
Systematic construction of (boundary) Lax pairs

Anastasia Doikou

University of Patras

Thessaloniki, October 2010

Anastasia Doikou University of Patras

Systematic construction of (boundary) Lax pairs



Motivation

I Integrable b.c. interesting for integrable systems per ce, new
info on boundary phenomena + learn more on bulk behavior.
Examples of integrable b.c. that modify the bulk.

I Bigger picture, strong motivations nowadays: recent
developments within the AdS/CFT context (Minahan, Zarembo

’03). Important to study both quantum and classical
integrable models.

I Further: recent results on open spin chains and open string
theories (Agarwal, Hofman, Maldacena,...)
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Outline

I Brief overview on quantum integrability (mathematical and
physical description). Review periodic and open boundary
conditions.

I Classical discrete integrable models: Review general setting.
Lax pair and algebraic description. Generalize the “boundary”
case. Rigorous universal results on IM and Lax pairs based on
the underlying algebra. Examples: Discrete-self-trapping
(DST) model (discrete NLS).

I Classical continuum integrable models: similar investigations;
IM and boundary Lax pairs from the algebraic setting.
Examples: NLS and sine-Gordon models.

Anastasia Doikou University of Patras

Systematic construction of (boundary) Lax pairs



Review quantum integrability

I The Yang-Baxter equation (Baxter ’72)

R12(λ1−λ2) R13(λ1) R23(λ2) = R23(λ2) R13(λ1) R12(λ1−λ2)

R acts on V ⊗ V , YBE on V ⊗ V ⊗ V , and
R12 = R ⊗ I, R23 = I⊗ R etc.

I R physically describes scattering, YBE the factorization of
multi-particle scattering.

I V associated to reps of underlying (deformed) Lie algebras.
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I Generalize the YBE to include generic reps of (deformed) Lie
algebras (Faddeev, Takhtajan Reshetikhin):

R12(λ1−λ2) L1n(λ1) L2n(λ2) = L2n(λ2) L1n(λ1) R12(λ1−λ2)

L ∈ End(V ⊗A), A defined by fundamental algebraic
relation above: deformed or quantum algebras.

I This describes physically integrable models with periodic bc.
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Periodic integrable models
I Tensorial reps of the fundamental algebraic relation (Faddeev,

Takhtajan 80’s):

T0(λ) = L0N(λ) L0N−1(λ) . . . L01(λ)

I T ∈ End(V ⊗A⊗N) satisfies the fundamental algebraic
relation. The trace over the “auxiliary space”, defines the
transfer matrix :

t(λ) = tr0T0(λ)

I Via the RTT relations integrability is shown:

[t(λ), t(λ′)] = 0, ∀λ, λ′
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Open integrable models

I Introduce the reflection or boundary YBE (Cherednik, Sklyanin

’80s)

R12(λ1 − λ2)K1(λ1)R21(λ1 + λ2)K2(λ2) =

K2(λ2)R12(λ1 + λ2)K1(λ1)R12(λ1 − λ2)

K ∈ End(V ), the reflection matrix.

I Physically describes the reflection of a particle-like excitation
with the boundary of the system.

Anastasia Doikou University of Patras

Systematic construction of (boundary) Lax pairs



I Tensor reps of reflection equation (Sklyanin ’83)

T0(λ) = T0(λ) K0(λ) T−1
0 (−λ)

I Define the open transfer matrix

t(λ) = tr0{K+
0 (λ) T0(λ)}

I Using the reflection equation we show integrability

[t(λ), t(λ′)] = 0, ∀λ, λ′

Generating function of IM.
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Classical limit

I Now focus on classical models. Consider the classical limit of
the R matrix as:

R = 1 + ~r +O(~2)

Then the r matrix satisfies the classical YBE
(Semenov-Tian-Shansky ’83)

[r12, r13] + [r12, r23] + [r13, r23] = 0.

I The classical limit obtained by setting: 1
~ [ , ] = { , }

{La(λ), Lb(λ
′)} = [rab(λ− λ′), La(λ)Lb(λ

′)]

Systematic study of classical limit (Avan, Doikou, Sfetsos ’10).
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Discrete integrable classical models: periodic b.c.

I Lax pair (L, A) for discrete integrable models, and the
associated auxiliary problem

ψn+1 = Ln ψn

ψ̇n = An ψn

I From the latter equations one obtains the discrete zero
curvature condition:

L̇n = An+1 Ln − Ln An
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I L-operator and T satisfy the quadratic classical algebraic
relation (Faddeev, Takhtajan ’87):

{La(λ), Lb(λ
′)} = [rab(λ− λ′), La(λ)Lb(λ

′)]

I We formulate:

{Ta(λ), Lbn(λ
′)} = Ta(N, n + 1; λ)rab(λ− λ′)Ta(n, 1;λ)Lbn(λ

′)
− Lbn(λ

′)Ta(N, n; λ)rab(λ− λ′)Ta(n − 1, 1;λ)

where Ta(m, n; λ) = Lam(λ) . . . Lan(λ).
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I Take the trace over the auxiliary space and the log then:

{ln t(λ), L(λ′)} = t−1tra
(
Ta(N, n + 1;λ)rab(λ

−)Ta(n, 1;λ)
)
Lbn(λ

′)

−t−1Lbn(λ
′)tra

(
Ta(N, n;λ)rab(λ

−)Ta(n − 1, 1;λ)
)

λ− = λ− λ′

I t is the generating function of all I.M.: ln t(λ) gives rise to all
local Hamiltonians i.e.

ln t(λ) =
∑
n

H(n)

λn

I The time evolution of L is given as:

{ln t(λ), L(λ′)} = L̇(λ′)
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I The Lax pair obtained comparing with the zero curvature
condition as: Ln and

An(λ) = t−1(λ)tra
(
Ta(N, n; λ)rab(λ− λ′)Ta(n − 1, 1;λ)

)

expansion in powers of λ provides all A’s associated to all I.M.

I Expansion of ln t provides all local Hamiltonians.

An(λ) =
∑
n

A
(m)
n

λm

One to one correspondence between Lax pairs and I.M.
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Discrete integrable classical models: open b.c.

I The underlying algebra:

{Ta(λ), Tb(λ
′)} = rab(λ

−)Ta(λ)Tb(λ
′)− Ta(λ)Tb(λ

′)rba(λ
−)

+ Ta(λ)rba(λ
+)Tb(λ

′)− Tb(λ
′)rab(λ+)Ta(λ)

λ± = λ± λ′.
I Recall the tensorial rep of the algebra

Ta(λ) = Ta(λ) Ka(λ) T−1(−λ)

K a c-number rep of the reflection algebra.

Anastasia Doikou University of Patras

Systematic construction of (boundary) Lax pairs



I Extract the associated boundary Lax pair (Avan, Doikou ’07).
Formulate

{Ta(λ), Lbn(λ
′)} = . . .

{T−1
a (−λ), Lbn(λ

′)} = . . .

I Recall the generic rep of the reflection algebra and show that:

{t(λ), Lbn(λ
′)} = . . .
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I We read of the boundary quantity An, which satisfies the zero
curvature condition together with L:

An = tra
(
K+

a (λ)Ta(N, n; λ)rab(λ
−)Ta(n − 1, 1;λ)K−

a (λ)T̂a(λ)

+K+
a (λ)Ta(λ)K−

a (λ)T̂a(1, n − 1; λ)rba(λ
+)T̂a(n, N; λ)

)

I Special care at the boundary points n = 1, n = N, recall
T (N, N + 1) = T (0, 1) = T̂ (1, 0) = T̂ (N + 1, N) = 1
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Examples

I Focus next to simple models associated to the sl2-Yangian.
The classical r matrix is:

r(λ− λ′) =
P

λ− λ′

P is the permutation operator P (a⊗ b) = b ⊗ a.

I Focus on the Discrete-Self-Trapping (DST) model

L(λ) = (λ− xX ) e11 + b e22 + b x e12 − X e21

(eij)kl = δikδjl , and

{xn, Xm} = δnm
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I Expand the t(λ) and keep the first charge, which is the
Hamiltonian of the model. Focus on the simplest case:
K± ∝ I then:

H(2) = −1

2

N∑

n=1

x2
nX 2

n − b
N−1∑

n=1

xn+1Xn −b2

2
x2
1 −

1

2
X 2

N

I The associated equation of motion:

L̇ = {H, L}
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I The expansion of An will provide the relevant boundary lax
operator (Avan, Doikou ’07):

An
(2) =

(
λ bxn

−Xn−1 0

)
, n ∈ {2, . . . , N}

A1
(2) =

(
λ bx1

−bx1 0

)
, A(2)

N−1 =

(
λ XN

−XN 0

)

I The associated equations of motion given as

L̇n = A(i)
n+1 Ln − LnA

(i)
n
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I For the specific example the relevant equations of motion are:

ẋn = x2
nXn + bxn+1, Ẋn = −xnX

2
n , n ∈ {2, . . . ,N − 1}

ẋ1 = x2
1X1 + bx2, Ẋ1 = −x1X

2
1 − bx1

ẋN = x2
NXN + XN , ẊN = −xN

I The Toda chain also obtained for the DST model.
Specifically, set:

Xn → e−qn , xn → eqn(b−1 + pn)
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I The harmonic oscillator algebra (xn, Xn, xnXn) reduces to the
Euclidean Lie algebra (e±qn , pn) and the Lax operator:

L(λ) =

(
λ− pn eqn

−e−qn 0

)

I The Hamiltonian is then:

H(2) = −1

2

N∑

i=1

p2
n −

N−1∑

n=1

eqn+1−qn−1

2
e2q1 − 1

2
e−2qN
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I The relevant equations of motion for the open Toda chain:

pn = q̇n, q̈n = eqn+1−qn − eqn−qn−1 , n ∈ {2, . . . ,N − 1}
p1 = q1, q̈1 = eq2−q1 − e2q1

pN = qN , q̈N = e−2qN − eqN−qN−1
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Continuum integrable classical models on the full line
I Let U, V be the continuum Lax pair, and Ψ be the solution of

the following set of equations:

∂Ψ

∂x
= U(x , t, λ) Ψ

∂Ψ

∂t
= V(x , t, λ) Ψ

I Compatibility condition of the above set gives the zero
curvature condition

U̇− V′ + [U, V] = 0

I Solution of the 1st equ. (monodromy):

T (x , y ;λ) = P exp{
∫ x

y
U(x ′, t, λ)dx ′}
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I T satisfies the fundamental quadratic relation. Formulate
(Faddeev, Takhtajan ’87):

{Ta(L,−L, λ), U(x , λ)} =
∂M(x , λ, λ′)

∂x
+[M(x , λ, λ′),Ub(x , λ)]

where

M = Ta(L, x , λ) rab(λ− λ′) Ta(x ,−L, λ)

I It then follows:

{ln t(λ), U(x , λ)} =
∂V
∂x

+ [V(x , λ, λ′), U(x , λ)]

V identified as:

V(x , λ, λ′) = t−1(λ)tra(Mba)
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Continuum integrable classical models on the interval

I Recalling that the rep of the reflection algebra is

Ta(x , y , λ) = Ta(x , y , λ) Ka(λ) T̂a(x , y , λ)

I Formulating {T , U}, {T̂ , U} (Avan, Doikou ’07):

{ln t(λ), U(x , λ′)} =
∂V(x , λ, λ′)

∂x
+ [V(x , λ, λ′), U(x , λ, λ′)]

and

V(x , λ, λ′) = t−1(λ)tra
(
K+

a (λ) Ma(x , λ, λ′)
)
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I The boundary quantity M is

M = T (0, x , λ)rab(λ− λ′)T (x ,−L, λ)K−(λ)T̂ (0,−L, λ))

+ T (0,−L, λ)K−(λ)T̂ (x ,−L, λ)rba(λ + λ′)T̂ (0, x , λ)

pay particular attention at the boundary points (key point!)
x = 0, −L; take into account T (x , x , λ) = T̂ (x , x , λ) = I.

I Systematic derivation independent of the choice of model, as opposed to

’by hand’ construction in earlier investigations e.g. ATFT (Bowcock,

Corrigan, Dorey, Rietdijk ’95)
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Example: boundary NLS model

I Consider the NLS model. The associated r matrix

r(λ) =
P
λ

I Recall the Lax pair

U = U0 + λU1, V = V0 + λV1 + λ2V2

where

U1 =
1

2i
(e11 − e22), U0 = ψ̄e12 + ψe21

V0 = i |ψ|2(e11 − e22)− iψ̄′e12 + iψ′e21

V1 = −U0, V2 = −U1
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I The fields ψ, ψ̄ are canonical

{ψ(x), ψ̄(y)} = δ(x − y)

I From the zero curvature conditions the equations of motion
for NLS:

i
∂ψ(x , t)

∂t
= −∂2ψ(x , t)

∂2x
+ 2|ψ(x , t)|2ψ(x , t)

I Idea: via the process described integrable boundary conditions
(system on the half line).
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I Choose diagonal reflection matrix:

K (λ) = λ(e22 − e11) + iξI

I Consider the ansatz:

T (x , y , λ) =
(
1 + W (x , λ)

)
eZ(x ,y ,λ)

(
1 + W (y , λ)

)−1

Z is purely diagonal, W off diagonal. Determine Z , W from
d

dxT = UT , and find the associated integrals of motion.
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I Expanding the transfer matrix obtain the classical integrals of
motion for NLS in the interval (Doikou, Fioravanti, Ravanini, ’07):

N =

∫ 0

−L
dx ψ(x)ψ̄(x)

H =

∫ 0

−L
dx

(
|ψ(x)|4 + ψ′(x)ψ̄′(x)

)

−ψ(0)ψ̄′(0)− ψ′(0)ψ̄(0)− ξ+ψ(0)ψ̄(0)

+ψ(−L)ψ̄′(−L) + ψ′(−L)ψ̄(−L) + ξ−ψ(−L)ψ̄(−L)

I Only odd charges are conserved! E.g. momentum is not a
conserved quantity anymore.
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I The corresponding equations of motion obtained from:

∂ψ(x , t)

∂x
= {H, ψ(x , t)}, ∂ψ̄(x , t)

∂x
= {H, ψ̄(x , t)}

−L ≤ x ≤ 0

I And are of the form:

i
∂ψ(x , t)

∂t
= −∂2ψ(x , t)

∂2x
+ 2|ψ(x , t)|2ψ(x , t)

(∂ψ(x)

∂x
− ξ±ψ(x)

)
x=0, −L

= 0.

Mixed boundary conditions.
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I Following the generic formulation described we identify the
associated boundary Lax pair (Avan, Doikou ’07):

Vb(xb, t) = V(xb, t) + ∆V(xb, t)

= V(xb, t) + i |ψ(xb, t)|2e22 + λ
(
ψ̄(xb, t)e12 + ψ(xb, t)e21

)

xb = 0, −L.

I Obtain the equations of motion, and continuity arguments at
the boundary point lead to ∆V = 0 → boundary conditions
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Example: boundary sine-Gordon

I The Lax pair for the sine Gordon model (u = eλ)

U(x , t, u) =
β

4i
π(x)+

mu

4i
e

iβ
4

φσ3σ2e
− iβ

4
φσ3−mu−1

4i
e−

iβ
4

φσ3σ2e
iβ
4

φσ3

V(x , t, u) =
β

4i
φ′(x)+

mu

4i
e

iβ
4

φσ3σ2e
− iβ

4
φσ3+

mu−1

4i
e−

iβ
4

φσ3σ2e
iβ
4

φσ3
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I The classical r -matrix for the sine-Gordon model (Jimbo ’86 )

r(λ) =
cosh λ

sinh λ

2∑

i=1

eii ⊗ eii +
1

sinhλ

2∑

i 6=j=1

eij ⊗ eji

I Choose the reflection matrix (Ghoshal, Zamolodchikov ’94)

K (λ) =

(
sinh(λ + iξ) x+κ sinh(2λ)
x−κ sinh(2λ) sinh(−λ + iξ)

)
, x− x+ = 1
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I The boundary Hamiltonian via the process described obtained
(MacIntyre ’95 ), also at quantum level (Ghoshal, Zamolodchikov

’94):

H =

∫ 0

−L
dx

( β

4i
(π2 + φ

′2) +
m2

β2
(1− cosβφ)

)

+
4Pm

β2
cos

βφ(0)

2
− 4Qm

β2
sin

βφ(0)

2

P = −sin ξ

2iκ
, Q =

cos ξ

2iκ

I Generalize to ATFT’s, full classification of integrable b.c.,
classical I.M. (Doikou ’08)
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I The boundary Lax pair reads (Avan, Doikou ’08):

V(b)(0, t, u) = V(0, t, u) + ∆V(0, t, u)

∆V(0, t, u) = − β

4i
φ′(0)σ3 − m

8κ
cos(ξ +

β

2
φ(0))σ3

Different choices of reflection matrices modify the boundary
conditions: Dirichlet, Neumann or mixed

I Generalize the construction of boundary Lax pairs to ATFT’s
(Avan, Doikou ’08)
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I From the zero curvature condition and continuity requirement
∆V = 0 we get the E.M and the boundary conditions:

φ̈(x , t)− φ′′(x , t) = −m2

β
sin(βφ(x , t))

βφ′(0) =
m

2iκ
cos(ξ +

β

2
φ(0))

Mixed boundary conditions.
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Discussion

I Results have been obtained for models associated to higher
rank Lie algebras e.g. vector NLS model (Doikou, Fioravanti,

Ravanini ’07) and ATFT (Doikou ’08, and Avan, Doikou ’08).

I Full classification of integrable boundary conditions in these
models. Two distinct types of boundary conditions emerge:
the soliton preserving, and the soliton non-preserving.
Dynamical boundaries, e.g. coupled harmonic oscillator at the
ends.

I Full classification of integrable boundary conditions at the
quantum level as well (Doikou ’00, and Arnaudon, Avan, Crampe,

Doikou, Frappat, Ragoucy ’03, ’04).
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