe−
iπ
3

3
(a′ − c′) +

ζe−
iπ
3

6
(a2 + b2 + c2)

dZ
(1)
22

dx
=

e
iπ
3

3

m

4
(γ1 + γ2 + γ3) +

ζe
iπ
3

3
(b′ − a′) +

ζe
iπ
3

6
(a2 + b2 + c2)

dZ
(1)
33

dx
= −1

3

m

4
(γ1 + γ2 + γ3)− ζ

3
(c′ − b′)− ζ

6
(a2 + b2 + c2)

dẐ
(1)
11

dx
=

e
iπ
3

3

m

4
(γ1 + γ2 + γ3)− ζe

iπ
3

3
(b̂′ − â′) +

ζe
iπ
3

6
(â2 + b̂2 + ĉ2)

dẐ
(1)
22

dx
=

e−
iπ
3

3

m

4
(γ1 + γ2 + γ3) +

ζe−
iπ
3

3
(b̂′ − ĉ′) +

ζe−
iπ
3

6
(â2 + b̂2 + ĉ2)

dẐ
(1)
33

dx
= −1

3

m

4
(γ1 + γ2 + γ3) +

ζ

3
(â′ − ĉ′)− ζ

6
(â2 + b̂2 + ĉ2). (A.5)
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