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On a sphere performing linear and torsional oscillations in a viscous fluid
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A sphere executes small-amplitude linear and torsional oscillations in a fiuid at rest. The equations of motion of the fluid are
solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition

to the time-varying motion.

Une sphere exécute des oscillations de faible amplitude, en ligne droite ou en torsion, dans un fluide au repos Les équations
du mouvement du fluide sont résolues par.la méthade des approximations successives. A 1'extérieur de la couche limite, il ya
induction d’un écoulement secondaire stationnaire qui s’ajoute au mouvement variant en fonction du temps.
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1. Introduction

When a body oscillates linearly at high frequencies in a fluid
at rest, its oscillation generates a secondary motion as well as a
time-dependent motion on the fluid. On the assumption that the
boundary-layer thickness is small compared with the dimen-
sions of the body and that the amplitude of the oscillation is
small, the expression for the time-dependent part of the motion
contains terms that are harmonic with respect to time, for first
and higher orders. The secondary flow is steady and persists
outside the boundary layer because of the action of viscosity.

Schlichting (1) was the first to initiate the study of this kind
of motion. In particular, he studied the effects of transverse
oscillations of a circular cyclinder, both theoretically and experi-
mentally. Using a small-amplitude expansion, he found from
the first approximation a shear layer clpse to the body, and
from the second approximation a steady secondary flow per-
sisting even at large distances from the cylinder. Andrade (2)
worked on the same topic and produced further experimental
evidence. Carrier and Di Prima (3) worked on the torsional
oscillations of a sphere. They expanded the velocity compo-
nents in terms of the angular-displacement amplitude and solved
the resulting equations up to the second approximation, so that
they evaluated a correction to the torque on the sphere. Rosen-
blat (4) worked on the torsional oscillations of a plane. He
expanded the velocity components in a power series of the
amplitude and obtained first- and third-order approximations to
the transverse velocity. He also found that a second-order axial
flow existed outside the Stokes shear-layer, this flow being
confined within a secondary layer.

The present work was undertaken on the assumption that
when a sphere oscillates torsionally about an axis and simulta-
neously performs small-amplitude linear oscillations along the
same axis, the equatorial outflow could be greatly increased. It
is therefore interesting to study the flow properties that are due
to this composite motion. The method of successive approxi-
mations is used to derive solutions of the equations of motion,
up to second order. Each motion, torsional and transverse,
produces an individual effect on the meridional components of
velocity, while their effect on the azimuthal component is mutual.
A jetlike flow is produced towards the sphere at its poles and
away from it at the equatorial zone. The results show that the
mass convected by this composite motion is much larger than
that convected by purely torsional motion.
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2. Statement of the problem

Let a sphere of radius R perform a linear oscillation along a
diameter that coincides with the z axis. At the same time, it
performs a torsional oscillation about the same diameter. The
amplitude of both oscillations is small in comparison with the
radius and the frequency is high. Let U, cos wt be the linear
velocity along the axis of oscillation, and let ), cos wt be the
angular velocity of the points of the sphere. Let P be a point on
the surface of the sphere. P’ is another neighbouring point
close to P such that PP’ is normal to the surface at P. We em-
ploy the independent variables ¢, £, &, and {, where ¢ denotes
time, § is distance measured along a meridian curve from the
pole Z, ¢ is the azimuthal angle, and { = PP’. In this orthogo-
nal system of coordinates, &, ¢, and {, the scale factors are
hg =1, hy = r, and by = 1. Here, r = R sin (§/R) is the radius
of the circle at P, which is parallel to the equatorial plane. In
Fig. 1 itis r = PA. The unit vectors are €, e, and e;. Letu,
v, and w denote the (§, ¢, {) components of velocity of the
fluid. Then, the equations of the boundary layer for incom-
pressible flow are
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where v is the kinematic viscosity. The equation of continuity is
o(ru) + ?_U_ a(rw)
o€ o 78

The quantities U and V are the velocity components of the
potential flow in the directions e and e, at the point (£, ¢, 0).
Then U = Uy cos wt and V = 0, where U, = 3, sin (¢/R).
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3. Approximate solution

We now develop a solution of the previous equations em-
ploying the method of successive approximations, in which
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Fic. 1. Notation.

each of the unknowns is given by the following series:
u= 'Zl ui, D= 'Zl Ui;

In the first place, the convection terms of [1] and [2] can be
neglected. Therefore, the equations of motion and the equation
of continuity take the form
duy uy U
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with boundary conditions
uy = Uy cos wt, { =
u =0, {=0
v =0, {=o>

{=0
We now employ the complex notation
UL, 1 =Ud®e™, Q=Qpe™

and we introduce the nondimensional coordinate n = { V/v.
Seeking now solutions of the form

v; = orcos wt,

u, = Ufi(m), v; = (Rgy(m) sin (§/R)
we derive the following equations:
f_l" —ifi=—i
g1~ ign =0
with boundary conditions
H©0)=0, fi(m=1, gO0)=1, g(=®=0

The solutions are

[7Y  u, = Ugcos wt — Uge P cos (wt — p)

[8] ©v1=Q¢Re P cos (wt — p)sin(§/R)
where p = 1/ V2. Hence, from [6] it follows that

91 wy=-3 ‘/EHE cos é {'qcoswt+ ﬁ
® R 2
X e"P[sin (wt — p) + cos (wz — p)]
V2 .
- (sin wt + cos wf)
For large values of 1, w, tends to

v U £ ( ‘n')]
[10] w 3 ‘/; R %% [’q cos ot — cos | wt 2

To take into account higher order terms, we put ¥4 = u; +
Uz, v = Uy + vy, and w = w; + w, in [1]-[3]. Hence
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The resulting form of the right-hand side members of [11] and
[12], after the substitution of U, u,, v;, and w, by their values,
implies that it is convenient to seek solutions having the form

[14]  u> = a; f21(p) + a2 f2(p) + [as f23(p) + aa f24(P)]
X e2iwt
[15] v = asgr(p) + aggx(p) e”
where
1 aUp

a1=a3=%an—g

1 3 3
=g, = — 2 =2 gin >
a; = ay > oR cos — sin

3 .
as = ag = = U, sin % cos%

It follows then that
(161 f1=n

171 fr=nr,

(18] fi —4ifsz=rs
(191 fia—difoa=r4

[20] g2 =7s
[21] g5, —4ignn =16
where

ri=2e P(2sinp —2cosp +e P —~2pcosp — 2psinp)
r,=—2e7%
ry= —4pe~P(cosp — isinp + icosp + sin p)

—2e %P cos 2p
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ry = —2(cos 2p — isin 2p)
rs =e P[cos p — sinp + p(cos p + sinp) — e~ P}
re = p e Plcos p(1 + i) + sin p(1 — §)]

The boundary conditions are

F0) = 8,0 =0, f,,() = g3() = finite,

i=1,2,3,4, j=12

Solving {13] for w,, one derives

2v
[22) wo= _\,-u-)_ [b21 b2y + baahyy + (ba3hys + byghag)
X eZimt]

where

a; g aa,- 4
2 , CcOos R ag hz, [0 fz, dp,
i=1,2,3,4

The expressions for f5;, g2;, and hy; are given in the Appendix.

4. Results and discussion

One can therefore deduce that at large distances from the
sphere, a steady flow is induced. This flow is generated by
viscous forces that convect the effect of the periodic motion
away from the oscillating sphere. The velocity components of
this permanent flow are

1 [45
23] uze = —S'-R—(;; (_‘i— U2+ Q(Z)Rz) sin 20

3 .
[24] vy = m U, R sin 20

1 2v |9
ac= - T o . €« + o
[25] w, SR ,/w [4 U221+ 5V21.)
R Q3R*M. V2 — 1)] (2 cos? 0 — sin® @)

where 8 = &/R and m. is the boundary-layer width. On the
upper half of the sphere, the velocity components u,.,. and v,
are positive, while on the lower half they are negative. This
shows that on the upper half, the flow generated by these two
components is balanced by a reverse flow in the lower half. As
regards the radial component w,.., the effects are more compli-
cated. There are three spherical zones: one equatorial and two
surrounding the poles on either side of the former, with oppo-
site flow properties. The equatorial zone extends between 6 =
55° and 125°. There is an outflow at the equatorial zone and an
inflow at the polar zones. The velocity-vector diagram and the
direction of the velocity components relative to an observer at
rest are sketched in Figs. 2 and 3. Thus, on the upper half there
is a west-to-east drift, inward in the polar zones and outward in
the equatorial zone. In the lower half there is east-to-west drift.
Finally, on the poles the flow is axial inwards; on the equator it
is radial outwards; and at 8§ = 55° and 125° there is no radial
component: the velocity there is tangential.

With respect to the pumping effects that are suggested by
[25], it can be seen that the linear oscillation increases the
pumping ability in relation to the purely torsional motion by a
factor in the order of 45x3/R?e2, where x, and € are the ampli-
tudes of the linear and torsional oscillation respectively.
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Fig. 2. Velocity vector diagram on the meridional planes ¢ = 0
and 7.

FiG. 3.

Direction of velocity components.

5. Conclusions

When a sphere undergoes small-amplitude reciprocating and
torsional oscillations in a viscous fluid, then the Reynolds num-
ber of the flow U2/wv can be assumed to be small; thus the
Navier—Stokes equations can be approximated by appropriate
linear forms. It has been proven that outside the boundary layer,
a stationary flow is induced in addition to the time-dependent
flow. This permanent effect is associated with the action of
viscosity. The tangential velocity components generate oppo-
site and balanced flows at the upper and lower hemispheres.
The radial component generates both inflow and outflow at
three distinct spherical zones.
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Appendix

Functions pertaining to the velocity components u,, v,, and
Wil
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