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Why Integrability?

e Integrable Models: Exactly solvable models

e NON PERTURBATIVE methods: exact results!

e Interface, Mathematics—Physics. Wealth of applications and
relations to other research areas


doikou
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Relations/Applications

e Statistical Mechanics ( Onsager, Bethe, Baxter, McCoy...)

e Condensed matter physics, e.g. Kondo effect, quantum
Hall effect, disorder systems (Ajjcleck, Korepin, Saleur, Tsvelik,

Wiegmann... )

e High energy physics: QCD (Lz'patov, Faddeev, Korchemsky),
super YMT (Minahan—Zarembo...)

e String theory via CFT, D-branes via BCFT (Polchinski...)
e Mathematical aspects: quantum groups, braids, Lie and

Hecke algebras, Virasoro algebras...( Drinfeld, Faddeev, Jimbo,
Kulish, Sklyanin, Reshetikhin.. )



Conformal Field
Theory

Integrable Lattice | ntegrable Quantum
Models Field theory

Nice aspect!

e Perturbed CFT — IQFT (Zamolodchz’kov ’89)

e Critical statistical models (ILM) — CFT (Belavin, Polyakov,
Zamolodchikov ’84)

e Light cone continuum limit of ILM — IQFT (Destri and de
Vega ’92)



History

e Heisenberg model solved (Bethe '31). Factorization of multi-
particle interaction — 2-particle interaction!!

e Many body (0 type) interaction (1D boss-gas (Lieb-Lininger
'67), N interacting fermions: (Yang '67). Bethe ansatz frame-
work (Gaudin '71): YBE appears as factorization condition

e Statistical Mechanics (via YBE) commuting transfer ma-
trices (Baster *72). Ising model solved many years ago (On-
sager '40s) also integrable model.

e Theory of factorized scattering “bootstrap” in relativistic
setting (Zamolodchz’k’ov, Berlin group, late 70’3)

® Faddeev, Korepin, Kulish, Reshetikhin, Sklyanin, Takhtajan, ...,
late 70’s introduced method: factorized scattering
+ soliton theory. Quantum algerbas arise naturally in this
context.



The XXZ Hamiltonian

N

1 , .
H = 7 Z (Jfafﬂ + ooy, + cosh(ip) O';O'j%_l)
j=1

with periodic BC

The Pauli matrices:

01 0 —i 1 0
=110 2=\ 0 ) 710 -1






o; provide the spin-3 representation of su(2) (s1, s2, s3):
[Sz'; Sj] = Qiéijk Sk

and
§1 — 01 §2 = 02, §3 = 03

Also define s = (s & is,) creation-annihilation operators as

in the Harmonic operator. Alternatively su(2):

+

s, 57 =53, [sT, s3] = +sT



Bethe’s solution

Wish to solve a typical eigenvalue problem (diagonalize the Hamiltonian):

H U >=A|U>

H in general operator in terms of abstract s;. Now is represented to spin %
— 2% matrix!

Diagonalize a 2V x 2V matrix...one has to be smart!!

Bethe ansatz

Start with a state (ferromagnetic vacuum) all spins up. Let n-spins be-
ing down. These are called pseudo-particles. The state with n spin down
Ty, T, ... Ty >



Bethe worked in the configuration space of pseudo-particles. Parametrize

the sate as:

U >= Z a(x1, To, ..., Ty)|T1, Toy .. Ty >
1<z1<29...0, <N

Bethe's great insight (ansatz)!! Deduced a(x1, zo, ..., z,) as:
a(xy, To, .oy Ty) = Z Ap explik, ]
PesSy

P = (p1,p2,-.-,0n) € S, and k; the momentum of the pseudo-particle at
€I;.



Obtain Ap in terms of 2-particle interaction!!! Already see a nice structure.
Ap =e€p H sz'pj
1<i<y<n
S;; depends on the momenta k;, scattering of 2 pseudo-particle. Ap scat-

tering of n pseudo-particles

k; satisfy the Bethe ansatz equations

g,
explik;N| = (—=)"" 1HSZJ
A

FACTORIZATION OF MULTI-PARTICLE INTERACTION!!

Unique feature of quantum integrable models



The XXZ model

o XXZ model in particular ‘Universal model' (Faddeev, Izergin,
Korepin...) associated with many integrable models (quantum):

XXZ
model
g—harmonic -
oscillator Isailmec%ordon
NLSE lattice
Liouville
Chiral Potts

RSOS models




Algebraic Bethe ansatz

e Introduce the basic building block of the theory, R matrix
— transfer matrix (Faddeev, Takhtajan, Sklyanin...)

e Main aim: Diagonalization of the transfer matrix via the
algebraic Bethe ansatz method — BAE

e Obtain quantities of physical interest: Energy momentum
spectrum, quantum numbers, S—matrix, free energy, corre-
lation functions...

e Quantum spin chains natural realizations of quantum alge-
bras.

Study scattering of the low lying excitations:
exact S matrices



The R matrix

The R matrix acts on V®2:

u R, (W)
[ j
Satisfies the YBE (Ba,:z:ter ’72)

, 3 5 3 3

X

Ria(A1 — A2) Riz(A1) Rasz(A2) = Ras(A2) Ris(A1) Ria( A — A2)

o
<

e Physical interpretation of R: scattering among excitations
e YBE factorization condition of multiparticle scattering



Braid graphical representation

i i+1

929192 glg2gl



The XXZ R-matrix acting on C2®C?, solution of the Yang-Baxter equation:

REE) 0 0 0

B 0 RT(\) RIZ(\) 0

EN=1" 0 R0 R=0) 0
0 0 0 R—(\)

RIT(\) = RTZ(\) =sinh(u)), RIZ(\) = RZT(\) =sinh(ip)

Rewrite the R-matrix in terms of Pauli matrices (¢ = ¢'*):

O.Z

T —eMgTT (g—q o

a” —u\ T

R(\) =
W (g—q Yot efg T —e g2



The 6-vertex model

lce rule’: 1+ 9=k +1

M-+ R__
R +: R :
R R+

+_

Relax constraint 8-vertex: ¢ + j = k + [ mod(2)



The Lax operator

The R-matrix in terms of Pauli matrices:

,u)\‘f—z_ —,u)\—ﬁ P RPN 7
RQ)<eq2 e g (g=gq )eo )

(g —q e ot egTT —e g

For any representation of U,(sls): £ matrix,

LN — et A — e "D (g —q HeB
(A) = (g — ¢ He C eMD — e A

A, B, C, D generate U,(sly):

AD=DA=I AC=¢qCA, AB=¢'BA,

2 12
FLB}—A v
a—q




The £ matrix acts on V® A (Uq<§l\2>), g = e

j

Satisfies the defining relation of A

Riag(A — Xg) Li13(A1) Laz(A2) = Laz(A2) L13(A1) Ria(A — Ag)



Tensor representations: the periodic spin chain

The monodromy matrix T € End(V) @ A®W) (QISM: Faddeev,
Takhtajan ’81):

N N-1 1

Satisfies the fundamental algebraic relation:

>< ...... - T ><

Ria(A1 — A2) Ti( A1) Ta(Ag) = To(A2) Th( A1) Ria( A1 — Ag)



The transfer matrix t € A®Y (Faddeev, Takhtajan '81):

t(A) = Tro {To(N)}

|
G

Provides a family of commuting operators

MMJWﬂ:O

| atter commutation relation ensures

d
H oc —~(In t(\)Jx=s



Bethe ansatz

e Main aim: diagonalization of transfer matrix via algebraic
Bethe ansatz.

1. Reference state: highest(lowest ) weight (V* e; = 0!)
pseudo-vacuum state (co-unit in the context Hopf algebras)
2. Use the RT"T" algebra exchange relations.

e Find the spectrum, analyticity requir. provide BAE.
e BAE important, their solution — physically relevant quan-

tities: exact S matrices, thermodynamic properties, correlation
functions...



Diagonalization of ¢(\)

The L£—matrix rewritten as

Lon(N) = (O‘; 5”)

Tn Gy
o =sinh (A +is?), 7, = s sinhip, B, = s, sinhip
Reference state, highest weight:

N
Yol )0 =0, 12) =) |+
n=1

and consequently

o = (4 50 ) 19



the diagonal entries of 1" acting on the pseudovacuum give,
AN)[Q) = sinh™ p(A+is)[Q), DN)|Q) = sinh™ p(A—is)|Q)

Assumption the general Bethe state has the form

[4) = B(A1) B(Az) ... B(Aw) [£2)

Solve the eigenvalue problem,

HONE) = (A + DY) [) = AV )
Commutation relations: A, B and D, B, from RTT =TTR,



With the help of TT'R = RTT obtain the eigenvalues of t()\)

M

sinh (A —X; —4) ,
AN = / hY (X
(\) 11 Sah Ry p(\ +is)

j:
N 1]\—/[[ sinh u(A — A\ + 1)
sinh ,u()\ — )\j)

sinh™ p(\ — is)
j=1

The analyticity of A — \'s satisfy BAE

M

exs(M) = [ [ ea(Xi = A))

J=1

sinh,u(k—l—%n)
where ¢€,(\) = = 4
n( > sinh pi(A—%5)

BAE — physical quantities : S-matrix, free energy, specific
heat, central charge...



Energy momentum and spin in terms of BA roots

Energy
1 i ,usinh o
o = sinh p( A )sinh A —35)
Momentum

j=1
Spin
N
Sf=—-—-M
2

: __ 1adpP
Note: F = 5%



String hypothesis

Solutions of BAE for N — 0o may be casted as
(Faddeev and Takhtajan ’81):

A = A 21— 25)

2
*  3i/2
* |
* /2 * /2
x —/2 * —[2

x —3i/2



Solving Bethe ansatz equations

Ground state: all real strings, filled Dirac sea 5% = 0.

Low lying excitations: Holes in the filled Dirac sea, parti-
cle like excitations

e Spin SZ:%

e Energy ¢(\) = QCoslh%
| hole — 2D rep of SU(2). State with 2 holes, the density
(from the BAE):

F(\) = 2me(A) + %m)

sinh(g—Q)%

Hw) = 2cosh 3 sinh(F—1)%




e Main aim: derive 2-hole scattering amplitude
Quantization condition (Korepin 79, Andrei and Destri ‘8)

(€PN —1)[A) =0

recall e(\) = %dz;_(?)’ compare the QC with the density:

So(A) = e:z:p[ — /OO d_wf(w)eiwk}

oo W

% J sinh(Z — 2)% |
So(A) = exp{ — / “ i — 25 e"‘“}

oo w 2cosh Fsinh(f —1)3

N

sine Gordon S—matrix for 3% = 8(m — ) (Zamolodchikov *79



More eigenvalues

Sx R
We can find all the eigenvalues of the 4 x 4 S matrix: suitable

string configurations

e 2 holes and a 2-string in the middle

~ sinh (X — )

Sa(A) = sinh p(A + 7)

So(A)

e 2 holes and a negative parity string in the middle

~cosh p(X — 1)
~ cosh pu(\ +1)

Sp(A) So(A)

Method applied for higher rank algebras, super—algebras: Doikou and Nepomechie
'97-99, Doikou "00, Arnaudon, Avan, Crampe, Doikou, Frappat, Ragoucy, '053-05



Quantum algebras: deformed co-product

L) =Lt —e ML
‘C’fb = UQ<gln>

As A\ — £oo L and consequently T reduce to upper, lower
triangular matrices.

T(\ — £o00) o< T,

entries of T= € U,(gl,)®"

_ ¢° s 2sinhip o g Oy
L) =e (O g ) c (—S+281Hhiu q”



Then asymptotics of T":
S Q- —5*
n qg> ¢S _ q 0
T O(( O q_SZ>, T OC(C_S+ qsz>

N
F=)1®..0les5®l...QL
k=1

z

N
Si:ZQ—ST@}...@Q—Sz—l®Sf®qsz+1®.”®qu\v
k=1

5%, S* tensor product realizations of U, (sls) (Jimbo ’85)

28%  —25%
57, 5 =1L [5, 5% =457
q—q!

Study of the underlying quantum algerbas (Yangians): so(n), sp(m), osp(n|m),
Sl(n|m): Arnaudon, Avan, Crampe, Doikou, Frappat, Ragoucy, ‘03-'05. Study
of boundary quantum algebras Doikou, 03-today



Open boundaries

The K matrix acts on V:

u Ki (U)

Satisfies the reflection equation (Cherednik '84)

1

Riag(A — Ag) Ki(A1) Rar(A1 + A2) Ka(Ao)
= K5(A2) Ria(A1+ A2) K1(A1) Rar(A1 — A9)

e Solutions of RE (e.g. via Hecke algebras: Levy and Martin '94,
Doikou and Martin '02, Doikou '04) — build open spin chains (Sklyanin
'88)



The open spin chain

Integrable boundary conditions (Sklyanin '88)

) = tro KO0 Ty K () Ty (=)

To(N)

..... Open

N 2 1

[t(A), t(X)} — 0
Integrability ensured.

Boundary S matrices (Doikou, Mezincescu and Nepomechie '97)
Boundary symmetries (Doikou '04).
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