

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΉ ΣΧΟΛΉ, ΓΕΝΙΚΌ ΤΜΗΜΑ

UNIVERSITY OF PATRAS DEPARTMENT OF ENGINEERING SCIENCES

PHYSICAL AND ALGEBRAIC ASPECTS OF QUANTUM INTEGABILITY

Anastasia Doikou

University of Patras
Department of Engineering Sciences

Why Integrability?

• Integrable Models: Exactly solvable models

• NON PERTURBATIVE methods: exact results!

• Interface, Mathematics—Physics. Wealth of applications and relations to other research areas

Relations/Applications

- Statistical Mechanics (Onsager, Bethe, Baxter, McCoy...)
- Condensed matter physics, e.g. Kondo effect, quantum Hall effect, disorder systems (*Affleck, Korepin, Saleur, Tsvelik, Wiegmann....*)
- High energy physics: QCD (Lipatov, Faddeev, Korchemsky), super YMT (Minahan-Zarembo...)
- String theory via CFT, D-branes via BCFT (Polchinski...)
- Mathematical aspects: quantum groups, braids, Lie and Hecke algebras, Virasoro algebras...(Drinfeld, Faddeev, Jimbo, Kulish, Sklyanin, Reshetikhin...)

Nice aspect!

- Perturbed CFT → IQFT (Zamolodchikov '89)
- Critical statistical models (ILM) \rightarrow CFT (Belavin, Polyakov, Zamolodchikov '84)
- Light cone continuum limit of ILM \rightarrow IQFT (Destri and de Vega '92)

History

- Heisenberg model solved (Bethe~'31). Factorization of multiparticle interaction \rightarrow 2-particle interaction!!
- Many body (δ type) interaction (1D boss-gas (Lieb-Lininger ' δ 7), N interacting fermions: (Yang ' δ 7). Bethe ansatz framework (Gaudin ' δ 71): YBE appears as factorization condition
- Statistical Mechanics (via YBE) commuting transfer matrices (Baxter~'72). Ising model solved many years ago (Onsager~'40s) also integrable model.
- Theory of factorized scattering "bootstrap" in relativistic setting (Zamolodchikov, Berlin group, late 70's)
- Faddeev, Korepin, Kulish, Reshetikhin, Sklyanin, Takhtajan, ..., late 70's introduced QISM method: factorized scattering + soliton theory. Quantum algerbas arise naturally in this context.

The XXZ Hamiltonian

$$H = -\frac{1}{4} \sum_{j=1}^{N} \left(\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \cosh(i\mu) \ \sigma_j^z \sigma_{j+1}^z \right)$$

with periodic BC

$$\sigma_1^i = \sigma_{1+N}^i.$$

The Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 σ_i provide the spin- $\frac{1}{2}$ representation of su(2) (s_1, s_2, s_3):

$$[s_i, s_j] = 2i\epsilon_{ijk} s_k$$

and

$$s_1 \hookrightarrow \sigma_1 \qquad s_2 \hookrightarrow \sigma_2, \qquad s_3 \hookrightarrow \sigma_3$$

Also define $s^{\pm}=\frac{1}{2}(s_1\pm is_2)$ creation-annihilation operators as in the Harmonic operator. Alternatively su(2):

$$[s^+, s^-] = s_3, \quad [s^{\pm}, s_3] = \pm s^{\pm}$$

Bethe's solution

Wish to solve a typical eigenvalue problem (diagonalize the Hamiltonian):

$$H \mid \Psi > = \Lambda \mid \Psi >$$

H in general operator in terms of abstract s_i . Now is represented to spin $\frac{1}{2}$ $\rightarrow 2^N$ matrix!

Diagonalize a $2^N \times 2^N$ matrix...one has to be smart!!

Bethe ansatz

Start with a state (ferromagnetic vacuum) all spins up. Let n-spins being down. These are called pseudo-particles. The state with n spin down $|x_1, x_2, \ldots x_n>$.

Bethe worked in the configuration space of pseudo-particles. Parametrize the sate as:

$$|\Psi> = \sum_{1 \le x_1 \le x_2 \dots x_n \le N} a(x_1, x_2, \dots, x_n) |x_1, x_2, \dots, x_n>$$

Bethe's great insight (ansatz)!! Deduced $a(x_1, x_2, ..., x_n)$ as:

$$a(x_1, x_2, ..., x_n) = \sum_{P \in S_n} A_P \exp[ik_{p_i}x_i]$$

 $P=(p_1,p_2,...,p_n)\in S_n$ and k_i the momentum of the pseudo-particle at x_i .

Obtain A_P in terms of 2-particle interaction!!! Already see a nice structure.

$$A_P = \epsilon_P \prod_{1 \le i < j \le n} S_{p_i p_j}$$

 S_{ij} depends on the momenta k_i , scattering of 2 pseudo-particle. A_P scattering of n pseudo-particles

 k_i satisfy the Bethe ansatz equations

$$\exp[ik_j N] = (-)^{n-1} \prod_{j \neq l} \frac{S_{lj}}{S_{jl}}$$

FACTORIZATION OF MULTI-PARTICLE INTERACTION!!

Unique feature of quantum integrable models

The XXZ model

• XXZ model in particular 'Universal model' (Faddeev, Izergin, Korepin...) associated with many integrable models (quantum):

Algebraic Bethe ansatz

- Introduce the basic building block of the theory, R matrix \rightarrow transfer matrix (Faddeev, Takhtajan, Sklyanin...)
- Main aim: Diagonalization of the transfer matrix via the algebraic Bethe ansatz method \rightarrow BAE
- ullet Obtain quantities of physical interest: Energy momentum spectrum, quantum numbers, S-matrix, free energy, correlation functions...
- Quantum spin chains natural realizations of quantum algebras.

Study scattering of the low lying excitations: exact S matrices

The R matrix

The R matrix acts on $\mathbb{V}^{\otimes 2}$:

Satisfies the YBE (Baxter '72)

$$=$$

$$=$$

$$1$$

$$=$$

$$1$$

$$=$$

$$1$$

$$R_{12}(\lambda_1 - \lambda_2) R_{13}(\lambda_1) R_{23}(\lambda_2) = R_{23}(\lambda_2) R_{13}(\lambda_1) R_{12}(\lambda_1 - \lambda_2)$$

- ullet Physical interpretation of R: scattering among excitations
- YBE factorization condition of multiparticle scattering

Braid graphical representation

The XXZ R-matrix acting on $\mathbb{C}^2 \otimes \mathbb{C}^2$, solution of the Yang-Baxter equation:

$$R(\lambda) = \begin{pmatrix} R_{++}^{++}(\lambda) & 0 & 0 & 0\\ 0 & R_{+-}^{-+}(\lambda) & R_{+-}^{+-}(\lambda) & 0\\ 0 & R_{-+}^{-+}(\lambda) & R_{-+}^{+-}(\lambda) & 0\\ 0 & 0 & 0 & R_{--}^{--}(\lambda) \end{pmatrix}$$

where

$$\begin{split} R^{++}_{++}(\lambda) &= R^{--}_{--}(\lambda) = \sinh \mu (\lambda + i) \\ R^{-+}_{+-}(\lambda) &= R^{+-}_{-+}(\lambda) = \sinh (\mu \lambda), \quad R^{+-}_{+-}(\lambda) = R^{-+}_{-+}(\lambda) = \sinh (i\mu) \end{split}$$

Rewrite the R-matrix in terms of Pauli matrices ($q = e^{i\mu}$):

$$R(\lambda) = \left(\begin{array}{cc} e^{\mu\lambda}q^{\frac{\sigma^z}{2}} - e^{-\mu\lambda}q^{-\frac{\sigma^z}{2}} & (q-q^{-1})\sigma^- \\ (q-q^{-1})\sigma^+ & e^{\mu\lambda}q^{-\frac{\sigma^z}{2}} - e^{-\mu\lambda}q^{\frac{\sigma^z}{2}} \end{array} \right)$$

The 6-vertex model

'Ice rule': i+j=k+l

Relax constraint 8-vertex: $i + j = k + l \mod(2)$

The Lax operator

The R-matrix in terms of Pauli matrices:

$$R(\lambda) = \begin{pmatrix} e^{\mu\lambda}q^{\frac{\sigma^z}{2}} - e^{-\mu\lambda}q^{-\frac{\sigma^z}{2}} & (q - q^{-1})e^{\mu\lambda}\sigma^- \\ (q - q^{-1})e^{-\mu\lambda}\sigma^+ & e^{\mu\lambda}q^{-\frac{\sigma^z}{2}} - e^{-\mu\lambda}q^{\frac{\sigma^z}{2}} \end{pmatrix}$$

For any representation of $U_q(sl_2)$: ${\cal L}$ matrix,

$$\mathcal{L}(\lambda) = \begin{pmatrix} e^{\mu\lambda} \mathbf{A} - e^{-\mu\lambda} \mathbf{D} & (q - q^{-1})e^{\mu\lambda} \mathbf{B} \\ (q - q^{-1})e^{-\mu\lambda} \mathbf{C} & e^{\mu\lambda} \mathbf{D} - e^{-\mu\lambda} \mathbf{A} \end{pmatrix}$$

A, B, C, D generate $U_q(sl_2)$:

A D = D A = I, A C = qC A, A B =
$$q^{-1}$$
B A,
 $[C, B] = \frac{A^2 - D^2}{q - q^{-1}}.$

The $\mathcal L$ matrix acts on $\mathbb V\otimes\mathcal A$ $(U_q(\widehat{sl_2}))$, $\ q=e^{i\mu}$:

Satisfies the defining relation of ${\cal A}$

$$R_{12}(\lambda_1 - \lambda_2) \mathcal{L}_{13}(\lambda_1) \mathcal{L}_{23}(\lambda_2) = \mathcal{L}_{23}(\lambda_2) \mathcal{L}_{13}(\lambda_1) R_{12}(\lambda_1 - \lambda_2)$$

Tensor representations: the periodic spin chain

The monodromy matrix $T \in \operatorname{End}(\mathbb{V}) \otimes \mathcal{A}^{\otimes(N)}$ (QISM: Faddeev, Takhtajan '81):

$$T_0(\lambda) = \mathcal{L}_{0N}(\lambda) \mathcal{L}_{0N-1}(\lambda) \dots \mathcal{L}_{01}(\lambda)$$

Satisfies the fundamental algebraic relation:

$$R_{12}(\lambda_1 - \lambda_2) \ T_1(\lambda_1) \ T_2(\lambda_2) = T_2(\lambda_2) \ T_1(\lambda_1) \ R_{12}(\lambda_1 - \lambda_2)$$

The transfer matrix $t \in \mathcal{A}^{\otimes N}$ (Faddeev, Takhtajan '81):

$$t(\lambda) = Tr_0 \{T_0(\lambda)\}\$$

Provides a family of commuting operators

$$\left[t(\lambda),\ t(\lambda')\right] = 0$$

Latter commutation relation ensures Integrability

$$\mathcal{H} \propto \frac{d}{d\lambda} (\ln t(\lambda))|_{\lambda=0}$$

Bethe ansatz

- Main aim: diagonalization of transfer matrix via algebraic Bethe ansatz.
- 1. Reference state: highest(lowest) weight $(V^* e_1 = 0!)$ pseudo-vacuum state (co-unit in the context Hopf algebras)
 2. Use the RTT algebra exchange relations.
- Find the spectrum, analyticity requir. provide BAE.
- ullet BAE important, their solution \to physically relevant quantities: exact S matrices, thermodynamic properties, correlation functions...

Diagonalization of $t(\lambda)$

The \mathcal{L} -matrix rewritten as

$$\mathcal{L}_{0n}(\lambda) = \begin{pmatrix} \alpha_n^+ & \beta_n \\ \gamma_n & \alpha_n^- \end{pmatrix}$$

 $\alpha_n^{\pm} = \sinh \mu (\lambda \pm i s_n^z), \quad \gamma_n = s_n^+ \sinh i \mu, \quad \beta_n = s_n^- \sinh i \mu$

Reference state, highest weight:

$$\gamma_n|+\rangle_n=0, \quad |\Omega\rangle=\bigotimes_{n=1}^N|+\rangle_n.$$

and consequently

$$T(\lambda)|\Omega\rangle = \begin{pmatrix} \mathcal{A}(\lambda) & \mathcal{B}(\lambda) \\ \mathbf{0} & \mathcal{D}(\lambda) \end{pmatrix} |\Omega\rangle$$

the diagonal entries of T acting on the pseudovacuum give,

$$\mathcal{A}(\lambda)|\Omega\rangle = \sinh^N \mu(\lambda + is)|\Omega\rangle, \ \mathcal{D}(\lambda)|\Omega\rangle = \sinh^N \mu(\lambda - is)|\Omega\rangle$$

Assumption the general Bethe state has the form

$$|\psi\rangle = \mathcal{B}(\lambda_1) \; \mathcal{B}(\lambda_2) \dots \mathcal{B}(\lambda_M) \; |\Omega\rangle$$

Solve the eigenvalue problem,

$$t(\lambda)|\psi\rangle = (\mathcal{A}(\lambda) + \mathcal{D}(\lambda))|\psi\rangle = \Lambda(\lambda)|\psi\rangle$$

Commutation relations: A, B and D, B, from RTT = TTR,

With the help of TTR = RTT obtain the eigenvalues of $t(\lambda)$

$$\Lambda(\lambda) = \prod_{j=1}^{M} \frac{\sinh \mu(\lambda - \lambda_j - i)}{\sinh \mu(\lambda - \lambda_j)} \sinh^N \mu(\lambda + is) + \prod_{j=1}^{M} \frac{\sinh \mu(\lambda - \lambda_j + i)}{\sinh \mu(\lambda - \lambda_j)} \sinh^N \mu(\lambda - is)$$

The analyticity of $\Lambda \to \lambda$'s satisfy BAE

$$e_{2s}(\lambda_i) = \prod_{j=1}^{M} e_2(\lambda_i - \lambda_j)$$

where
$$e_n(\lambda) = \frac{\sinh \mu(\lambda + \frac{in}{2})}{\sinh \mu(\lambda - \frac{in}{2})}$$

 $\mathsf{BAE} \to \mathsf{physical}$ quantities : S-matrix, free energy, specific heat, central charge...

Energy momentum and spin in terms of BA roots

Energy

$$E = -\frac{1}{2\pi} \sum_{j=1}^{M} \frac{\mu \sinh i\mu}{\sinh \mu (\lambda_j + \frac{i}{2}) \sinh \mu (\lambda_j - \frac{i}{2})}$$

Momentum

$$P = -\sum_{j=1}^{M} i \ln \frac{\sinh \mu(\lambda_j + \frac{i}{2})}{\sinh \mu(\lambda_j - \frac{i}{2})}$$

Spin

$$S^z = \frac{N}{2} - M$$

Note: $E = \frac{1}{2\pi} \frac{dP}{d\lambda}$

String hypothesis

Solutions of BAE for $N \to \infty$ may be casted as (Faddeev and Takhtajan '81):

$$\lambda^{(n,j)} = \lambda_0^{(n)} + \frac{i}{2}(n+1-2j)$$

Solving Bethe ansatz equations

Ground state: all real strings, filled Dirac sea $S^z = 0$.

Low lying excitations: Holes in the filled Dirac sea, particle like excitations

- Spin $S^z = \frac{1}{2}$
- ullet Energy $\epsilon(\lambda) = rac{1}{2\coshrac{\pi\lambda}{2}}$

I hole \rightarrow 2D rep of SU(2). State with 2 holes, the density (from the BAE):

$$\sigma(\lambda) = 2\pi\epsilon(\lambda) + \frac{1}{N}r(\lambda)$$

$$\hat{r}(\omega) = \frac{\sinh(\frac{\pi}{\mu} - 2)\frac{\omega}{2}}{2\cosh\frac{\omega}{2}\sinh(\frac{\pi}{\mu} - 1)\frac{\omega}{2}}.$$

• Main aim: derive 2-hole scattering amplitude Quantization condition (*Korepin '79, Andrei and Destri '84*)

$$(e^{ipN}S - 1)|\lambda_i\rangle = 0$$

recall $\epsilon(\lambda) = \frac{1}{2\pi} \frac{dp(\lambda)}{d\lambda}$, compare the **QC** with the density:

$$S_0(\lambda) = exp \left[- \int_{-\infty}^{\infty} \frac{d\omega}{\omega} \hat{\mathbf{r}}(\omega) e^{-i\omega\lambda} \right]$$

$$S_0(\lambda) = exp \left[-\int_{-\infty}^{\infty} \frac{d\omega}{\omega} \frac{\sinh(\frac{\pi}{\mu} - 2)\frac{\omega}{2}}{2\cosh\frac{\omega}{2}\sinh(\frac{\pi}{\mu} - 1)\frac{\omega}{2}} e^{-i\omega\lambda} \right]$$

sine Gordon S-matrix for $\beta^2=8(\pi-\mu)$ (Zamolodchikov '79).

More eigenvalues

$$S \propto R$$

We can find all the eigenvalues of the 4×4 S matrix: suitable string configurations

• 2 holes and a 2-string in the middle

$$S_a(\lambda) = \frac{\sinh \mu(\lambda - i)}{\sinh \mu(\lambda + i)} S_0(\lambda)$$

• 2 holes and a negative parity string in the middle

$$S_b(\lambda) = \frac{\cosh \mu(\lambda - i)}{\cosh \mu(\lambda + i)} S_0(\lambda)$$

Method applied for higher rank algebras, super—algebras: Doikou and Nepomechie '97-'99, Doikou '00, Arnaudon, Avan, Crampe, Doikou, Frappat, Ragoucy, '03-'05

Quantum algebras: deformed co-product

$$\mathcal{L}(\lambda) = e^{\mu\lambda} \mathcal{L}^+ - e^{-\mu\lambda} \mathcal{L}^-$$

$$\mathcal{L}_{ab}^{\pm} \in U_q(gl_n)$$

As $\lambda \to \pm \infty$ \mathcal{L} and consequently T reduce to upper, lower triangular matrices.

$$T(\lambda \to \pm \infty) \propto T^{\pm},$$

entries of $T^{\pm} \in U_q(gl_n)^{\otimes N}$

e.g. $U_q(sl_2)$

$$\mathcal{L}(\lambda) = e^{\mu\lambda} \begin{pmatrix} q^{s^z} & s^{-2} \sinh i\mu \\ 0 & q^{-s^z} \end{pmatrix} - e^{-\mu\lambda} \begin{pmatrix} q^{-s^z} & 0 \\ -s^{+2} \sinh i\mu & q^{s^z} \end{pmatrix}$$

Then asymptotics of T:

$$T^+ \propto \left(\begin{array}{cc} q^{S^z} & c^+ S^- \\ 0 & q^{-S^z} \end{array} \right), \quad T^- \propto \left(\begin{array}{cc} q^{-S^z} & 0 \\ c^- S^+ & q^{S^z} \end{array} \right)$$

$$S^{z} = \sum_{k=1}^{N} \mathbb{I} \otimes \ldots \otimes \mathbb{I} \otimes s_{k}^{z} \otimes \mathbb{I} \ldots \otimes \mathbb{I},$$

$$S^{\pm} = \sum_{k=1}^{N} q^{-s_{1}^{z}} \otimes \ldots \otimes q^{-s_{k-1}^{z}} \otimes s_{k}^{\pm} \otimes q^{s_{k+1}^{z}} \otimes \ldots \otimes q^{s_{N}^{z}}$$

 S^z , S^\pm tensor product realizations of $U_q(sl_2)$ ($\it Jimbo~'85$)

$$[S^+, S^-] = \frac{q^{2S^z} - q^{-2S^z}}{q - q^{-1}}, \quad [S^z, S^{\pm}] = \pm S^{\pm}$$

Study of the underlying quantum algerbas (Yangians): so(n), sp(m), osp(n|m), sl(n|m): Arnaudon, Avan, Crampe, Doikou, Frappat, Ragoucy, '03-'05. Study of boundary quantum algebras Doikou, '03-today

Open boundaries

The K matrix acts on \mathbb{V} :

Satisfies the reflection equation (Cherednik '84)

$$R_{12}(\lambda_1 - \lambda_2) K_1(\lambda_1) R_{21}(\lambda_1 + \lambda_2) K_2(\lambda_2)$$

= $K_2(\lambda_2) R_{12}(\lambda_1 + \lambda_2) K_1(\lambda_1) R_{21}(\lambda_1 - \lambda_2)$

 Solutions of RE (e.g. via Hecke algebras: Levy and Martin '94, Doikou and Martin '02, Doikou '04) → build open spin chains (Sklyanin '88)

The open spin chain

Integrable boundary conditions (Sklyanin '88)

$$t(\lambda) = tr_0 \ K_0^{(l)}(\lambda) \ \underline{T_0(\lambda) \ K_0^{(r)}(\lambda) \ T_0^{-1}(-\lambda)}$$

$$\left[t(\lambda),\ t(\lambda')\right] = 0$$

Integrability ensured.

Boundary S matrices (Doikou, Mezincescu and Nepomechie '97) Boundary symmetries (Doikou '04).