Modulated photocurrent as a powerful method to reveal predominant transport by the majority carriers of disordered semiconductors and to resolve all the kinds of probed gap states

M. Pomoni, A. Giannopoulou, P. Kounavis *

Department of Engineering Sciences, School of Engineering, University of Patras, 26504 Patra, Greece

Available online 28 January 2008

Abstract

A basic difficulty in the interpretation of photoconductivity measurements may arise from possible mixed contributions of both carriers to the photocurrent. In this work it is demonstrated that a universal behavior in the simulated spectra of the out of phase modulated photocurrent signal is observed in cases where the majority carriers dominate. In these cases, a general formula can be used to evaluate the densities of various species of states using the data from all frequencies. Deviations from the universal behavior can be observed when there are contributions from both carriers. The applicability of our analysis is demonstrated in a-Si:H.

PACS: 72.20.Jv; 72.80.Ng; 73.61.Jc

Keywords: Silicon; Defects; Photoconductivity

1. Introduction

Various techniques based on photoconductivity measurements are widely used to investigate the optoelectronic properties of disordered semiconductors. However, there are usually difficulties in the interpretation of the results because of possible mixed contributions to the photocurrent from both carriers. In this work, it is shown that this limitation may be overcome in the modulated photocurrent (MPC) experiment. This is demonstrated by examining the characteristics of simulated out of phase MPC spectra in various cases where one or both carriers dominate. Distinct characteristics are found in these spectra that can be used to reveal whether the interaction of the majority carriers with the probed states dominates. In this case, a general formula can be used for a density of states (DOS) spectroscopy of the various species of probed states. The applicability of our analysis is demonstrated in a-Si:H.

2. Results of simulations

In our theoretical analysis of the MPC experiment we have shown [1] that the essential parameter is the out of phase MPC Y signal which is obtained by means of phase shift (Φ) and modulated photoconductivity (σ_{ac}) using

$$Y = \mu G_{ac}\sin\Phi/\sigma_{ac},$$

where μ is the mobility of the majority carriers and G_{ac} the modulated light generation rate. If the interaction of the majority carriers, electrons for example, with the gap states dominate the Y signal, then this signal can be directly related to the total effective trapping rate (1/τ_{eff}) of the electrons into all the probed gap state distributions $D(E_i^\text{F})$ above the Fermi level E_F at the probe trap depths E_i below the conducting states $H(\alpha, \omega_i')$ according to [1]

$$Y = 1/\tau_{\text{eff}} = \left(\pi/2\right)\Sigma_i H(\omega, \omega_i')\epsilon_{\omega}'D(E_i^\text{F})kT,$$

where $H(\alpha, \omega_i') = 1 - (2/\pi)\arctan(\omega_i'/\omega)$ is the so-called H function [1], which is a step-like function with a step at ω_i' and determines the effective capture rate into each E_i, E_i^F is given by

$$E_i = kT\ln\left[\epsilon_{\omega}'N_C/(\omega_2^2 + (\omega_1')^2)^{1/2}\right],$$

where kT is the thermal energy and N_C is the density of states at the
conduction band edge E_C, ω_0^i is the characteristic frequency defined by $\omega_0^i = n e_n^i + p e_p^i$, where $n(p)$ is the density of the free electrons (holes) and $c_n(c_p)$ is the capture coefficient for electrons (holes). Since electrons are the majority carriers we assume $\omega_0^i = n e_n^i$. The effective capture rate $1/\tau_{\text{cap}}$ of holes into the $D(E_i)$ below E_F is also given by the right hand side of Eq. (1) if c_n is replaced by c_p. If the Y signal is governed by Eq. (1), then a DOS spectroscopy is possible using

$$D(E_x) = (2/\pi)(Y/\mu)\sigma_p/[\omega_0^p H(\omega_0^p)]kT,$$

(2)

where σ_p is the dc photoconductivity. As it is shown here the above formula has the advantage that it can provide the various species of $D(E_x)$ distributions using the MPC data from all the frequencies. In this work, we examine when the Y signal is governed by Eq. (1) so that Eq. (2) can be applied. For this purpose, the spectra of Y signal are generated at 300 K from the exact expressions of the MPC as demonstrated in Ref. [1]. Various models of DOS are introduced to understand the essential behavior of the Y signal when one or both carriers dominate rather than to fit experimental spectra. The so-generated Y spectra are compared with those calculated from Eq. (1).

Fig. 1 presents the basic $D^v(E)$ (closed circles) and $D^c(E)$ (open circles) distributions below and above E_F, respectively, introduced in our simulations. The superscripts v and c denote the valence and conduction band side of the energy gap. The above states include exponential valence and conduction band tails with characteristic energies of 35 meV and Gaussian distributions, having a width of 0.3 eV and a maximum at 0.7 and 1.3 eV at the density of 3×10^{17} cm$^{-3}$. The effect of additional species of states is examined by incorporating the Gaussian distributions $D^v(E)$ and $D^c(E)$ (broken lines) having a width of 0.3 and 0.1 eV, respectively. These distributions present a maximum at 0.7 and 1.2 eV at the density 7×10^{16} and 1×10^{16} cm$^{-3}$, respectively. The letters h and l in the superscripts denote the high and low capture coefficients of these states. All the capture coefficients of the various DOS models are summarized in Table 1.

The DOS model I includes only the $D^v(E)$ and $D^c(E)$ distributions of Fig. 1 (circles) with equal densities. This model gives comparable effective capture times τ_{cap} and τ_{cap} of electrons and holes, respectively. The E_F level (arrow) is slightly above the midgap (vertical line), so that the electrons are the majority carriers. If the mobility of electrons (μ_n) and holes (μ_p) are equal, then the mobility effective capture time products of electrons and holes are comparable, $\mu_n\tau_{\text{cap}} \approx \mu_p\tau_{\text{cap}}$. In this case, as is shown in Fig. 2(a) Y is not given by Eq. (1) as it differs from the effective capture rates of electrons $1/\tau_{\text{cap}}$ and holes $1/\tau_{\text{cap}}$, due to mixed contributions from both carriers. A similar behavior is observed in Fig. 2(a) when the minority carriers dominate. This is accomplished by assuming that $\mu_p = 10\mu_n$ and so $\mu_n\tau_{\text{cap}} \ll \mu_p\tau_{\text{cap}}$. The above cases can be recognized from the behavior of the normalized ratio Y/Y_0 in Fig. 2(c). This ratio is obtained if each value of Y spectrum of a given trap depth E_n is divided by the respective value from the Y_0 spectrum of the same trap depth. The E_n is obtained from the above-mentioned expression of E_n, if ω_0^i is replaced by the frequency ω_0^h, which is determined as described below. The Y_0 is obtained using the density $n = 10^8$ cm$^{-3}$ near dark equilibrium such that most frequencies become $\omega \gg \omega_0^h$ and $H(\omega, \omega_0^h) = 1$. Hence from the Y spectra calculated from Eq. (1), which in our example is dominated by the $D^v(E)$, we get $Y/Y_0 = H(\omega, \omega_0^h)$. In Fig. 2(c) the ratio Y/Y_0 (dashed lines), extracted from the spectra of Fig. 2(a), as a function of the normalized frequency, differs from the universal spectrum of H function for $\omega > \omega_0^h$, indicating that the Y signal cannot be described by Eq. (1). On the other hand, if it is assumed $\mu_n = 10\mu_p$, such that $\mu_n\tau_{\text{cap}} \gg \mu_p\tau_{\text{cap}}$, then the majority

Table 1

<table>
<thead>
<tr>
<th>Capture coefficients in units of cm3/s used in the DOS models</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_n^l</td>
<td>1×10^{-8}</td>
<td>1×10^{-9}</td>
<td>1×10^{-10}</td>
</tr>
<tr>
<td>c_p^l</td>
<td>1×10^{-7}</td>
<td>1×10^{-8}</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>c_n^h</td>
<td>1×10^{-8}</td>
<td>1×10^{-9}</td>
<td>1×10^{-8}</td>
</tr>
<tr>
<td>c_p^h</td>
<td>1×10^{-7}</td>
<td>1×10^{-6}</td>
<td>1×10^{-7}</td>
</tr>
</tbody>
</table>

![Fig. 1](image1.png)
Fig. 1. Gap state distributions used in the DOS model I (circles), model II (circles and dotted line) and model III (circles and dashed line).

![Fig. 2](image2.png)
Fig. 2. Calculated spectra of Y from the DOS model I for $C_3 = 0.1$ and $n = 10^8$ cm$^{-3}$ (open symbols) and 10^{10} cm$^{-3}$ (closed symbols), $1/\tau_{\text{cap}}$ and $1/\tau_{\text{cap}}$ rates (solid lines), for $n = 10^8$ cm$^{-3}$ using $\mu_n \leq \mu_p$ and $\mu_n = 10\mu_p$ in (a) and (b), respectively. Normalized spectra of Y/Y_0 (symbols) deduced from the Y spectra presented in (a) and (b) and the spectrum of H function (solid line) in (c). Evaluated DOS (circles) from the respective Y spectra (circles) of (b) and introduced DOS (solid line) in the energy domain in (d).
The frequency of the existence of various species of states is examined using the DOS model II, which apart from the capture rate 1/t\textsubscript{\text{cen}} and 1/t\textsubscript{\text{rap}} rates (solid lines) for n = 108 cm-3 in (a). DOS distributions evaluated from the energy domain in (b) and energy domain in (c) and introduced DOS (solid lines) in (d). Experimental Y spectra (d) of a-Si:H from Ref. [2] and calculated DOS in the frequency domain in (e) and energy domain in (f). Comparison of the experimental Y/Y\textsubscript{0} spectra (symbols) of lightly p-type doped a-Si:H of Ref. [3] with the spectrum of H function in (g).

The frequency of the existence of various species of states is examined using the DOS model II, which apart from the capture rate 1/t\textsubscript{\text{cen}} and 1/t\textsubscript{\text{rap}} rates (solid lines) for n = 108 cm-3 in (a). DOS distributions evaluated from the energy domain in (b) and energy domain in (c) and introduced DOS (solid lines) in (d). Experimental Y spectra (d) of a-Si:H from Ref. [2] and calculated DOS in the frequency domain in (e) and energy domain in (f). Comparison of the experimental Y/Y\textsubscript{0} spectra (symbols) of lightly p-type doped a-Si:H of Ref. [3] with the spectrum of H function in (g).

To determine the capture coefficient c\textsubscript{n}bc, it is assumed that C\textsubscript{n} = c\textsubscript{n}\textsubscript{v}/c\textsubscript{n}\textsubscript{h} > 0.1. Consequently, the capture rate of electrons into the states of Dbc(E) is taken much lower than the capture coefficients of the states above midgap, namely C\textsubscript{n} < 0.1, whereas c\textsubscript{n}bc > c\textsubscript{n}h (see Table 1). In this case, the calculated Y signal (symbols) of Fig. 3(a) agrees with the effective capture rate 1/t\textsubscript{\text{cen}} of electrons (majority carriers). In addition, for \omega < \omega\textsubscript{0} the Y spectrum of Fig. 3(a) presents a decay well above that calculated from Eq. (1) (dashed-dotted line) by assuming the single type of states Dbc(E). This behavior is the signature of the existence of various species of states. The frequency \omega\textsubscript{0} determined according to the method mentioned above, coincides with the characteristic frequency \omegap\textsubscript{bc} of the states with the higher capture coefficient c\textsubscript{n}\textsubscript{bc}. Thus \omegap\textsubscript{bc} can be introduced in Eq. (3) to determine c\textsubscript{n}bc.

The DOS is evaluated from the formula of Eq. (2) by means of Y signal of Fig. 3(a) and by replacing \omega\textsubscript{0} with \omegap\textsubscript{bc}. The results are demonstrated in Fig. 3(b) and (c) in the frequency and energy domains, respectively. As it can be seen from Fig. 3(c) the calculated DOS from the data of higher frequencies \omega > \omegap\textsubscript{bc} reproduces the Dbc(E) with the higher capture coefficient c\textsubscript{n}bc. Upon decreasing \omega in the interval \omega\textsubscript{0} < \omega < \omegap\textsubscript{bc} Eq. (2) gives a growing DOS. This DOS results from the fact that the frequency dependence of H function dominates in Eq. (2) over the weaker dependence of Y signal arising from the effective capture rates of electrons into the Dbc(E) and Dp(E) distributions. Note that such a growing DOS is not observed in the example of Fig. 2(d), because a single type of states is probed. Finally, in the low frequency (LF) regime, which is practically for \omega \approx 2 \omegap/4, the calculated DOS presents a saturation in Fig. 3(c) and a plateau in Fig. 3(b), which can be used to define the LF regime. Thus the frequency \omegap which is by a factor of 4 above the onset of the LF regime can be used to determine the characteristic frequency \omegap\textsubscript{bc} and subsequently the c\textsubscript{n}\textsubscript{bc} from Eq. (3). The saturated value of the calculated DOS in the LF regime gives practically the Dbc(E) with the lower capture coefficient dominating in this regime.
evaluated from Eq. (1) and the extracted DOS parameters, agree with the introduced Y spectra.

Upon increasing c_n^v in the DOS model II, the Y signal becomes lower than the effective capture rate of electrons $1/\tau_{\text{conv}}$ at low ω. This is demonstrated with the examples of Fig. 3(a) (dotted lines) obtained for $C_r = c_n^v/c_n^i = 1$ and 2. By introducing the so-generated Y in Eq. (2), the $D_n^v(E)$ is reproduced, whereas the $D_n^i(E)$ is underestimated, especially for $C_r = 2$. This case can be recognized from the calculated DOS in the LF regime of Fig. 3(b) which presents a decay instead of a plateau, because of the stronger decay of Y than that of H function.

Finally, it is examined the case of various species of states below E_F as in the DOS model III. In this model apart from the $D^v(E)$ and $D^i(E)$ distributions of Fig. 1 the $D_p^v(E)$ distribution below E_F is incorporated. A similar general behavior was observed with that found in the above examples. Specifically, if c_n^v and c_p^v are both lower than c_n^i and $\mu_n = 10\mu_p$, the Y signal agrees with the $1/\tau_{\text{conv}}$, whereas Y becomes lower than $1/\tau_{\text{conv}}$ when c_n^v and τ_n^i are equal or higher than c_n^i (not shown). However, in the extreme case where the c_n^v of the $D_n^v(E)$, having the lower capture coefficient for the minority carriers ($c_n^v < c_n^i$), is more than 10 times lower than the c_n^i as indicated in Table 1, the Y signal presents a clear additional step at low ω as is shown in Fig. 2(b) (thick solid line). The spectra present a step-like behavior as that of the spectra of model II and can be attributed erroneously to various species of states above E_F. However, the additional step is so sharp so that the reconstructed Y spectrum (dashed-dotted line) evaluated from Eq. (1) using the DOS deduced from Eq. (2) differs from the original Y spectrum, indicating that the evaluated DOS is not reliable. Similarly, a step-like behavior in the Y spectra sharper than that calculated by Eq. (1) was also observed in the case of DOS model II assuming that $c_p^v \le c_n^v$ (not shown). In general, our simulations showed that if the Y signal differs from the effective trapping rate of the majority carriers, then the Y spectra cannot be reconstructed by means of Eq. (1) and the extracted DOS.

3. Comparison with experimental spectra

Fig. 3(d) presents typical experimental Y spectra of undoped a-Si:H presented in Fig. 1 of Ref. [2]. It can be seen a qualitatively very similar behavior with that of the respective simulated spectra presented in Fig. 3(a), indicating that the majority carriers interact with various species of states. Indeed, the DOS evaluated from Eq. (2) presented in the frequency and energy domains in Fig. 3(e) and (f), respectively, consists of two species of states $D^v(E)$ and $D_n^i(E)$. These states have very different capture coefficients $c_n^v = 1.7 \times 10^{-4} \text{cm}^3/\text{s}$ and $c_n^i = 1 \times 10^{-6} \text{cm}^3/\text{s}$, which are evaluated from the frequencies ω_n^v and ω_n^i determined from the spectra of Fig. 3(d) and (e) according to the above described methods. Based on the derived DOS parameters the experimental Y spectra are successfully reconstructed by means of Eq. (1) (solid lines in Fig. 3(d)). This verifies that the majority carriers (electrons) dominate MPC, and $Y = 1/\tau_{\text{conv}}$, so that our DOS spectroscopy is reliable.

Finally, Fig. 3(g) shows the normalized Y/Y_0 spectra of lightly p-type doped a-Si:H extracted from the MPC data of Kleider et al [3]. It can be seen that the Y/Y_0 spectra are very different from the universal spectrum of the H function. This indicates that the experimental Y signal cannot be described by Eq. (1), suggesting that there are contributions from both carriers, which are reasonable for this lightly doped material.

4. Conclusion

A DOS spectroscopy based on Eq. (2) can be applied to determine the DOS parameters of the various species of states with which the majority carriers interact, as far as the Y signal agrees with the effective trapping rate of the majority carriers into the probed states. It is deduced that this limitation is fulfilled as far as the experimental Y signal can be reconstructed by means of Eq. (1) and the extracted DOS parameters. In such a case, the Y signal is found to follow the universal frequency dependence of the H function around each characteristic frequency ω_n^i. By contrast, if the reconstructed Y signal differs from the experimental Y signal, the above limitation is not fulfilled and a DOS cannot be extracted. The applicability of our analysis was demonstrated in the experimental spectra of undoped and lightly p-type doped a-Si:H.

Acknowledgement

The present work was supported by the ‘K. Karatheodory’ B386/2004 project.

References