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1 First and Se
ond-order Di�erential Equations1.1 The Di�erential Equations of Physi
sIt is a phenomenologi
al fa
t that most of the fundamental equations that arise in physi
sare of se
ond order in derivatives. These may be spatial derivatives, or time derivatives invarious 
ir
umstan
es. We 
all the spatial 
oordinates and time, the independent variablesof the di�erential equation, while the �elds whose behaviour is governed by the equationare 
alled the dependent variables. Examples of dependent variables are the ele
tromag-neti
 potentials in Maxwell's equations, or the wave fun
tion in quantum me
hani
s. It isfrequently the 
ase that the equations are linear in the dependent variables. Consider, forexample, the s
alar potential � in ele
trostati
s, whi
h satis�esr2� = �4� � (1.1)where � is the 
harge density. The potential � appears only linearly in this equation, whi
his known as Poisson's equation. In the 
ase where there are no 
harges present, so that theright-hand side vanishes, we have the spe
ial 
ase of Lapla
e's equation.Other linear equations are the Helmholtz equationr2 +k2  = 0, the di�usion equationr2 �� =�t = 0, the wave equation r2 � 
�2 �2 =�t2 = 0, and the S
hr�odinger equation��h2=(2m)r2 + V  � i�h� =�t = 0.The reason for the linearity of most of the fundamental equations in physi
s 
an be tra
edba
k to the fa
t that the �elds in the equations do not usually a
t as sour
es for themselves.Thus, for example, in ele
tromagnetism the ele
tri
 and magneti
 �elds respond to thesour
es that 
reate them, but they do not themselves a
t as sour
es; the ele
tromagneti
�elds themselves are un
harged; it is the ele
trons and other parti
les that 
arry 
hargesthat a
t as the sour
es, while the photon itself is neutral. There are in fa
t generalisationsof Maxwell's theory, known as Yang-Mills theories, whi
h play a fundamental rôle in thedes
ription of the strong and weak nu
lear for
es, whi
h are non-linear. This is pre
iselybe
ause the Yang-Mills �elds themselves 
arry the generalised type of ele
tri
 
harge.Another fundamental theory that has non-linear equations of motion is gravity, des
ribedby Einstein's general theory of relativity. The reason here is very similar; all forms of energy(mass) a
t as sour
es for the gravitational �eld. In parti
ular, the energy in the gravitational�eld itself a
ts as a sour
e for gravity, hen
e the non-linearity. Of 
ourse in the Newtonianlimit the gravitational �eld is assumed to be very weak, and all the non-linearities disappear.In fa
t there is every reason to believe that if one looks in suÆ
ient detail then eventhe linear Maxwell equations will re
eive higher-order non-linear modi�
ations. Our best3




andidate for a uni�ed theory of all the fundamental intera
tions is string theory, and theway in whi
h Maxwell's equations emerge there is as a sort of \low-energy" e�e
tive theory,whi
h will re
eive higher-order non-linear 
orre
tions. However, at low energy s
ales, theseterms will be insigni�
antly small, and so we won't usually go wrong by assuming thatMaxwell's equations are good enough.The story with the order of the fundamental di�erential equations of physi
s is rathersimilar too. Maxwell's equations, the S
hr�odinger equation, and Einstein's equations are allof se
ond order in derivatives with respe
t to (at least some of) the independent variables. Ifyou probe more 
losely in string theory, you �nd that Maxwell's equations and the Einsteinequations will also re
eive higher-order 
orre
tions that involve larger numbers of time andspa
e derivatives, but again, these are insigni�
ant at low energies. So in some sense oneshould probably ultimately take the view that the fundamental equations of physi
s tend tobe of se
ond order in derivatives be
ause those are the only important terms at the energys
ales that we normally probe.We should 
ertainly expe
t that at least se
ond derivatives will be observable, sin
ethese are needed in order to des
ribe wave-like motion. For Maxwell's theory the existen
eof wave-like solutions (radio waves, light, et
.) is a 
ommonpla
e observation, and probablyin the not too distant future gravitational waves will be observed too.1.2 First-order EquationsDi�erential equations involving only one independent variable are 
alled ordinary di�eren-tials equations, or ODE's, by 
ontrast with partial di�erential equations, or PDE's, whi
hhave more than one independent variable. Even �rst-order ODE's 
an be 
ompli
ated.One situation that is easily solvable is the following. Suppose we have the single �rst-order ODE dydx = F (x) : (1.2)The solution is, of 
ourse, simply given by y(x) = R x dx0F (x0) (note that x0 here is just aname for the \dummy" integration variable). This is known as \redu
ing the problem toquadratures," meaning that it now 
omes down to just performing an inde�nite integral.Of 
ourse it may or may not be be that the integral 
an be evaluated expli
itly, but that isa di�erent issue; the equation 
an be regarded as having been solved.More generally, we 
ould 
onsider a �rst-order ODE of the formdydx = F (x; y) : (1.3)4



A spe
ial 
lass of fun
tion F (x; y) for whi
h 
an 
an again easily solve the equation expli
itlyis when F (x; y) = �P (x)Q(y) ; (1.4)sin
e then we 
an redu
e the solution to quadratures, withZ x dx0 P (x0) + Z y dy0Q(y0) = 0 : (1.5)Note that no assumption of linearity is needed here.A rather more general situation is whenF (x; y) = �P (x; y)Q(x; y) ; (1.6)and the di�erential P (x) dx + Q(y) dy is exa
t, whi
h means that we 
an �nd a fun
tion'(x; y) su
h that d' = P (x; y) dx+Q(x; y) dy : (1.7)Of 
ourse there is no guarantee that su
h a ' will exist. Clearly a ne
essary 
ondition isthat �P (x; y)�y = �Q(x; y)�x ; (1.8)sin
e we would want to make the identi�
ations�'�x = P (x; y) ; �'�y = Q(x; y) ; (1.9)and se
ond partial derivatives of ' 
ommute:�2'�x�y = �2'�y�x : (1.10)In fa
t, one 
an also see that (1.8) is suÆ
ient for the existen
e of the fun
tion '; the
ondition (1.8) is known as an integrability 
ondition for ' to exist. If ' exists, then solvingthe di�erential equation (1.3) redu
es to solving d' = 0, implying '(x; y) = 
 =
onstant.On
e '(x; y) is known, this impli
itly gives y as a fun
tion of x.If P (x; y) and Q(x; y) do not satisfy (1.8) then all is not lost, be
ause we 
an re
all thatsolving the di�erential equation (1.3), where F (x; y) = �P (x; y)=Q(x; y) means solvingP (x; y) dx +Q(x; y) dy = 0, whi
h is equivalent to solving�(x; y)P (x; y) dx + �(x; y)Q(x; y) dy = 0 ; (1.11)where �(x; y) is some generi
ally non-vanishing but as yet otherwise arbitrary fun
tion. Ifwe want the left-hand side of this equation to be an exa
t di�erential,d' = �(x; y)P (x; y) dx + �(x; y)Q(x; y) dy ; (1.12)5



then we have the less restri
tive integrability 
ondition�(�(x; y)P (x; y))�y = �(�(x; y) �Q(x; y))�x ; (1.13)where we 
an 
hoose �(x; y) to be more or less anything we like in order to try to ensurethat this equation is satis�ed. It turns out that some su
h �(x; y), known as an integratingfa
tor, always exists in this 
ase, and so in prin
iple the di�erential equation is solved. Theonly snag is that there is no 
ompletely systemati
 way for �nding �(x; y), and so one isnot ne
essarily guaranteed a
tually to be able to determine �(x; y).1.2.1 Linear �rst-order ODEConsider the 
ase where the fun
tion F (x; y) appearing in (1.3) is linear in y, of the formF (x; y) = �p(x) y + q(x). Then the di�erential equation be
omesdydx + p(x) y = q(x) ; (1.14)whi
h is in fa
t the most general possible form for a �rst-order linear equation. The equation
an straightforwardly be solved expli
itly, sin
e now it is rather easy to �nd the requiredintegrating fa
tor � that renders the left-hand side an exa
t di�erential. In parti
ular, � isjust a fun
tion of x here. Thus we multiply (1.14) by �(x),�(x) dydx + �(x) p(x) y = �(x) q(x) ; (1.15)and require �(x) to be su
h that the left-hand side 
an be rewritten asd(�(x) y)dx = �(x) q(x) : (1.16)Comparing with (1.15), we see that �(x) must be 
hosen so thatd�(x)dx = �(x) p(x) ; (1.17)implying that we will have �(x) = exp � Z x dx0 p(x0)� : (1.18)(The arbitrary integration 
onstant just amounts to a 
onstant res
aling of �(x), whi
hobviously is an arbitrariness in our freedom to 
hoose an integrating fa
tor.)With �(x) in prin
iple determined by the integral (1.18), it is now straightforward tointegrate the di�erential equation written in the form (1.16), givingy(x) = 1�(x) Z x dx0 �(x0) q(x0) : (1.19)6



Note that the arbitrariness in the 
hoi
e of the lower limit of the integral implies that y(x)has an additive part y0(x) amounting to an arbitrary 
onstant multiple of 1=�(x),y0(x) = C exp �� Z x dx0 p(x0)� : (1.20)This is the general solution of the homogeneous di�erential equation where the \sour
eterm" q(x) is taken to be zero. The other part, y(x) � y0(x) in (1.19) is the parti
ularintegral, whi
h is a spe
i�
 solution of the inhomogeneous equation with the sour
e termq(x) in
luded.2 Separation of Variables in Se
ond-order Linear PDE's2.1 Separation of variables in Cartesian 
oordinatesIf the equation of motion in a parti
ular problem has suÆ
ient symmetries of the appropriatetype, we 
an sometimes redu
e the problem to one involving only ordinary di�erentialequations. A simple example of the type of symmetry that 
an allow this is the spatialtranslation symmetry of the Lapla
e equation r2 = 0 or Helmholtz equation r2 +k2  =0 written in Cartesian 
oordinates:�2 �x2 + �2 �y2 + �2 �z2 + k2  = 0 : (2.1)Clearly, this equation retains the same form if we shift x, y and z by 
onstants,x �! x+ 
1 ; y �! y + 
2 ; z �! z + 
3 : (2.2)This is not to say that any spe
i�
 solution of the equation will be invariant under (2.2), butit does mean that the solutions must transform in a rather parti
ular way. To be pre
ise, if (x; y; z) is one solution of the di�erential equation, then  (x + 
1; y + 
2; z + 
3) must beanother.As is well known, we 
an solve (2.1) by looking for solutions of the form  (x; y; z) =X(x)Y (y)Z(z). Substituting into (2.1), and dividing by  , gives1X d2Xdx2 + 1Y d2Ydy2 + 1Z d2Zdz2 + k2 = 0 : (2.3)The �rst three terms on the left-hand side 
ould depend only on x, y and z respe
tively, andso the equation 
an only be 
onsistent for all (x; y; z) if ea
h term is separately 
onstant,d2Xdx2 + a21X = 0 ; d2Ydy2 + a22 Y = 0 ; d2Zdz2 + a23 Z = 0 ; (2.4)7



where the 
onstants satisfy a21 + a22 + a23 = k2 ; (2.5)and the solutions are of the formX � eia1 x ; Y � eia2 y ; Z � eia3 z : (2.6)The separation 
onstants 
an be either real, giving os
illatory solutions in that 
oordinatedire
tion, or imaginary, giving exponentially growing and de
aying solutions, provided that(2.5) is satis�ed. It will be the boundary 
onditions in the spe
i�
 problem being solvedthat determine whether a given 
onstant a should be real or imaginary. The general solutionwill be an in�nite sum over all the basi
 exponential solutions, (x; y; z) = Xa1;a2;a3 
(a1; a2; a3) eia1 x eia2 y eia3 z : (2.7)where the separation 
onstants (a1; a2; a3) 
an be arbitrary, save only that they must satisfythe 
onstraint (2.5). At this stage the sums in (2.7) are really integrals over the 
ontinuousranges of (a1; a2; a3) that satisfy (2.5). Typi
ally, the boundary 
onditions will ensure thatthere is only a dis
rete in�nity of allowed triplets of separation 
onstants, and so the integralsbe
omes sums. In a well-posed problem, the boundary 
onditions will also determine thevalues of the 
onstant 
oeÆ
ients 
(a1; a2; a3).Consider, for example, a potential-theory problem in whi
h a hollow 
ube of side 1 is
omposed of 
ondu
ting metal plates, where �ve of them are held at potential zero, while thesixth is held at a 
onstant potential V . The task is to 
al
ulate the ele
trostati
 potential (x; y; z) everywhere inside the 
ube. Thus we must solve Lapla
e's equationr2  = 0 ; (2.8)subje
t to the boundary 
onditions that (0; y; z) =  (1; y; z) =  (x; 0; z) =  (x; 1; z) =  (x; y; 0) = 0 ;  (x; y; 1) = V : (2.9)(we take the fa
e at z = 1 to be at potential V , with the other �ve fa
es at zero potential.)Sin
e we are solving Lapla
e's equation, the 
onstant k appearing in the Helmholtzexample above is zero, and so the 
onstraint (2.5) on the separation 
onstants is justa21 + a22 + a23 = 0 (2.10)here. Clearly to mat
h the boundary 
ondition  (0; y; z) = 0 in (2.9) at x = 0 we must haveX(0) = 0, whi
h means that the 
ombination of solutions X(x) with positive and negative8



a1 must be of the form X(x) � ei a1 x � e�i a1 x : (2.11)This gives either the sine fun
tion, if a1 is real, or the hypeboli
 sinh fun
tion, if a1 isimaginary. But we also have the boundary 
ondtion that  (1; y; z) = 0, whi
h means thatX(1) = 0. This determines that a1 must be real, so that we get os
illatory fun
tions forX(x) that 
an vanish at x = 1 as well as at x = 0. Thus we must haveX(x) � sin(a1 x) (2.12)with sin(a1) = 0, implying a1 = m� where m is an integer, whi
h without loss of generality
an be assumed to be greater than zero. Similar arguments apply in the y dire
tion. Witha1 and a2 determined to be real, (2.5) shows that a3 must be imaginary. The vanishing of (x; y; 0) imlies that our general solution is now established to be (x; y; z) = Xm>0Xn>0 bmn sin(m� x) sin(n� y) sinh(�� zpm2 + n2) : (2.13)Note that we now indeed have a sum over a dis
rete in�nity of separation 
onstants.Finally, the boundary 
ondition  (x; y; 1) = V on the remaining fa
e at z = 1 tells usthat V = Xm>0Xn>0 bmn sin(m� x) sin(n� y) sinh(��pm2 + n2) : (2.14)This allows us to determine the 
onstants bmn. We use the orthogonality of the sine fun
-tions, whi
h in this 
ase is the statement that if m and p are integers we must haveZ 10 dx sin(m� x) sin(p � x) = 0 (2.15)if p and m are unequal, and Z 10 dx sin(m� x) sin(p � x) = 12 (2.16)if p and m are equal.1 This allows us to pi
k out the term m = p, n = q in the doublesummation (2.14), by multiplying by sin(p � x) sin(q � y) and integrating over x and y:V Z 10 dx Z 10 dy sin(p � x) sin(q � y) = 14bpq sinh(��qp2 + q2) : (2.17)1Just use the rules for multiplying produ
ts of sine fun
tions to show this. What we are doing here is
onstru
ting a Fourier series expansion for the fun
tion V , whi
h happens to be taken to be a 
onstant inour example. 9



Sin
e R 10 dx sin(p � x) = [1� (�1)p℄=(p �) we therefore �nd that bpq is nonzero only when pand q are odd, and thenb2r+1;2s+1 = 16V(2r + 1) (2s+ 1)�2 sinh(��p(2r + 1)2 + (2s+ 1)2) (2.18)All the 
onstants in the original general solution of Lapla
e's equation have now beendetermined, and the problem is solved.2.2 Separation of variables in spheri
al polar 
oordinatesAnother 
ommon example of separability arises when solving the Lapla
e or Helmholtz equa-tion in spheri
al polar 
oordinates (r; �; �). These are related to the Cartesian 
oorindates(x; y; z) in the standard way:x = r sin � 
os� ; y = r sin � sin� ; z = r 
os � : (2.19)In terms of these, (2.1) be
omes1r2 ��r�r2 � �r �+ 1r2 r2(�;�)  + k2  = 0 ; (2.20)where r2(�;�) is the two-dimensional Lapla
e operator on the surfa
e of the unit-radiussphere, r2(�;�) � 1sin � ���� sin � ����+ 1sin2 � �2��2 : (2.21)The Helmholtz equation in spheri
al polar 
oordinates 
an be separated by �rst writing (r; �; �) in the form  (r; �; �) = 1r R(r)Y (�; �) : (2.22)Substituting into the Helmholtz equation (2.20), and dividing out by  in the usual way,we get r2R d2Rdr2 + 1Y r2(�;�)Y + r2 k2 = 0 : (2.23)(It is useful to note that r�2�(r2� =�r)=�r is the same thing as r�1�2(r  )=�r2 when doingthis 
al
ulation.)The middle term in (2.23) 
an depend only on � and �, while the �rst and third 
andepend only on r, and so 
onsisten
y for all (r; �; �) therefore means that the middle termmust be 
onstant, and sor2(�;�) Y = ��Y ; d2Rdr2 = � �r2 � k2�R : (2.24)The key point now is that one 
an show that the harmoni
s Y (�; �) on the sphere arewell-behaved only if � takes a 
ertain dis
rete in�nity of non-negative values. The most10



elegant way to show this is by making use of the symmetry properties of the sphere, butsin
e this takes us away from the main goals of the 
ourse, we will not follow that approa
hhere.2 Instead, we shall follow the more \traditional," if more pedestrian, approa
h ofexamining the 
onditions under whi
h singular behaviour of the eigenfun
tion solutions ofthe di�erential equation 
an be avoided.To study the eigenvalue problemr2(�;�) Y = ��Y in detail, we make a further separationof variables by taking Y (�; �) to be of the form Y (�; �) � �(�)�(�). Substituting this in,and multiplying by sin2 � Y �1, we get1� sin � dd�� sin � d�d� �+ 1� d2�d�2 + � sin2 � = 0 : (2.25)By now-familiar arguments the middle term 
an depend only on �, while the �rst and lastdepend only on �. Consisten
y for all � and � therefore implies that the middle term mustbe a 
onstant, and so we have d2�d�2 +m2 � = 0 ; (2.26)sin � dd�� sin � d�d� �+ (� sin2 � �m2)� = 0 : (2.27)The solution to the � equation is � � e�im�. The 
onstant m2 
ould, a priori, be positiveor negative, but we must re
all that the 
oordinate � is periodi
 on the sphere, with period2�. The periodi
ity implies that the eigenfun
tions � should be periodi
 too, and hen
eit must be that m2 is non-negative. In order that we have �(� + 2�) = �(�) it mustfurthermore be the 
ase that m is an integer.To analyse the eigenvalue equation (2.27) for �, it is advantageous to de�ne a newindependent variable x, related to � by x = 
os �. At the same time, let us now use y2The essential point is that the surfa
e of the unit sphere 
an be de�ned as x2 + y2 + z2 = 1, and this isinvariant under transformations of the form0�xyz1A �!M 0�xyz1A ;where M is any 
onstant 3 � 3 orthogonal matrix, satisfying MT M = 1l. This shows that the sphere isinvariant under the 3-parameter group O(3), and hen
e the eigenfun
tions Y must fall into representationsunder O(3). The 
al
ulation of the allowed values for �, and the forms of the asso
iated eigenfun
tions Y ,then follow from group-theoreti
 
onsiderations. Anti
ipating the result that we shall see by other means,the eigenvalues � take the form �` = `(` + 1), where ` is any non-negative integer. The eigenfun
tionsare 
lassi�ed by ` and a se
ond integer m, with �` � m � `, and are the well-known spheri
al harmoni
sY`m(�; �). The fa
t that � depends on ` but not m means that the eigenvalue �` = `(`+1) has a degenera
y(2`+ 1). 11



instead of � as our symbol for the dependent variable. Equation (2.27) therefor be
omesddx�(1� x2) dydx�+ ��� m21� x2� y = 0 : (2.28)This equation is 
alled the Asso
iated Legendre Equation, and it will be
ome ne
essary tostudy its properties, and solutions, in some detail in order to be able to 
onstru
t solutionsof the Lapla
e or Helmholtz equation in spheri
al polar 
oordinates. We shall do this inse
tion 3 below. In fa
t, as we shall see, it is 
onvenient �rst to study the simpler equationwhen m = 0, whi
h 
orresponds to the 
ase where the harmoni
s Y (�; �) on the sphere areindependent of the azimuthal angle �. The equation (2.28) in the 
ase m = 0 is 
alled theLegendre Equation.2.3 Separation of variables in 
ylindri
al polar 
oordinatesAnother important se
ond-order equation that 
an arise from the separation of variables isBessel's equation, Suppose we are solving Lapla
e's equation in 
ylindri
al polar 
oordinates(�; �; z), so that we have 1� ������ �� �+ 1�2 �2 ��2 + �2 �z2 = 0 : (2.29)We 
an separate variables by writing  (�; �; z) = R(�)�(�)Z(z), whi
h leads, after dividingout by  , to 1�R dd���dRd� �+ 1�2 � d2�d�2 + 1Z d2Zdz2 = 0 : (2.30)We 
an therefore dedu
e thatd2Zdz2 � k2 Z = 0 ; d2�d�2 + �2 � = 0 ; (2.31)d2Rd�2 + 1� dRd� + �k2 � �2�2 �R = 0 ; (2.32)where k2 and �2 are separation 
onstants. Res
aling the radial 
oordinate by de�ningx = k �, and renaming R as y, the last equation takes the formx2 d2ydx2 + x dydx + (x2 � �2) y = 0 : (2.33)This is Bessel's equation; we shall return later to a study of its solutions.3 Solutions of the Asso
iated Legendre EquationWe shall now turn to a detailed study of the solutions of the asso
iated Legendre equation,whi
h we obtained in our separation of variables in spheri
al polar 
oordinates in se
tion2.2. 12



3.1 Series solution of the Legendre equationWe begin by 
onsidering the simpler 
ase where the separation 
onstant m is zero, implyingthat the asso
iated Legendre equation (2.28) redu
es to the Legendre equation[(1� x2) y0℄0 + � y = 0 : (3.1)Note that here we are denoting a derivative with respe
t to x by a prime, so that dy=dx iswritten as y0, and so on. We shall use (3.1) to introdu
e the method of solution of linearODE's by series solution, known sometimes as the Frobenius Method.The idea essentially is to develop a solution as a power series in the independent variablex, with expansion 
oeÆ
ients determined by substituting the series into the di�erentialequation, and equating terms order by order in x. The method is of wide appli
ability; herewe shall take the Legendre equation as an example to illustrate the pro
edure.We begin by writing the series expansiony = Xn�0 an xn : (3.2)(In more general 
ir
umstan
es, whi
h we shall study later, we shall need to 
onsider seriesexpansions of the form y(x) = P(n)�0 an xn+�, where � may not ne
essarily be an integer.But in the present 
ase, for reasons we shall see later, we do not need the x� fa
tor at all.)Clearly we shall havey0 = Xn�0nan xn�1 ; y00 = Xn�0n (n� 1) an xn�2 : (3.3)Substituting into equation (3.1), we �ndXn�0n (n� 1) an xn�2 +Xn�0 (�� n (n+ 1)) an xn = 0 : (3.4)Sin
e we want to equate terms order by order in x, it is useful to shift the summationvariable by 2 in the �rst term, by writing n = m+ 2;Xn�0n (n�1) an xn�2 = Xm��2(m+2)(m+1) am+2 xm = Xm�0(m+2)(m+1) am+2 xm : (3.5)(The last step, where we have dropped the m = �2 and m = �1 terms in the summation,
learly follows from the fa
t that the (m+ 2)(m + 1) fa
tor gives zero for these two valuesof m.) Finally, relabelling m as n again, we get from (3.4)Xn�0�(n+ 2)(n+ 1) an+2 + (�� n (n+ 1)) an�xn = 0 : (3.6)13



Sin
e this must hold for all values of x, it follows that the 
oeÆ
ient of ea
h power of xmust vanish separately, giving(n+ 2)(n+ 1) an+2 + (�� n (n+ 1)) an = 0 (3.7)for all n � 0. Thus we have the re
ursion relationan+2 = n (n+ 1)� �(n+ 1)(n+ 2) an : (3.8)We see from (3.8) that all the 
oeÆ
ients an with n � 2 
an be solved for, in terms ofa0 and a1. In fa
t all the an for even n 
an be solved for in terms of a0, while all the an forodd n 
an be solved for in terms of a1. Sin
e the equation is linear, we 
an take the even-nseries and the odd-n series as two the two independent solutions of the Legendre equation,whi
h we 
an 
all y1(x) and y2(x):y(1)(x) = a0 + a2 x2 + a4 x4 + � � � ;y(2)(x) = a1 + a3 x3 + a5 x5 + � � � : (3.9)The �rst solution involves only the even an, and thus has only even powers of x, whilstthe se
ond involves only the odd an, and has only odd powers of x. We 
an 
onveniently
onsider the two solutions separately, by taking either a1 = 0, to dis
uss y(1), or else takinga0 = 0, to dis
uss y(2).Starting with y1, we therefore have from (3.8) that a2 = �12�a0, a3 = 0, a4 = 112(6 ��) a2, a5 = 0, et
.. In the expression for a4, we 
an substitute the expression already foundfor a2, and so on. Thus we will geta2 = �12�a0 ; a4 = � 112� (6� �) a0 ; : : :a3 = a5 = a7 = � � � = 0 : (3.10)The series solution in this 
ase is therefore given byy(1) = a0 �1� 12�x2 � 112� (6� �)x4 + � � � � : (3.11)To dis
uss the solution y(2) instead, we 
an take a0 = 0 and a1 6= 0. The re
ursionrelation (3.8) now gives a2 = 0, a3 = 16(2 � �) a0, a4 = 0, a5 = 120(12 � �) a3, a5 = 0, et
.,and so we �nd a3 = 16(2� �) a1 ; a5 = 1120 (2� �) (12 � �) a1 ; : : :a2 = a4 = a6 = � � � = 0 : (3.12)14



The series solution in this 
ase therefore has the formy(2) = a1 �x+ 16 (2� �)x3 + 1120(2� �) (12 � �)x5 + � � � � : (3.13)To summarise, we have produ
ed two independent solutions to our di�erential equation(3.1), whi
h are given by (3.11) and (3.13). The fa
t that they are independent is obvious,sin
e the �rst is an even fun
tion of x whilst the se
ond is an odd fun
tion. To make thispre
ise, we should say that y(1)(x) and y(2)(x) are linearly-independent, meaning that theonly possible solution for 
onstants � and � in the equation� y(1)(x) + � y(2)(x) = 0 (3.14)is � = 0 and � = 0. In other words, y(1)(x) and y(2)(x) are not related by any 
onstantfa
tor of proportionality. We shall show later that any se
ond-order ordinary di�erentialequation must have exa
tly two linearly-independent solutions, and so with our solutionsy(1)(x) and y(2)(x) established to be linearly-independent, this means that we have obtainedthe most general possible solution to (3.1).The next question is what 
an we do with our series solutions (3.11) and (3.13). Theyare, in general, in�nite series. Whenever one en
ounters an in�nite series, one needs toworry about whether the series 
onverges to a �nite result. For example, the seriesS1 �Xn�0 2�n = 1 + 12 + 14 + 18 + 116 + � � � (3.15)
onverges, giving S1 = 2, whilst the seriesS2 �Xn�0 2n = 1 + 2 + 4 + 8 + 16 + � � � (3.16)diverges, giving S2 =1. Another series that diverges isS3 = Xn�0 1n+ 1 = 1 + 12 + 13 + 14 + 15 + � � � : (3.17)For our solutions (3.11) and (3.13), we must �nd out for what range of values of x do theseries 
onverge.One way to test the 
onverge of a series is by applying the ratio test. This test saysthat the series f = Pn�0wn 
onverges if the ratio Rn � wn+1=wn is less than 1 in thelimit n �! 1. The series 
onverges if R1 < 1, it diverges if R1 > 1, and one gains noinformation in the marginal 
ase where R1 = 1. We won't prove the ratio test here, butit is 
learly plausible. It essentially says that if ea
h su

essive term in the series (at least15



when we go a long way down the series) is smaller than its prede
essor by some fra
tionless than 1, then the sum of all the terms is �nite. If on the other hand ea
h su

essiveterm is bigger than its prede
essor by some fa
tor greater than 1, then the sum of all theterms will be in�nite. We 
an try out the ratio test on the three examples in (3.15), (3.16)and (3.17). Sure enough, for the 
onvergent series (3.15) we �nd the ratio of the (n+1)'thterm to the n'th term is Rn � 1=2n+11=2n = 12 (3.18)and so this has the limit R1 = 12 whi
h is less than 1. For the se
ond example (3.16) wehave Rn = 2, and so R1 = 2. The ratio test therefore predi
ts that this series will diverge.For the third example, we see from (3.17) thatRn = n+ 1n+ 2 ; (3.19)and so R1 = 1. The ratio test doesn't give us any result in this 
ase therefore. However, amore involved 
al
ulation will show that the series (3.17) diverges.Going ba
k to our series solutions (3.2), we haveRn = an+2 xn+2an xn = an+2an x2 ; (3.20)From (3.8), this 
an be written asRn = n (n+ 1)� �(n+ 1) (n+ 2) x2 : (3.21)For suÆ
iently large n we 
an negle
t the 
ontribution from the �xed given value of �, andso the terms proportional to n2 in the numerator and denominator dominate at large n.Thus we have R1 = x2 : (3.22)If jxj < 1, the ratio test tells us that the series 
onverges. However, we would also like toknow what happens at x = �1, sin
e these points 
orrespond to � = 0 and � = �, the northand south poles of the sphere (re
all that we de�ned x = 
os �). Here, the ratio test failsto give us any information, although it does tell us that the series diverges for jxj > 1.A more sophisti
ated analysis shows that the series will in fa
t always diverge at x = �1,unless � takes a value su
h that the series terminates. Obviously, if the series terminatesafter a �nite number of terms, then there 
an be no possibility of the sum diverging. Forthe termination to o

ur, the numerator in (3.8) must vanish for some value of n. Clearly, ane
essary 
ondition for this to o

ur is that ` must be a positive integer of the form n (n+1).16



In fa
t the even series for y(1) terminates if � = `(` + 1), where ` is an even non-negativeinteger, whilst the odd series for y(2) terminates if ` is an odd positive integer. On
e anbe
omes zero for some value of n, it is obvious from the re
ursion relation (3.8) that all thehigher 
oeÆ
ients an+2; an+4; : : : will vanish too.As an example to illustrate the divergent behaviour if the series does not terminate,
onsider the odd series y2(x), with � = 0. From (3.8) we then have an+2 = nan=(n + 2)(with n odd), whi
h has the solution an = a1=n. Thus the series (3.2) be
omesy = a0 (x+ 13x3 + 15x5 + 17x7 + � � �) ; (3.23)whi
h 
an be re
ognised as the power-series expansion ofy = 12a1 log �1 + x1� x� ; (3.24)whi
h 
learly diverges at x = �1. For all other values of � that lead to non-terminatingseries, one similarly �nds a logarithmi
 divergen
e at x = �1.To re
apitulate, we have seen that if we want the solutions of the Legendre equationto be well-behaved at x = �1, whi
h we usually do sin
e we wish to obtain solutions ofthe original Lapla
e or Helmholtz equation that are well-behaved on the sphere, then onlythose solutions for whi
h the series (3.2) terminates are a

eptable. This o

urs when theeigenvalue � in (3.1) takes the form � = `(`+ 1) ; (3.25)where ` is a non-negative integer, with the 
orresponding eigenfun
tions y being polynomialsin x of degree `. Note that if ` is even, the polynomial will involve only even powers of x,while if ` is odd, the polynomial will involve only odd powers of x. It is easy to work outthe �rst few examples, by using (3.8) to solve re
ursively for the expansion 
oeÆ
ients in(3.2). By 
onvention the `'th Legendre polynomial is denoted by P`(x), and is normalisedso that P`(1) = 1. The �rst few are therefore given byP0(x) = 1 ; P1(x) = x ; P2(x) = 12(3x2 � 1) ;P3(x) = 12(5x3 � 3x) ; P4(x) = 18(35x4 � 30x2 + 3) : (3.26)A similar analysis for the 
ase where m is non-zero shows that the asso
iated Legendreequation (2.28) has solutions regular at x = �1 only if ` is a non-negative integer, andm is an integer taking any of the values in the range �` � m � `. The 
orresponding17



eigenfun
tions are the asso
iated Legendre fun
tions P m̀(x). It 
an be shown that theseare related to the Legendre polynomials P`(x) by the formulaP m̀(x) = (�1)m (1� x2)m=2 dmP`(x)dxm : (3.27)3.2 Properties of the Legendre polynomialsThe Legendre polynomials P`(x) are the basi
 set of regular solutions of the Legendreequation, ddx�(1� x2) dP`(x)dx �+ ` (`+ 1)P`(x) = 0 ; (3.28)and this is the equation that arose (in the azimuthally-symmetri
 
ase) when separatingvariables in spheri
al polar 
oordinates. It follows that in order to 
onstru
t solutions ofthe Lapla
e equation by the method of separating the variables, we shall therefore need tohave a thorough understanding of the properties of the Legendre polynomials.The basi
 te
hnique that one uses for solving an equation su
h as the Lapla
e equationin spheri
al polar 
oordinates is parallel to that whi
h we used in se
tion (2.1) when wedis
ussed the analogous problem in Cartesian 
oordinates. Namely, we write down themost general possible solution (obtained by separation of variables), and then determinethe 
onstant 
oeÆ
ients in the expansion by mat
hing to given boundary data, et
.. As weshall see below, this means in parti
ular that we need to be able to determine the 
oeÆ
ientsa` in the expansion of an arbitrary fun
tion f(x) in terms of Legendre polynomials;f(x) = X̀�0 a` P`(x) : (3.29)For now we shall just assume that su
h an expansion is possible; the proof is a little involved,and we shall postpone this until a bit later in the 
ourse, where we shall prove it in a mu
hmore general 
ontext.3The essential requirement in order to be able to determine the 
onstants a` is to knowsome appropriate orthogonality relation among the Legendre polynomials. Spe
i�
ally, we
an show that Z 1�1 dxP`(x)Pn(x) = 0 ; ` 6= n ; (3.30)and Z 1�1 dxP`(x)Pn(x) = Cn ; ` = n : (3.31)3The series (3.29) is a generalisation of the familiar Fourier series.18



The 
onstants Cn are 
al
ulable (on
e one has de�ned a normalisation for the Legendrepolynomials), and we shall 
al
ulate them, and prove the orthogonality 
ondition (3.30)below. It is 
lear that with these results we 
an then 
al
ulate the 
oeÆ
ients a` in theseries expansion (3.29). We just multiply (3.29) by (1 � x2)Pn(x) and integrate over x, toget Z 1�1 dxPn(x) f(x) = X̀�0 a` Z 1�1 dxP`(x)Pn(x) ;= anCn : (3.32)Hen
e we solve for the 
oeÆ
ients an, givingan = 1Cn Z 1�1 dxPn(x) f(x) : (3.33)The proof of orthogonality of the Legendre polynomials, as in (3.30), is very simple. Wetake the Legendre equation (3.28) and multiply it by Pn(x), and then subtra
t from thisthe same thing with the roles of ` and n ex
hanged:[(1 � x2)P 0̀℄0 Pn � [(1� x2)P 0n℄0 P` + [` (`+ 1)� n (n+ 1)℄P` Pn = 0 : (3.34)(It is understood that P` and Pn here are fun
tions of x, and that a prime means d=dx.)We now integrate over x, from x = �1 to x = +1, and note that using an integration byparts we shall haveZ 1�1 dx [(1 � x2)P 0̀℄0 Pn = � Z 1�1 dx [(1 � x2)P 0̀ P 0n + h(1� x2)P 0̀(x)Pn(x)i1�1 : (3.35)The boundary terms here at x = �1 vanish, be
ause of the (1 � x2) fa
tor. Thus afterintegrating (3.34) and integrating by parts on the �rst two terms, we get simply[` (`+ 1)� n (n+ 1)℄ Z 1�1 dxP`(x)Pn(x) = 0 : (3.36)This means that either ` (`+ 1) equals n (n+ 1), or elseZ 1�1 dxP`(x)Pn(x) = 0 : (3.37)Sin
e it is always understood that ` and n are non-negative integers, we see that ` (` + 1)is equal to n (n+ 1) only if ` = n. Thus if have proved the orthogonality of the Legendrepolynomials; if ` and n are not equal, then (3.37) is satis�ed.The next step takes a little more work. We need to 
al
ulate the 
onstants Cn o

ur-ring in the integral (3.31). Of 
ourse we 
an only do that on
e we have de
ided upon a19



normalisation for the Legendre polynomials P`(x). By 
onvention, they are de�ned to besu
h that P`(1) = 1 : (3.38)In order to evaluate the integral in (3.31), we now need to have an expli
it way of expressingthe Legendre polynomials. It turns out that a 
onvenient way to do this is in terms ofa representation 
alled Rodrigues' Formula. This formula asserts that P`(x), with thenormalisation (3.38), 
an be written asP`(x) = 12` `! d`dx` (x2 � 1)` : (3.39)We 
an prove Rodrigues' formula in two stages. First, we shall prove that it gives some
onstant multiple of P`(x). Then, we shall prove that in fa
t from the de�nition (3.39), weshall have P`(1) = 1. To prove the �rst stage, let's get rid of the super
uous baggage ofmessay 
onstant fa
tors, and 
onsiderf`(x) � d`dx` (1� x2)` : (3.40)The te
hnique now will be to show that f`(x) satis�es the Legendre equation (3.28), andhen
e, sin
e f`(x) is manifestly just a polynomial fun
tion of x, it must therefore be some
onstant multiple of the Legendre polynomial P`(x).Using the binomial theorem,(1 + z)` = X̀k=0 k̀! zk ; where  k̀! � `!k! (`� k)! ; (3.41)where we shall take z = �x2, and using the fa
t thatd`dx` x2k = 2k (2k � 1) � � � (2k � `+ 1)x2k�` = (2k)!(2k � `)! x2k�` ; (3.42)we get that f`(x) = X̀k=0(�1)k  k̀! (2k)!(2k � `)! x2k�` : (3.43)What we have obtained here is a polynomial series in x. Now we have already studied theseries expansion for solutions of the Legendre equation; we wrote them as (3.2), and weshowed that the expansion 
oeÆ
ients an must satisfy (3.8). All we have to do in order toprove that our fun
tion f`(x) satis�es the Legendre equation is to show that the 
oeÆ
ientsof the powers of x in (3.43) satisfy the same re
ursion relation (3.8).20



We 
an express (3.43) as a series f` =Pǹ=0 an xn. Comparing 
oeÆ
ients, we see thatk = (n+ `)=2, and hen
e an = (�1) 12 (n+`) `! (n+ `)!n!�12(`+ n)�!�12(`� n)�! : (3.44)Using (p + 1)! = (p + 1) p! in the various terms, it is now easy to see that if we use (3.44)to 
al
ulate an+2, we 
an write it asan+2 = (n� `)(n+ `+ 1)(n+ 1)(n+ 2) an : (3.45)This is exa
tly the same as the re
ursion relation (3.8), and so this proves that the fun
tionsf`(x) de�ned in (3.40) satisfy the Legendre equation with � = ` (`+1). (Che
k for yourselfthat this is a 
orre
t statement both for ` even and ` odd.) Sin
e P`(x) given in Rodrigues'formula (3.39) is just a 
onstant multiple of f`(x), i.e.P`(x) = (�1)`2` `! f`(x) ; (3.46)it follows that we have established the �rst part of our proof; up to 
onstant normalisation,we have veri�ed that the Rodrigues' formula (3.39) does indeed give polynomial solutionsof the Legendre equation (3.28).To determine the normalisation, it is useful to begin with a digression, whi
h will never-theless be worthwhile in the end. There is yet another way to de�ne the Legendre polyno-mials, whi
h is very useful in its own right. This is via what is 
alled a Generating Fun
tion.The 
laim is that (1� 2x t+ t2)�1=2 = X̀�0 t` P`(x) ; (3.47)where, for 
onvergen
e of the series, we must have jtj < 1. How do we use this to read o�the Legendre polynomials? We perform a power series expansion of the left-hand side, inin
reasing powers of t. Doing this, we �nd that the left-hand side gives1 + x t+ 12(3x2 � 1) t2 + 12(5x3 � 3x) t3 + 18(35x4 � 30x2 + 3) t4 + � � � : (3.48)Equating this with the right-hand side of (3.47), and 
omparing the 
oeÆ
ients of ea
hpower of t, we read o�P0(x) = 1 ; P1(x) = x ; P2(x) = 12 (3x2 � 1) ; P3(x) = 12(5x3 � 3x) (3.49)and so on, whi
h is pre
isely what we were �nding in (3.26).21



This doesn't 
onstitute a proof yet, that all the 
oeÆ
ient fun
tions P`(x) in (3.47)are the Legendre polynomials. To 
omplete the job, we 
an show that P`(x) de�ned bythe generating fun
tion (3.47) is exa
tly the same as P`(x) de�ned by Rodrigues' formula(3.39), for all `. To do this, �rst take the generating fun
tion in (3.47) and use the binomialtheorem (1 + z)� = 1 + �z + � (�� 1)2! z2 + � � � (3.50)to expand the left-hand side in powers of (�2x t+ t2). For � = �12 (3.50) 
an easily be seento be expressible as (1 + z)�1=2 = Xn�0 (�1)n (2n)!22n (n!)2 zn ; (3.51)and so we get (1� 2x t+ t2)�1=2 = Xn�0 (2n)!22n (n!)2 (2x t� t2)n : (3.52)Next we expand the fa
tor (2x t� t2)n using the binomial theorem, for whi
h a 
onvenientformulation is (a+ b)n = nXk=0 nk ! an�k bk : (3.53)This now gives us a double series,(1� 2x t+ t2)�1=2 = Xn�0 (2n)!22n (n!)2 tn nXk=0(�1)k  nk ! (2x)n�k tk ;= Xn�0 nXk=0(�1)k (2n)!22n n! k! (n� k)! (2x)n�k tn+k : (3.54)We are almost there, but one further manipulation on the expression (3.54) is needed.There are many ways of reorganising the summation of terms in a double series, and forour present purposes the one we need is the following:Xn�0 nXk=0 a(k; n� k) =Xr�0 [r=2℄Xs=0 a(s; r � 2s) ; (3.55)where [r=2℄ means the integer part of r=2. (Exer
ise: Che
k this!). The bottom line is that,after �nally relabelling the summation variables, the expression (3.54) 
an be turned intoanother expression, namely(1 � 2x t+ t2)�1=2 = Xn�0 [n=2℄Xk=0 (�1)k (2n� 2k)!22n�2k k! (n� k)! (n� 2k)! (2x)n�2k tn : (3.56)We appeared just to have ex
hanged one expression that resembles a dog's breakfast foranother, but the point now is that (3.56) brings us ba
k (�nally!) to our expression from22



Rodrigues' formula (3.39). From (3.43) and (3.46), we 
an see, after a simple rede�nitionof the k summation variable, that the thing that multiplies the 
oeÆ
ient of tn in (3.56) isnothing but our old friend Pn(x), as de�ned by Rodrigues' formula (3.39). Thus the equiv-alen
e of the two de�nitions for P`(x), from Rodrigues' formula (3.39) and the generatingfun
tion (3.47) is established.After all that, proving that the Legendre polynomials given by Rodrigues' formula satisfythe normalisation 
ondsition P`(1) = 1 is a pie
e of 
ake. We just use what we now knowto be the equivalent de�nition (3.47), and set x = 1, to get(1� 2t+ t2)�1=2 = X̀�0 t` P`(1) : (3.57)But the left-hand side is just (1� t)�1, whi
h has the binomial expansion11� t = 1 + t+ t2 + t3 + t4 + � � � = X̀�0 t` ; (3.58)and so by 
omparing with the right-hand side in (3.57) we immediately get P`(1) = 1.Lest our original task has been forgotten during the 
ourse of this dis
ussion, let usremind ourselves that we wanted to determine the 
onstants Cn in (3.31). That is, we wantto 
al
ulate Cn = Z 1�1 dx [Pn(x)℄2 : (3.59)From Rodrigues' formula (3.39), we 
an write this asCn = 122n (n!)2 Z 1�1 dx �n(x2 � 1)n �n(x2 � 1)n ; (3.60)where we write �n instead of dn=dxn for brevity. Integrating by parts n times, and notingthat the powers of (x2 � 1) will kill o� the resulting boundary terms, we therefore haveCn = (�1)n22n (n!)2 Z 1�1 dx (x2 � 1)n �2n(x2 � 1)n : (3.61)Now (x2 � 1)(n) is a polynomial in x, whi
h looks like x2n + � � �, where the ellipses denoteterms of lower order in x. When we di�erentiate 2n times, only the �rst term gives a
ontribution, and so from �2n x2n = (2n)! we �nd thatCn = (2n)!22n (n!)2 Z 1�1 dx (1 � x2)n : (3.62)Unfortunately our troubles are not yet quite over, be
ause the integral is not going togive up without a bit of a �ght. The best way to evaluate it is by indu
tion. We note thatwe 
an write the following:(1� x2)n = (1� x2)(1� x2)n�1 = (1� x2)n�1 + x2n ddx (1� x2)n : (3.63)23



Plugging this into (3.62), we see that it gives usCn = 2n� 12n Cn�1 + (2n� 1)!22n (n!)2 Z 1�1 x d[(1 � x2)n℄ : (3.64)Integrating the last term by parts gives usCn = 2n� 12n Cn�1 � 12n Cn ; (3.65)whi
h implies that (2n+ 1)Cn = (2n� 1)Cn�1 : (3.66)This means that (2n+ 1)Cn is independent of n, and so it must be that (2n+ 1)Cn = C0.At last we have something easy to evaluate, sin
e (3.62) implies thatC0 = Z 1�1 dx = 2 : (3.67)Thus, �nally, we arrive at Cn = 2=(2n + 1), and so the normalisation of the integral of[Pn(x)℄2 is established: Z 1�1 dx[Pn(x)℄2 = 22n+ 1 : (3.68)Let us review what we have a
hieved. Starting from a proposed expansion of an arbitraryfun
tion f(x) as a sum of Legendre polynomials as in (3.29);f(x) = X̀�0 a` P`(x) ; (3.69)we have now found that the expansion 
oeÆ
ients a` are give bya` = 12(2`+ 1) Z 1�1 dx f(x)P`(x) : (3.70)It is time to look at a few examples. First, we may note that it is often very helpfulto use Rodrigues' formula in order to evaluate the integral (3.70). Substituting (3.39) into(3.70), and integrating by parts, we obtaina` = (2`+ 1)2`+1 `! h d`�1dx`�1 (x2 � 1)`i1�1 � (2`+ 1)2`+1 `! Z 1�1 dx f 0(x) d`�1dx`�1 (x2 � 1)` : (3.71)The boundary term gives zero, sin
e the (`� 1)'th derivative of (x2 � 1)` leaves one overallfa
tor of (x2 � 1), and this vanishes at x = �1. Continuing this pro
edure, we 
an perform(`� 1) further integrations by parts, ending up witha` = (2`+ 1)2`+1 `! Z 1�1 dx d`f(x)dx` (1� x2)` : (3.72)24



Noti
e in parti
ular that if the given fun
tion f(x) is itself a polynomial of degree n,then all its derivatives d`f(x)=dx` for ` > n vanish. This means that the all the expansion
oeÆ
ients a` will vanish for ` > n. This should not be a surprise, sin
e we know that P`(x)is itself a polynomial of degree `. In fa
t the set of Legendre polynomials with 0 � ` � nreally form a basis for the set of all possible polynomials of degree � n. For example, wehave P0(x) = 1 ; P1(x) = x ; P2(x) = 12(3x2 � 1) ; (3.73)and we 
an see just by doing elementary algebra that we 
an re-express the general quadrati
polynomial ax2 + b x+ 
 asax2 + b x+ 
 = (
+ 13a)P0(x) + b P1(x) + 23aP2(x) : (3.74)It is 
lear that we 
an do a similar expansion for any polynomial of �nite degree n, and(3.72) gives us the expressions for the 
oeÆ
ients a`, whi
h will be non-zero only for ` � n.3.3 Azimuthally-symmetri
 solutions of Lapla
e's equationHaving 
onstru
ted the Legendre polynomials, and determined their orthogonality and nor-malisation properties, we 
an now use them in order to 
onstru
t azimuthally-symmetri
solutions of the Lapla
e or Helmholtz equations. (We shall move on to 
ase without az-imuthal symmetry later.)Re
all, from se
tion 2.2, that if we 
onsider fun
tions that are independent of the az-imuthal angle �, then the solution  (r; �;  ) of the Lapla
e or Helmholtz equation waswritten as  (r; �) = 1r R(r)�(�) ; (3.75)with � and R satisfying 1sin � dd�� sin � d�d� �+ �� = 0 (3.76)and d2Rdr2 = � �r2 � k2�R : (3.77)We determined that the fun
tions �(�) will only be regular at the north and south polesof the sphere if � = ` (` + 1) where ` is an integer (whi
h 
an be assumed non-negative,without loss of generality). The fun
tions �(�) are then the Legendre polynomials, with�(�) � P`(
os �).Let us spe
ialise to the 
ase of the Lapla
e equation, whi
h means that k = 0 in theequation (3.77) for the radial fun
tion R(r). It is easy to see that with � = ` (` + 1), the25



two independent solutions of (3.77) areR � r`+1 ; and R � r�` : (3.78)It follows, therefore, that the most general azimuthal solution of the Lapla
e equationr2  = 0 in spheri
al polar 
oordinates 
an be written as (r; �) = X̀�0(A` r` +B` r�`�1)P`(
os �) : (3.79)We established the orthogonality relations for the Legendre polynomials, given in (3.30)and (3.31) with C` eventually determined to be C` = 2=(2` + 1). In terms of �, related tox by x = 
os �, we therefore haveZ �0 sin � d� P`(
os �)Pn(
os �) = 22`+ 1 Æ`n ; (3.80)The Æ symbol on the right-hand side here is the Krone
ker delta fun
tion. By de�nition,Æmn is zero if m 6= n, while it equals 1 if m = n. Thus (3.80) says that the integral on theleft-hand side vanishes unless ` = n, in whi
h 
ase it gives 2=(2` + 1).We 
an use these results in order to solve problems in potential theory. Suppose, forexample, the ele
trostati
 potential is spe
i�ed everywhere on the surfa
e of a sphere ofradius a, as  (a; �) = V (�) for some given fun
tion V (�), and that we wish to 
al
ulatethe potential  (r; �) everywhere outside the sphere. Sin
e the potential must die o�, ratherthan diverge, as r tends to in�nity, it follows that the 
oeÆ
ients A` in (3.79) must be zero,and so our solution is of the form (r; �) = X̀�0B` r�`�1 P`(
os �) : (3.81)To determine the remaining 
oeÆ
ients B`, we set r = a and use the given boundary data (a; �) = V (�):  (a; �) = V (�) = X̀�0B` a�`�1 P`(
os �) : (3.82)Multiplying by Pn(
os �) and integrating over R sin � d�, we getZ �0 sin � d� V (�)Pn(
os �) = 22n+ 1 a�n�1Bn ; (3.83)when
e Bn = 12(2n+ 1) an+1 Z �0 sin � d� V (�)Pn(
os �) : (3.84)Given V (�), we 
an 
al
ulate the 
oeÆ
ients Bn.26



Suppose, for example, we are given that V (�) is +V for 0 � 12�, and V (�) is �Vfor 12� < � � �, where V is a 
onstant. The integral in (3.84) 
an be evaluated fairlystrainghtforwardly using Rodrigues' formula (3.39), leading to the 
on
lusion that B` iszero if ` is even, while B` = (�2)�(`�1)=2 (2`+ 1) (`� 2)!! a`+12�12(`+ 1)�! (3.85)when ` is odd. (Note that (2p + 1)!! means (2p + 1)(2p � 1)(2p � 3) � � � � 5 � 3 � 1.) The�rst few terms in the solution give (r; �) = V h3a22r2 P1(
os �)� 7a48r4 P3(
os �) + 11a616r6 P5(
os �) + � � � i : (3.86)3.4 The asso
iated Legendre fun
tionsIn our analysis in se
tion 3, we made the spe
ialisation from the Asso
iated LegendreEquation (2.28) to the 
ase of the Legendre Equation, where m = 0. Let us now return tothe full Asso
iated Legendre Equation, whi
h we shall need for �nding general solutions ofLapla
e's equation, in whi
h the potential fun
tion is allowed to depend on the azimuthalangle �. For 
onvenien
e, we present again the Asso
iated Legendre Equation:ddx�(1� x2) dydx�+ ��� m21� x2� y = 0 : (3.87)As mentioned previously, it turns out that we 
an 
onstru
t the relevant solutions of thisequation rather simply, in terms of the Legendre polynomials that we have already studied.To begin, we write y = (1 � x2)m=2 w, and substitute this into (3.87). After simplealgebra we �nd, after extra
ting an overall fa
tor of (1� x2)m=2, that w must satisfy(1� x2)w00 � 2(m+ 1)xw0 + [��m (m+ 1)℄w = 0 : (3.88)(We are using a prime to denote di�erentiation d=dx here.) Now suppose that we have asolution u of the ordinary Legendre equation:(1� x)2 u00 � 2xu0 + �u = 0 : (3.89)Next, we di�erentiate this m times. Let us use the notation �m as a shorthand for dm=dxm.It is useful to note that we have the following lemma, whi
h is just a 
onseque
e of Leibnitz'rule for the di�erentiation of a produ
t, iterated m times:�m(f g) = f (�mg) +m (�f) (�m�1g) + m(m� 1)2! (�2f) (�m�2g)+m(m� 1)(m� 2)3! (�3f) (�m�3g) + � � � : (3.90)27



We only need the �rst two or three terms in this expression if we apply it to the produ
tsin (3.89), and so we easily �nd that(1� x2) �m+2u� 2(m+ 1)x�m+1u+ [��m(m+ 1℄ �m u = 0 : (3.91)Thus we see that setting w = �mu, we have 
onstru
ted a solution of (3.88) in terms of asolution u of the Legendre equation (3.89). The upshot, therefore, is that if we de�neP m̀(x) � (�1)m (1� x2)m=2 dmdxm P`(x) ; (3.92)where P`(x) is a Legendre polynomial, then P m̀(x) will be a solution of the Asso
iatedLegendre Equation with � = ` (`+ 1):ddx�(1� x2) dP m̀dx �+ �` (`+ 1)� m21� x2�P m̀ = 0 : (3.93)Sin
e P`(x) is regular everywhere in
luding x = �1, it is 
lear that P m̀(x) will be too. Itis understood here that we are taking the integer m to be non-negative. It is 
lear that wemust have m � ` too, sin
e if m ex
eeds ` then the m-fold derivative of the `'th Legendrepolynomial (whi
h itself is of degree `) will give zero.Re
all next that we have Rodrigues' formula (3.39), whi
h gives us an expression forP`(x). Substituting this into (3.92), we getP m̀(x) = (�1)m2` `! (1� x2)m=2 d`+mdx`+m (x2 � 1)` : (3.94)A ni
e little mira
le now o

urs: this formula makes sense for negative values of m too,provided that m � �`. Thus we have a 
onstru
tion of Asso
iated Legendre Fun
tions forall integers m in the interval �` � m � `.Looking at the Asso
iated Legendre Equation (3.93), we note that the equation itself isinvariant under sending m �! �m; (3.95)sin
e m appears only as m2 in the equation. This means that if we take a solution with agiven m, then sending m to �m gives us another solution. What is more, only one solutionat �xed ` and m2 
an be regular at x = �1, sin
e the se
ond solution will have logarithmi
singularities there (just like we saw for the Legendre fun
tions). Sin
e P m̀(x) and P�m` (x)given by 3.94 are both regular at x = �1, it follows therefore that they must be linearlydependent; i.e. P�m` (x) must be some 
onstant multiple of P m̀(x):P�m` (x) = k P m̀(x) : (3.96)28



It is easy to determine what the 
onstant k is, by using (3.94). From (3.96) we get�`�m(x2 � 1)` = k (1� x2)m �`+m(x2 � 1)` : (3.97)It is good enough just to look at the highest power of x, sin
e all we need to do is to
al
ulate what k is.4 Thus we get(2`)!(`+m)! x`+m = k (�1)m x2m (2`)!(`�m)! x`�m (3.98)at the leading order in x, whi
h �xes k and hen
e establishes thatP�m` (x) = (�1)m (`�m)!(`+m)! P m̀(x) : (3.99)Using this result we 
an now very easily work out the normalisation integral for theasso
iated Legendre fun
tions P m̀(x). The relevant integral we shall need to evaluate isZ 1�1 dxP m̀(x)Pmn (x) : (3.100)(It will be
ome 
lear in se
tion 3.5 why we have set the upper indi
es m equal here.) Usingthe same method as we used for the Legendre polynomials, it is easy to show that (3.100)vanishes unless ` = n. For ` = m, we 
an make use of (3.99) to write the required integralas C`m � Z 1�1 dx [P m̀(x)℄2 = (�1)m (`+m)!(`�m)! Z 1�1 dxP m̀(x)P�m` (x) : (3.101)Our task is to 
al
ulate the 
onstants C`m. We 
an use the generalised Rodrigues formula(3.94), thus givingC`m = (�1)m (`+m)!22` (`!)2 (`�m)! Z 1�1 dx �`+m(x2 � 1)` �`�m(x2 � 1)` : (3.102)(Note that by making use of (3.99) we have managed to get the two powers of (1� x2)m=2that would otherwise have arisen from (P m̀)2 to 
an
el instead of adding, whi
h simpli�eslife 
onsiderably.) Integrating by parts `+m times in (3.102), and noting that the boundaryterms all give zero, we therefore haveC`m = (`+m)!22` (`!)2 (`�m)! Z 1�1 dx (1� x2)` �2`(x2 � 1)` ;= (2`)! (` +m)!22` (`!)2 (`�m)! Z 1�1 dx (1� x2)` : (3.103)4One 
ould, more adventurously, give another proof that P�m` (x) and P m̀(x) are linearly dependent by
he
king all powers of x. We leave this as an exer
ise for the reader.29



The integral here is the same one we had to evaluate in the 
ase of the Legendre polynomialsin (3.62); the only di�eren
e now is the extra fa
torial prefa
tors. Thus from the previousresults in se
tion 3.2, we see thatC`m = 22`+ 1 (`+m)!(`�m)! : (3.104)In other words, we have shown thatZ 1�1 dxP m̀(x)P m̀0 (x) = 22`+ 1 (`+m)!(`�m)! Æ``0 : (3.105)3.5 The spheri
al harmoni
s and Lapla
e's equationIt may be re
alled that a while ba
k, we were solving equations su
h as the Lapla
e equationor the Helmholtz equation in spheri
al polar 
oordinates, in se
tion 2.2. We had redu
ed theproblem, by means of separating variables, to solving for the radial fun
tions R(r) and thefun
tions Y (�; �) on the spheri
al 
onstant-radius surfa
es. Thus the Helmholtz equationr2  + k2  = 0 implied that if we write (r; �; �) = 1r R(r)Y (�; �) ; (3.106)the R(r) and Y �; �) should satisfyr2(�;�) Y = ��Y ; d2Rdr2 = � �r2 � k2�R ; (3.107)where r2(�;�) � 1sin � ���� sin � ����+ 1sin2 � �2��2 (3.108)is the Lapla
e operator on the unit sphere. We then performed the further separation ofangular variables on the sphere, with Y (�; �) = �(�)�(�), showing that for regularity wemust have � = ` (`+ 1), and m is an integer with �` � m � `.Putting together what we found for the angular fun
tions, we see that the Y (�; �) are
hara
terised by the two integers ` and m, and we may de�neY`m(�; �) � s(2`+ 1)4� s(`�m)!(`+m)! P m̀(
os �) eim� ; ` � 0 ; �` � m � ` : (3.109)The Spheri
al Harmoni
s Y`m(�; �) satisfy�r2(�;�) Y`m(�; �) = ` (`+ 1)Y`m(�; �) : (3.110)These spheri
al harmoni
s form the 
omplete set of regular solutions of r2(�;�) Y = ��Yon the unit sphere. Note from (3.99) that we haveY`;�m(�; �) = (�1)m �Y`m(�; �) ; (3.111)30



where the bar denotes 
omplex 
onjugation.From our results in the previous se
tions, we 
an easily see that the spheri
al harmoni
ssatsify the orthogonality propertiesZ d
 �Y`0m0(� �)Y`m(�; �) = Æ``0 Æmm0 ; (3.112)where d
 � sin � d� d� (3.113)is the area element on the unit sphere, and R d
X meansZ 2�0 d� Z �0 sin � d� X : (3.114)Thus (3.112) just says that the integral on the left-hand side is zero unless `0 = ` andm0 = m.Note that it is the integration over � that is responsible for produ
ing the Krone
ker deltaÆmm0 , sin
e the � dependent fa
tors in (3.112) areZ 2�0 d� ei (m�m0)� : (3.115)This integrates to zero if the integers m and m0 are unequal, whilst giving 2� if m = m0.The remaining integration over � in (3.112) then redu
es, with m and m0 equal, to theintegral in (3.105), whi
h then gives rise to the Krone
ker delta fun
tion Æ``0 in (3.112).It is instru
tive to look at the �rst few spheri
al harmoni
s expli
itly. From (3.109), andusing (3.94) to give the expressions for the P m̀, we �ndY0;0(�; �) = 1p4� ;Y1;1(�; �) = �r 38� sin � ei� ;Y1;0(�; �) = r 34� 
os � ;Y1;�1(�; �) = r 38� sin � e�i� ;Y2;2(�; �) = r 1532� sin2 � e2i� ;Y2;1(�; �) = �r 158� sin � 
os � ei� ;Y2;0(�; �) = r 516� (3 
os2 � � 1) ;Y2;�1(�; �) = r 158� sin � 
os � e�i� ;Y2;�2(�; �) = r 1532� sin2 � e�2i� : (3.116)31



Going ba
k to our general form of the separated solution (3.106), and noting that if weare solving Lapla
e's equation then the radial fun
tions still satisfy (2.24) with k = 0, justas they did in the azimuthally-symmetri
 
ase m = 0, we now have that the most generalsolution of Lapla
e's equation in spheri
al polar 
oordinates5 is written as (r; �; �) = X̀�0 X̀m=�`(A`m r` +B`m r�`�1)Y`m(�; �) : (3.117)The 
onstants A`m and B`m, whi
h depend on both ` and m, are as yet arbitrary. Theirvalues are determined by boundary 
onditions, as in the previous potential-theory examplesthat we have looked at. Be
ause we are now allowing the azimuthal separation 
onstant mto be non-zero, the 
lass of solutions des
ribed by (3.117) in
ludes those that are dependenton the azimuthal angle �.Let us 
on
lude this part of the dis
ussion with a simple example. Suppose the ele
tro-stati
 potential is given on the the spheri
al surfa
e r = a, and that one is told that (a; �; �) = V (�; �) (3.118)on this surfa
e, for some given fun
tion V (�; �). Cal
ulate the potential everywhere insidethe surfa
e.First, we note that sin
e the potential must remain �nite as r approa
hes zero, it must bethat all the 
oeÆ
ients B`m in (3.117) vanish in this problem. The A`m 
an be 
al
ulated bysetting r = a in what remains in (3.117), and then multiplying by �Y`0;m0(�; �) and integratingover the sphere; Z d
 (a; �; �) �Y m0`0 (�; �) = a`0 A`0m0 : (3.119)Here, we have made use of the orthogonality relations (3.112). Thus we haveA`m = a�` Z d
V (�; �) �Y`m(�; �) (3.120)Suppose now that we are given thatV (�; �) = V0 sin � sin� ; (3.121)where V0 is a 
onstant. Be
aiuse this potential has a parti
ularly simply form, we 
an spotthat it 
an be written in terms of the spheri
al harmoni
s asV0 sin � sin� = 12i V0 sin � (ei� � e�i�) = ir2�3 V0 (Y1;1(�; �) + Y1;�1(�; �)) ; (3.122)5That is, the most general solution that is regular on the spheri
al surfa
es at 
onstant r.32



where we have used the ` = 0 expressions in (3.116). This, of 
ourse, is all one is reallydoing in any 
ase, when one uses the orthogonality relations to determine the expansion
oeÆ
ients; we just need to �gure out what linear 
ombination of the basis fun
tions 
on-stru
ts for us the desired fun
tion. It just happens in this example that the answer is sosimple that we 
an spot it without doing all the work of evaluating the integrals in (3.122).Thus, we see by 
omparing with the general solution (3.117) that we must have (r; �; �) = ir2�3 V0 ra (Y1;1(�; �) + Y1;�1(�; �)) : (3.123)This is a
tually real (as it must be) despite the presen
e of the i, sin
e the Y`m fun
tionsthemselves are 
omplex. In fa
t in this example it is obviously mu
h simpler to write theanswer expli
itly, using the expressions in (3.116); we just get (r; �; �) = ra V0 sin � sin� : (3.124)The example 
hosen here was so simple that it perhaps makes the use of the wholeedi�
e of spheri
al harmoni
 expansions look a tri
e super
uous. The prin
iples involvedin this example, though, are no di�erent from the ones that would be involved in a more
ompli
ated example.4 General Properties of Se
ond-order ODE'sConsider the linear se
ond-order ODEy00 + p(x) y0 + q(x) y = 0 ; (4.1)where the prime denotes a derivative with respe
t to x:y0 � dydx ; y00 � d2ydx2 : (4.2)4.1 Singular points of the equationFirst, we introdu
e the notion of singular points of the equation. A point x = x0 is 
alledan ordinary point if p(x) and q(x) are �nite there.6 The point x = x0 is de�ned to be a6In this 
ourse we shall always use the word \�nite" in its proper sense, of meaning \not in�nite." Somephysi
ists have the tiresome habit of misusing the term to mean (sometimes, but not always!) \non-zero,"whi
h 
an 
ause unne
essary 
onfusion. (As in, for example, The heat bath had a �nite temperature, orThere is a �nite probability of winning the lottery.) Presumably, however, these same people would notdisagree with the mathemati
al fa
t that if x and y are �nite numbers, then x+ y is a �nite number too.Their in
onsisten
y is then apparent if one 
onsiders the spe
ial 
ase x = 1; y = �1. We shall have further
omments on linguisti
s later... 33



singular point if either p(x) or q(x) diverges at x = x0. For reasons that will be
ome 
learlater, it is useful to re�ne this de�nition, and subdivide singular points into regular singularpoints, and irregular singular points. They are de�ned as follows:� If either p(x) or q(x) diverges at x = x0, but (x� x0) p(x) and (x� x0)2 q(x) remain�nite, then x = x0 is 
alled a regular singular point.� If (x� x0) p(x) or (x� x0)2 q(x) diverges at x = x0, then x = x0 is 
alled an irregularsingular point.In other words, if the singularities are not too severe, meaning that a simple pole in p(x)is allowed, and a double pole in q(x) is allowed, then the singularity is a \regular" one. Aswe shall see, equations whose only singular points are regular ones admit better-behavedseries solutions than those with irregular singular points.As stated above, these de�nitions apply only for �nite values of x0. To analyse the pointx = 1, we 
an �rst perform the 
hange of independent variable from x to z = 1=x, andstudy the behaviour of the transformed equation at z = 0. Using the 
hain rule to writeddx = z0 ddz = �z2 ddz ; d2dx2 = z02 d2dz2 + z00 ddz = z4 d2dz2 + 2z3 ddz ; (4.3)where z0 � dz=dx, we see that the equation (4.1) be
omes, with y, p and q now viewed asy(1=z), p(1=z) and q(1=z), d2ydz2 + (2z � p)z2 dydz + qz4 y = 0 : (4.4)The point x =1 is therefore an ordinary point if ~p � (2z�p)z2 and ~q � qz4 are �nite at z = 0;it is a regular singular point if ~p or ~q diverges while z ~p and z2 ~q remain �nite at z = 0; andit is an irregular singular point if z ~p or z2 ~q diverges at z = 0.It is worthwhile pausing here to 
he
k the singularity stru
ture in a 
ouple of examples.Consider �rst the asso
iated Legendre equation (2.28). Rewriting the equation in the form(4.1), we have y00 � 2x1� x2 y0 + � �1� x2 � m2(1� x2)2� y = 0 : (4.5)Thus we see that all �nite values of x ex
ept x = �1 are ordinary points. There are regularsingular points at x = �1. De�ning x = 1=z, one �nds that (4.5) be
omesd2ydz2 � 2z1� z2 dydz � � �z2(1� z2) + m2(1� z2)2� y = 0 : (4.6)This shows that z = 0 is a regular singular point too. Therefore the singularities of theasso
iated Legendre equation 
omprise three regular singular points, at x = (�1; 1;1).34



These are also the singularities in the spe
ial 
ase of the Legendre equation, where m =0. It is, by the way, no 
oin
iden
e that the \trouble spots" that we en
ountered when
onstru
ting the series expansion of the Legendre equation were at x = �1, pre
isely at thelo
ations of singular points of the equation.We also en
ountered Bessel's equation, given by (2.33). Dividing by x2, this be
omesy00 + 1x y0 + �1� �2x2� y = 0 ; (4.7)showing that the only singular point within the range of �nite x is a regular singular pointat x = 0. Repla
ing x by z = 1=x to analyse the point at in�nity, we �nd that Bessel'sequation be
omes d2ydz2 + 1z dydz + � 1z4 � �2z2 � y = 0 : (4.8)The 1=z4 pole in ~q at z = 0 shows that the Bessel equation (4.7) has an irregular singularpoint at x =1, together with its regular singular point at x = 0.It is worth remarking, for future referen
e, that although Bessel's equation has an irreg-ular singular point, it is one of a rather spe
i�
 kind, with a 1=z4 pole in the 
oeÆ
ient ofy. This 
an a
tually be viewed as the superposition or 
on
uen
e of two regular singularpoints. Consider the situation of an ODE with two regular singular points, at x = a andx = b, for example with y00 + p(x) y0 + 1(x� a)2 (x� b)2 y = 0 : (4.9)Let us, for simpli
ity, suppose that here p(x) has no poles at x = a or x = b. Clearly,if we now 
hoose the parameters a and b to be equal then instead of having two regularsingular points at x = a and x = b, we will have one irregular singular point at x = a = b,with a fourth-order pole. Thus we may 
onsider Bessel's equation to be a 
on
uent limit ofan equation with three regular singular points. In fa
t most of the 
ommon se
ond-orderODE's that one en
ounters in physi
s either dire
tly have three regular singular points, orelse they are 
on
uent limits of equations with three regular singular points. So importantare su
h equations that the entire 
lass of se
ond-order ODE's with three regular singularpoints has been 
lassi�ed, and its solutions studied in great detail. It turns out that bymaking appropriate transformations of the independent and dependent variables, one 
anput any su
h equation into a standard 
anoni
al form, whi
h is known as the Hypergeometri
Equation. In this form, the three regular singular points are lo
ated at x = 0, x = 1 andx =1. The hypergeometri
 equation is the followingx(x� 1) y00 + [(a+ b+ 1)x � 
℄ y0 + a b y = 0 ; (4.10)35



where a, b and 
 are 
onstants. The regular singular points at x = 0 and x = 1 are evidentby inspe
tion, and the regular singular point at x =1 
an be seen easily after making thestandard x = 1=z transformation.4.2 The Wronskian, and Series SolutionsHere, we shall undertake a somewhat more systemati
 study of some of the properties ofse
ond-order ODE's, and their solutions. We shall, as usual, take the equation to beL(y) � y00(x) + p(x) y0(x) + q(x) y(x) = 0 : (4.11)To begin, let us 
onsider the question of how many independent solutions to this equationthere will be.4.2.1 The Wronskian, and linear independen
e of solutionsThe Wronskian is a fun
tion de�ned as follows. Suppose that y1 and y2 are two solutionsof (4.11). Then we de�ne the Wronskian �(y1; y2) of the two solutions by�(y1; y2) � y1 y02 � y2 y01 : (4.12)It is evident that if the Wronskian vanishes, then we will havey01y1 = y02y2 ; (4.13)whi
h integrates to give log y1 = log y2+ 
onstant, hen
e implying that y1 = 
 y2, where 
 issome 
onstant. Thus the solutions y1 and y2 are linearly dependent. Re
all that in generala set of fun
tions ui are said to be linearly dependent if and only if there exists a set of
onstants ai su
h that Xi ai ui = 0 : (4.14)Conversely, if y1 and y2 are linearly dependent, say y1 = 
 y2, then it follows that theWronskian vanishes, �(y1; y2) = y1(x) (
 y01(x))� (
 y1(x)) y01(x) = 0 : (4.15)Thus 
ombing this with the previous observation, we have the result that that the Wronskian�(y1; y2) vanishes if and only if the two solutions y1 and y2 are linearly dependent.In fa
t, if one is given a parti
ular solution y1 to the se
ond-order linear ODE, theWronskian 
an be used in order to 
onstru
t a se
ond, linearly-independent solution y2, asfollows. 36



Let us suppose we are given a solution y1(x). We then pi
k a spe
i�
 point x = x0,whi
h we will view as our starting point. The point x0 will be assumed to be generi
, in thesense that y1(x0) and y01(x0) are non-vanishing. We may then 
onsider a se
ond solutiony2(x), su
h that at x = x0, whi
h we shall 
hara
terise by spe
ifying the values of y2(x)and y02(x) at x = x0. These two 
onstants 
an 
onveniently be written asy2(x0) = �y1(x0) ; y02(x0) = � y01(x0) ; (4.16)where � and � are 
onstants. (This is nothing but a spe
i�
ation of the \initial 
onditions"for y2(x0) and y02(x0). It happens to be 
onvenient to express them as 
onstant multiples �and � of the non-vanishing 
onstants y1(x0) and y01(x0).) Thus at x = x0, we will have�(y1; y2)(x0) = (� � �) y1(x0) y01(x0) 6= 0 : (4.17)It is 
lear therefore that at x = x0, y2 is linearly independent of y1 provided that � 6= �.We now look at what happens to �(y1; y2) as we move away from x = x0. To do this,di�erentiate the de�nition (4.12) of the Wronskian, and then use the original di�erentialequation (4.11) to simply the result:d�dx = y1 y002 � y2 y001 ;= �y1 (p y02 + q y2) + y2 (p y01 + q y1) ;= �p� = �� d log fdx ; (4.18)where we have de�ned f , for 
onvenien
e, byf(x) � exp �Z xx0 p(t) dt� : (4.19)Thus we 
an integrate (4.18), to give�(x) = �(x0) exp �� Z xx0 p(t) dt� = �(x0)f(x) : (4.20)Thus we see that �(x), whi
h was already determined to be non-vanishing at x = x0, willbe non-vanishing for all x, at least within some neighbourhood of the point x0, and hen
ethe solution y2 is independent of y1 for all x.We have established that if we have two solutions y1 and y2 for whi
h y02(x0)=y2(x0) 6=y01(x0)=y1(x0), then these two solutions are linearly independent. In fa
t we 
an do better,and a
tually 
onstru
t su
h a se
ond independent solution y2(x), from a given solutiony1(x).. To do this, we observe that from the de�nition of the Wronskian we may dedu
e�(x) = y1 y02 � y2 y01 = y21 ddx�y2y1� ; (4.21)37



when
e y2(x) = y1(x) Z xx1 �(t)y21(t) dt = �(x0) y1(x) Z xx1 dtf(t) y21(t) ; (4.22)where x1 is an arbitrary 
onstant, and for the se
ond equality we have made use of theexpression (4.20). Di�erent 
hoi
es for x1 shift the value of the integral by a 
onstant, andtherefore shift the expression for for y2(x) by a 
onstant multiple of y1(x). This arbitrarinessis not of interest to us right now, sin
e we 
an always take linear superpositions of solutionsof a linear equation, and thereby get another solution. Sin
e we already know that y1(x)solves the equation, it is not interesting, for now, to add a 
onstant multiple of y1(x) toour 
onstru
tion of a linearly-independent solution y2. (If y2(x) is linearly independent ofy1(x), then so is y2(x) + k y1(x), for any 
onstant k.)We are also not interested, for now, in the freedom to res
ale our 
onstru
tion of these
ond solution y2(x) by a 
onstant fa
tor; obviously, sin
e the di�erential equation is linear,then if y2(x) is a solution then so is 
 y2(x), for any 
onstant 
. We may therefore omit the
onstant prefa
tor in (4.22), and work with a res
aled y2. In summary, we may 
on
ludethat if y1 is a solution of the di�erential equation (4.11), then a se
ond, linearly independent,solution y2(x) is given by y2(x) = Z x dty21(t) f(t) ; (4.23)where f(t) is given by (4.19) and the 
hoi
e of lower limit of integration is not parti
ularlyimportant. Although it is merely a 
onsisten
y 
he
k that we made no mistakes, it is infa
t easy to verify by dire
t substitution that (4.23) satis�es the original equation (4.11),given that y1 does.The question now arises as to whether there 
ould be a third solution y3 of (4.11),independent both of y1 and y2. Our results above would already suggest not, sin
e wefollowed a rather general route by means of whi
h we were led to 
onstru
t y2 in (4.22);the only arbitrariness was in the 
hoi
e of two 
onstants of integration, and 
hanging thesemerely res
ales our y2 by a 
onstant fa
tor, and adds a 
onstant multiple of y1 to it. It isinstru
tive, however, to 
onsider the following dire
t demonstration that there 
an be nothird independent solution:Suppose we do postulate a third solution y3. Our aim will be to show that it 
an in fa
tbe written as a linear 
ombination of y1 and y2. Begin by pi
king a generi
 point x = x0,at whi
h we shall spe
ify the values of y3(x0) and y03(x0). Rather than sayingy3(x0) = a ; y03(x0) = b ; (4.24)it is 
onvenient instead to parameterise y3(x0) and y03(x0) in terms of 
onstants A and B38



su
h that y3(x0) = Ay1(x0) +B y2(x0) ; y03(x0) = Ay01(x0) +B y02(x0) : (4.25)It is easy to see that this is an equally good parameterisation. Simple algebra shows thatthe 
onstants A and B are related to a and b byA = a y02(x0)� b y2(x0)�(y1; y2)0 ; B = b y1(x0)� a y01(x0)�(y1; y2)0 ; (4.26)where �(y1; y2)0 means the Wronskian evaluated at x = x0, namely�(y1; y2)0 = y1(x0) y02(x0)� y2(x0) y01(x0) : (4.27)The 
ru
ial point is that by our intial assumption of the linear independen
e of y1 and y2,we must have �(y1; y2)0 6= 0, and thus nothing prevents us solving (4.26) for A and B; wehave two independent equations determining the two 
onstants A and B. Now, we 
an usethe original di�erential equation (4.11) to dedu
e thaty003(x0) = �p(x0) y03(x0)� q(x0) y3(x0) ; (4.28)= �p(x0) [Ay01(x0) +B y02(x0)℄� q(x0) [Ay1(x0) +B y2(x0)℄ ; (4.29)= Ay001 (x0) +B y002(x0) :We 
an then repeat these steps for all the higher derivatives of y3 at x = x0, dedu
ing thaty(n)3 (x0) = Ay(n)1 (x0) +B y(n)2 (x0) ; (4.30)where y(n) denotes the n'th derivative. But we know from Taylor's theorem that withinits radius of 
onvergen
e, we 
an write any fun
tion h(x) in terms of all its derivatives atx = x0: h(x) = Xn�0 1n! (x� x0)n h(n)(x0) : (4.31)Therefore it follows from (4.30) thaty3(x) = Ay1(x) +B y2(x) ; (4.32)and hen
e the solution y3 is linearly dependent on y1 and y2, at least within the radius of
onvergen
e of the power series expansion around x0.To re
apitulate, what we did was to 
onsider a 
ompletely arbitrary solution y3 of these
ond-order ODE (4.11). We showed that it 
an always be written as a linear 
ombinationof the two independent solutions y1 and y2, at least within the range of x for whi
h they have
onvergent power-series expansions. Therefore there are exa
tly two linearly independentsolutions. It is 
lear that very similar arguments 
ould be used for an N 'th-order ODE, andwould show that it has N linearly-independent solutions.39



4.3 Solution of the inhomogeneous equationWe have so far 
onsidered the solutions of the homogeneous equation (4.11), or L(y) =0, for whi
h ea
h term is of degree 1 in y or its derivatives. We may also 
onsider theinhomogeneous equation L(y) = r(x), i.e.L(y) � y00(x) + p(x) y0(x) + q(x) y(x) = r(x) : (4.33)One 
an think of the fun
tion r(x) as being like a \sour
e term" for the �eld y. Here,we shall show that we 
an obtain a formal solution for this equation, in terms of the twolinearly-independent solutions y1 and y2 of the homogeneous equation, L(y1) = 0, L(y2) = 0that we dis
ussed previously. In other words, we suppose that we know how to solve thehomogeneous equation, and now we wish to use these known solutions y1 and y2 in orderto obtain the solution of the inhomogeneous equation.To do this, �rst 
onsider what happens if we write y = u v in (4.33). It follows thatL(u v) = v L(u) + u v00 + (u p+ 2u0) v0 = r : (4.34)Now 
hoose u = y1, where y1 is one of the solutions of the homogeneous equation, L(y1) = 0.Thus we get v00 + �p+ 2(y01=y1)� v0 = r=y1 ; (4.35)after dividing out by y1. We saw previously from the de�nition (4.12) of the Wronskianthat (y2=y1)0 = �=y21, and also �0 = �p(x)�, and hen
e we will have�y2y1�00 = ��y21 �0 = �0y21 � 2 y01�y31 = �p �y21 � 2 y01y1 �y21 = �(p+ 2(y01=y1)) �y21 : (4.36)This 
an therefore be written as(y2=y1)00 + [p+ 2(y01=y1)℄ (y2=y1)0 = 0 : (4.37)Next, multiply this equation by v0, multiply (4.35) by (y2=y1)0, and subtra
t the formerfrom the latter. This givesv00 (y2=y1)0 � v0 (y2=y1)00 = (r=y1) (y2=y1)0 ; (4.38)whi
h 
an be rewritten as[(y2=y1)0℄2 ddx� v0(y2=y1)0� = (r=y1) (y2=y1)0 ; (4.39)and hen
e ddx� v0(y2=y1)0� = r y1� : (4.40)40



This equation 
an be integrated on
e to givev0 = (y2=y1)0 Z r y1� ; (4.41)or, in other words, v0 = �r y2� + ddxh(y2=y1) Z r y1� i : (4.42)Integrating again, we have v = � Z r y2� + y2y1 Z r y1� : (4.43)Now re
all that we originally expressed our solution y of the inhomogeneous equation L(y) =r as y = y1 v. Therefore, we have the formal result that y is given byy = �y1 Z ry2� + y2 Z r y1� : (4.44)Making this more expli
it, it readsy(x) = y2(x) Z x dt r(t) y1(t)y1(t) y02(t)� y2(t) y01(t)�y1(x) Z x dt r(t) y2(t)y1(t) y02(t)� y2(t) y01(t)� : (4.45)Thus we have the answer expressed purely in terms of the two independent solutions y1and y2 of the homogeneous equation (whi
h we suppose we know), and the sour
e term r in(4.33). Note that what we have written in (4.45) is a parti
ular solution, to whi
h arbitraryamounts of the two homogeneous solutions y1 and y2 
an be added. In fa
t the freedom to
hange the lower limits of integration in the two integrals in (4.45) pre
isely 
orresponds toadding multiples of the solutions y1(x) and y2(x) of the homogeneous equation.4.4 Series Solutions of the Homogeneous Equation4.4.1 Expansion around ordinary pointLet us now return to a more detailed study the 
onstru
tion of series solutions of se
ond-order linear ODE's. To begin, 
onsider the 
ase where we expand the solution of (4.11)around an ordinary point x = a, i.e. a point for whi
h p(a) and q(a) are �nite. In thevi
inity of x = a, we 
an therefore expand p(x) and q(x) in Taylor series,p(x) = p(a) + (x� a) p0(a) + 12 (x� a)2 p00(a) + � � � ;q(x) = q(a) + (x� a) q0(a) + 12(x� a)2 q00(a) + � � � : (4.46)Assuming that the solution y(x) is also analyti
 near x = a, we 
an also expand it in aTaylor series: y(x) = a0 + a1 (x� a) + a2 (x� a)2 + � � � : (4.47)41



Substituting these into (4.11), we get0 = [2a2 + a1 p(a) + a0 q(a)℄+[6a3 + 2a2 p(a) + a1 p0(a) + a0 q0(a) + a1 q(a)℄ (x � a) + � � � : (4.48)By equating the 
oeÆ
ients of ea
h power of (x � a) to zero, we obtain a sequen
e ofequations that determine the 
oeÆ
ients an with n � 2 in terms of a0 and a1. Thus fromthe �rst term, in (x� a)0, we solve for a2 in terms of a0 and a1,a2 = �12(a1 p(a) + a0 q(a)) : (4.49)From the term in (x � a)1, we then solve for a3 in terms of a0, a1 and a2. Sin
e we havealready solved for a2 in terms of a0 and a1, this then gives us a3 in terms of a0 and a1.Continuing to higher orders, we thus obtain all the an for n � 2 in terms of a0 and a1.Sin
e the two initial 
oeÆ
ients a0 and a1 are arbitrary, these parameterise the two-dimensional spa
e of solutions of the se
ond-order ODE. Thus we may think of the generalsolution as being given by y = a0 y1 + a1 y2 ; (4.50)where y1 and y2 are the two independent solutions determined by our series expansions.(The solution y1 is the one obtained by taking a1 = 0, while the solution y2 is obtained bytaking a0 = 0.) Solving for the various higher 
oeÆ
ients an as des
ribed above, one �ndsthat the two solutions are given byy1 = 1� 12q(a) (x� a)2 + 16 [(q(a)p(a) � q0(a)℄ (x � a)3 + � � � ;y2 = (x� a)� 12p(a) (x� a)2 + 16 [p2(a)� p0(a)� q(a)℄ (x � a)3 + � � � : (4.51)Note that the two basi
 solutions y1 and y2 have the 
onvenient properties thaty1(a) = 1 ; y01(a) = 0 ;y2(a) = 0 ; y02(a) = 1 : (4.52)Thus if one is looking for the solution that satis�es the boundary 
onditions y(a) = A,y0(a) = B, then the answer is y = Ay1 +B y2.We were able to obtain analyti
 solutions (i.e. solutions as Taylor series) in the neigh-bourhood of x = a be
ause this was an ordinary point, where p(x) and q(x) were �nite, andthemselves had Taylor-series expansions. The series solution will be valid within a radiusof 
onvergen
e determined by the 
losest singular point. Thus, for example, if there is a42



singular point of the ODE at x = b, where b > a, then the series solutions will 
onverge forall x su
h that jx� aj < b� a : (4.53)In general, the series solutions will be
ome divergent when x approa
hes either of thevalues that saturates this inequality. We saw an example of this when we studied the seriessolution of the Legendre equation. We expanded around the ordinary point at x = 0,and sure enough, we found that the series solutions be
ame divergent at x = �1, whi
h
orrespond to regular singular points of the Legendre equation. (Of 
ourse we also observedthat in that 
ase we 
ould arrange, by a judi
ious 
hoi
e of the parameters of the equation,to get a power-series solution that a
tually terminated, thereby avoiding the divergen
e ofthe generi
 solution.)4.4.2 Expansion around singular pointSo far, we 
onsidered the 
ase where we expand around an ordinary point x = a, for whi
hp(a) and q(a) are �nite. Suppose now that the fun
tion p(x) has a pole at x = a, while q(a)is still �nite. Let us assume that p(x) has a pole of degree N , meaning that we 
an write itas p(x) = F (x)(x� a)N ; (4.54)where F (x) is analyti
 at x = a, implying that it has a Taylor expansionF (x) = F (a) + F 0(a) (x � a) + 12! F 00(a) (x� a)2 + � � � ; (4.55)and hen
e p(x) = F (a)(x� a)N + F 0(a)(x� a)N�1 + F 00(a)2(x� a)N�3 + � � � : (4.56)Note that F (a) is nonzero, sin
e we are assuming that the 
oeÆ
ient of the leading-order(x� a)�N pole is nonzero. As we shall illustrate below, we will now �nd that 
ertain of the
oeÆ
ients ai in the series expansion (4.47) are zero, namelya1 = a2 = � � � = aN = 0 : (4.57)However, the 
oeÆ
ients aN+1, aN+2, aN+3; � � � 
an be solved for in terms of a0. This meansthat in this 
ase we have found just one of the two independent solutions of the ODE as aseries expansion of the form (4.47).Here's an example to show what is happening. Suppose that p(x) has a double pole atx = a (i.e. N = 2). Thus we have p(x) = F (x)(x� a)2 : (4.58)43



Plugging the series expansion (4.47) into the equation (4.11), with this assumed form forp(x), we will get0 = a1 F (a)(x� a)2 + 2a2 F (a) + a1 F 0(a)x� a+[2a2 + q(a) a0 + 3a3 F (a) + 2a2 F 0(a) + 12a1 F 00(a)℄ + � � � : (4.59)Thus the 
oeÆ
ient of (x�a)�2 tells us that a1 = 0, whi
h in turn means that the 
oeÆ
ientof (x � a)�1 implies that a2 = 0. The 
oeÆ
ient of (x � a)0 then allows us to solve for a3in terms of a0. The higher powers of (x � a) will then allow us to solve for a4, a5, et
., interms of a0. It is not hard to see that this gives the series solutiony1 = 1� q(a)3F (a) (x� a)3 + h q(a)2F 2(a) + q(a)F 0(a)4F 2(a) � q0(a)4F (a)i (x� a)4 + � � � ; (4.60)where we have, for simpli
ity, taken a0 = 1.We've found one solution in this example, as a power series in (x � a). But what ofthe other solution? We know from our previous general analysis that there should be twoindependent solutions. Evidently, the se
ond solution must not be expressible as a powerseries of the form (4.47); hen
e our failure to �nd it by this means. Re
all, however, that wewere able earlier to give a general 
onstru
tion of the se
ond, linearly-independent, solutionof any se
ond-order ODE, if we were given one solution. The se
ond solution was given by(4.22), and thus is of the form y2(x) = y1(x) Z xx0 dtf(t) y21(t) ; (4.61)where p(x) = d log f=dx. Now, we are assuming that p(x) is given by (4.58), where F (x) isanalyti
 at x = a (i.e. it admits a Taylor expansion around the point x = a. Therefore we
an expand F (x) in a power series, givingp(x) = F (a)(x� a)2 + F 0(a)x� a + 12F 00(a) + 16F 000(a) (x � a) + � � � : (4.62)Thus we havelog f = Z x p = � F (a)x� a + F 0(a) log(x� a) + 12F 00(a) (x � a) + � � � ; (4.63)and hen
e 1f(x) = exp� F (a)x� a� (x� a)�F 0(a) exp[12F 00(a) (x� a) + � � �℄ ;= exp� F (a)x� a� (x� a)�F 0(a)G(x) ; (4.64)44



where G(x) is an analyti
 fun
tion. Sin
e y1(x) is an analyti
 fun
tion (admiting a Talorexpansion around the point x = a), it follows that 1=y21(x) is analyti
 too, and so �nally we
on
lude from (4.61) thaty2(x) = y1(x) Z x eF (a)=(t�a) (t� a)�F 0(a)H(t) dt ; (4.65)where H(t) is some analyti
 fun
tion.The fun
tion (4.65) behaves badly at t = a, be
ause of the fa
tor eF (a)=(t�a). Forexample, if F (a) is positive, this fun
tion blows up faster than any power of (t � a) ast approa
hes a from above. (Think of the power-series expansion for ez to see this; ez =Pn�0 zn=n!. If z is big enough, then the higher and higher powers of z be
ome the dominantones here.) Su
h divergent behaviour whi
h is worse than any power law is known as anessential singularity. Fun
tions with this type of behaviour 
annot be expanded in a Taylorseries around the essential singularity. This explains why we were unable to �nd a power-series expansion for the se
ond solution in this 
ase.We ran into this problem with the 
onstru
tion of the se
ond solution be
ause we as-sumed that p(x) had a double pole at x = a, as in (4.58). Suppose instead p(x) had only asingle pole, so that p(x) = F (x)x� a ; (4.66)where F (x) is analyti
 at x = a. Thus we will now havep(x) = F (a)x� a + F 0(a) + 12F 00(a) (x � a) + � � � : (4.67)Integrating to get log f , we will now havelog f = F (a) log(x� a) + F 0(a) (x� a) + � � � ; (4.68)and so (4.61) will now givey2(x) = y1(x) Z x(x� a)�F (a)H(t) dt ; (4.69)where H(t) is some analyti
 fun
tion. This is a mu
h better situation than the previousone. Now, instead of an essential singularity, we instead merely fa
e a power-law singularbehaviour. In fa
t if we expand H(t) in a Taylor series around t = a, we 
an integrate termby term, leading to a result of the formy2(x) = y1(x) Xn�0 
n (x� a)n+1�F (a) : (4.70)45



Generi
ally, F (a) will not be an integer, and so the series involves fra
tional powers of(x � a). This is a rather mild kind of singularity, 
alled a bran
h 
ut. We will study su
hthings in more detail later in the 
ourse.Let us pause to summarise what we have dis
overed. If we look at an ordinary pointx = a, for whi
h p(a) and q(a) are �nite, then we 
an obtain the two independent solutionsof the se
ond-order ODE (4.11) as power-series expansions of the form (4.47). If, on theother hand, p(x) has a pole at x = a, while q(a) is still assumed to be �nite, then we
an only obtain one solution of the ODE as a power series of the form (4.47). The se
ondsolution must instead now be obtained using the general 
onstru
tion (4.61). However, ifp(x) has a pole of degree N � 2, the behaviour of this se
ond solution will be very badaround x = a, with an essential singularity. By 
ontrast, if p(x) has only a simple pole, these
ond solution will be mu
h better behaved. It will still, in general, not be a simple powerseries, but it will have nothing worse than a bran
h-
ut singularity in its behaviour aroundx = a. In fa
t, it is evident from (4.70) that the se
ond solution, in the 
ase where p(x) hasa pole only of degree N = 1, has a series expansion of the formy2(x) = Xn�0 bn xn+s ; (4.71)for some 
oeÆ
ients bn, where s is a 
onstant related to F (a).In general, we 
an de�ne a Regular Singular Point as one where the general solutionof the ODE has a pole or bran
h 
ut. On the other hand, an Irregular Singular Point isde�ned to be one where the general solution has an essential singularity.4.4.3 Indi
ial EquationWe analysed above what happens if q(x) is analyti
 at x = a, but p(x) is singular. Supposenow that we 
onsider the more general situation where both p(x) and q(x) are singular atx = a. Spe
i�
ally, let us 
onsider the situation whenp(x) = F (x)(x� a)N ; q(x) = G(x)(x� a)M ; (4.72)where F (x) and G(x) are themselves analyti
 at x = a, and N and M are positive integers.To study the behaviour of the solutions, let us 
onsider a solution y of L(y) = 0, wherewe shall write y = u v. The idea is that we are going to fa
tor o� all the singular behaviour ofy in the fun
tion v, while u will be taken to be analyti
. (Clearly we 
an always make somesu
h split; if all else failed, we 
ould take u = 1, after all! The key point is that we want to46



make a useful split of this sort). Now, it follows that our equation L(y) = y00+p y0+q y = 0be
omes u00 +H u0 + J u = 0 ; (4.73)where the fun
tions H and J are given byH = p+ 2v0v ; J = q + v00v + p v0v : (4.74)Now, from what we saw in the previous se
tion, we know that provided the fun
tion Jin (4.73) is analyti
, there will be at least one analyti
 solution u, even if H has a pole.Thus we will 
onsider 
ases where H has poles, but where we 
an 
hoose the fun
tion v insu
h a way that J is analyti
. We shall then 
hoose u to be the analyti
 solution of (4.73).Let us 
onsider �rst the 
ir
umstan
es under whi
h x = a will be a regular singularpoint. By de�nition, this will mean that the fun
tion v, into whi
h we isolated all thesingular behaviour of the solution, will have behaviour of the formv = (z � a)s ; (4.75)for some 
onstant index s. For now, we shall take v to be pre
isely given by (4.75). Thisimplies that v0=v = s=(x� a) and v00=v = s(s� 1)=(x � a)2, and hen
e J de�ned in (4.74)is given by J = q(x) + s p(x)x� a + s(s� 1)(x� a)2 : (4.76)J 
an be made to be analyti
 if q(x) has a pole of order 2 or less, and if p(x) has a pole oforder 1 or less. Thus we have m = 1 and n = 2 in (4.72), namelyp(x) = F (x)x� a ; q(x) = G(x)(x� a)2 : (4.77)Let us assume �rst that F 0(a) = 0 and G0(a) = 0. This means thatp(x) = F (a)x� a +O((x� a)) ; q(x) = G(a)(x� a)2 +O(1) ; (4.78)and so J = G(a)(x� a)2 + sF (a)(x� a)2 + s(s� 1)(x� a)2 + regular terms : (4.79)Our assumption means that there is no �rst-order pole in J . We 
an then arrange for these
ond-order pole to be removed, provided we 
hoose s su
h thats2 + [F (a) � 1℄ s+G(a) = 0 : (4.80)47



This is 
alled the Indi
ial Equation for the solution.7 Its two roots, whi
h we may 
all s1and s2, 
orrespondingly give us two solutions of the original ODE,y1 = (x� a)s1 u1 ; y2 = (x� a)s2 u2 ; (4.81)where u1 and u2 are analyti
 at x = a. Without loss of generality, it is useful to assumethat we order the roots so that s1 � s2.In a generi
 
ase where the two roots s1 and s2 satisfy s1 � s2 6= integer, we obtaintwo independent solutions by this method. If, on the other hand, s1 = s2, (and usually, ifs1 � s2 =integer), one �nds that u2 is related to u1 by u2 = (x � a)s1�s2 u1, and so from(4.81) we see that we will get only one solution by this method. The se
ond solution 
an,however, still be obtained using (4.22),y2(x) = y1(x) Z x dtf(t) y1(t)2 ; (4.82)where A is a 
onstant, and p(x) is written as p = d log f=dx. Let us look at this in moredetail.Sin
e p(x) is given by (4.77) it follows that1f(x) = exp�� Z x F (a)(t� a) dt+ � � � � = (x� a)�F (a) g(x) ; (4.83)where g(x) is the analyti
 fun
tion that 
omes from integrating the higher-order terms.Now, the indi
ial equation (4.80) 
an be written as (s � s1)(s � s2) = 0, where s1 and s2are its roots, and so we see that s1 + s2 = 1 � F (a), and hen
e 1=f(x) in (4.83) has theform (x�a)1�s1�s2 times the analyti
 fun
tion g(x). Plugging the form of the �rst solutiongiven in (4.81), for y1, into (4.82), we therefore �nd that the integrand is of the form(t� a)s1+s2�1 g(t)(t� a)2s1 u1(t)2 = h(t) (t � a)�s1+s2�1 ; (4.84)where h(t) = g(t)=u1(t)2 is again analyti
. If we expand h(t) ash(t) = Xn�0 bn (t� a)n ; (4.85)7If F 0(a) or G0(a) were non-zero, we would also have a �rst-order pole in J , of the form [G0(a) +s F 0(a)℄=(x� a), as 
an be seen by Taylor expanding F (x) and G(x) around x = a. It is straightforward tosee that we 
an take 
are of this by modifying the 
hoi
e (4.75) for the fun
tion v(x) slightly, by multiplyingit by a suitable fun
tion w(x) 
hosen so that (v w)0=(v w) and (v w)00=(v w) now have extra terms whi
h,when substituted into (4.76), produ
e remove the �rst-order pole in J resulting from the non-vanishing ofF 0(a) and G0(a). 48



then inserting this into (4.84), and then (4.82), and integrating term by term, we obtainan expression for the se
ond solution y2(x). In general, i.e. when s1 � s2 is not equal to aninteger, this will give y2(x) = u1(x) Xn�0 bnn� s1 + s2 (x� a)n+s2 : (4.86)If s1 � s2 is not equal to an integer, we saw previously that we had already found thetwo linearly-independent solutions of the di�erential equation, given in (4.81). In these
ir
umstan
es, the solution (4.86) must be just equivalent to the se
ond solution alreadyfound in (4.81).8If instead s1�s2 is an integer, it is 
lear from (4.86) that if the 
onstant bn with n = s1�s2is non-vanishing, then the expression (4.86) is invalid, be
ause of the vanishing denominatorn�s1+s2 for this term in the sum. What has happened, of 
ourse, is that this term in (4.86)
ame from integrating 1=(t�a). In the usual way, R x dt (t�a)k = (x�a)k+1=(k+1) for allvalues of the 
onstant k ex
ept for k = �1, when instead we get R x dt (t�a)�1 = log(x�a).Thus, when s1 � s2 is an integer we must omit the term with n = s1 � s2 from the sum in(4.86), and handle the integration separately. The net result is that we gety2(x) = bs1�s2 y1(x) log(x� a) + u1(x)Xn�00 bnn� s1 + s2 (x� a)n+s2 ; (4.87)where we use the notation P0n�0 to indi
ate that the term n = s1 � s2 is omitted in thesummation. Thus in general, to �nd the se
ond independent solution in a series expansionaround a regular singular point x = a, we should in
lude a log(x�a) term in the postulatedform of the se
ond solution. In fa
t, from (4.87), we see that we should try a series expansiony2(x) = Ay1(x) log(x� a) +Xn 
n (x� a)n+s ; (4.88)where A is a 
onstant and y1(x) is the �rst solution.It is be
oming 
lear by this stage that one 
ould spend a lifetime exploring all the spe
ial
ases and abnormalities and perversities in the stru
ture of the solutions of ODE's. Let ustherefore bring this dis
ussion to a 
lose, with a summary of what we have found, and whatone �nds in a more exhaustive analysis of all the possibilities.8The expression for y2(x) in (4.81) and the expression for y2(x) in (4.86) may not be literally identi
al;the one may be related to the other by a 
onstant s
aling and the addition of some 
onstant multiple of y1(x).The essential point is that when s1 � s2 is not an integer, the expression for y2(x) in (4.81) is guaranteedto be linearly independent of y1(x). Likewise, our 
onstru
tion of a se
ond solution y2(x) in (4.86) is alsoguaranteed to be linearly independent of y1(x). It is to be hoped that no undue 
onfusion has been 
asuedby giving the results of these two 
onstru
tions for the se
ond solution the same name y2(x).49



1. If we are seeking series solutions expanded around an ordinary point x = a of thedi�erential equation y00 + p(x) y0 + q(x) y = 0 (where, by de�nition, p(x) and q(x) areanalyti
 at x = a), then the solutions will both be analyti
, and take the formy(x) = X(n)�0 an (x� a)n : (4.89)The 
oeÆ
ients an satisfy a re
ursion relation whi
h determines all the an in terms ofa0 and a1. Thus we have two linearly-independent analyti
 solutions.2. If we are seeking series solutions expanded around a regular singular point x = a ofthe di�erential equation y00+ p(x) y0 + q(x) y = 0 (where, by de�nition, p(x) and q(x)are of the forms p(x) = F (x)=(x�a) and q(x) = G(x)=(g�a)2, where F (x) and G(x)are analyti
 at x = a), then we should try an expansion of the formy(x) = Xn�0 an (x� a)n+s : (4.90)The 
oeÆ
ients an will satisfy a re
ursion relation, and in addition the quantity s willsatisfy an indi
ial equation, quadrati
 in s:(s� s1)(s� s2) = 0 : (4.91)If s1 � s2 6= integer, one will obtain the two independent solutions by this method,asso
iated with the two values s = s1 and s = s2 for the index. If s1 = s2, and usually,if s1 � s2 = integer, only one linearly independent solution, say y1(x), will arise fromthis 
onstru
tion. The se
ond solution 
an be obtained by trying a series expansionof the form y2(x) = Ay1(x) log(x� a) +Xn�0 
n (x� a)n : (4.92)3. If p(x) has a pole of order higher than 1 at x = a, or q(x) has a pole of order higherthan 2 at x = a, then at least one, and possibly both, of the solutions will have anessential singularity at x = a. Note, however, that if q(x) is analyti
 while p(x) has apole of arbitrary order n, then one of the solutions is analyti
 at x = a, as we saw inse
tion 4.4.2.4. If p(x) or q(x) themselves have worse singularities than poles, the solutions will beeven more pathologi
al.
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4.5 Sturm-Liouville Theory4.5.1 Self-adjoint operatorsIn the previous se
tions, we dis
ussed 
ertain aspe
ts of how to 
onstru
t the solutionsof se
ond-order linear ODE's in 
onsiderable detail. Here, we shall take a look at somegeneral properties of the solutions of the ODE. To begin, let us 
onsider a general 
lass ofse
ond-order di�erential operator L, of the formL(u) = p0(x)u00 + p1(x)u0 + p2(x)u : (4.93)This is very mu
h of the kind we dis
ussed previously, as in (4.1), ex
ept that now we havea fun
tion of x multiplying the u00 term too. We shall assume that we are interested instudying this operator in some interval a � x � b, and that the fun
tions p0(x), p1(x) andp2(x) are all real in this region. Furthermore, we assume that p0(x) does not vanish withinthe interval, i.e. for a < x < b, and p1(x) and p2(x) remain �nite in the interval.9 In otherwords, the equation L(u) = 0 has no singular points within the interval, a < x < b. Thepoints x = a and x = b themselves may be singular points, and indeed they 
ommonly are.Now, we may de�ne the adjoint L of the operator L, as follows:L(u) � d2dx2 (p0 u)� ddx(p1 u) + p2 u= p0 u00 + (2p00 � p1)u0 + (p000 � p01 + p2)u : (4.94)The reason for introdu
ing this operator 
an be seen from the following. Suppose we 
onsiderthe integral Z ba dx v Lu = Z ba dx v (p0 u00 + p1 u0 + p2 u) ; (4.95)and now integrate by parts to get the derivatives o� u. Suppose that, for whatever reason,the boundary terms in the integrations by parts vanish, so that we 
an simply use the ruleZ dxf(x) g0(x) �! � Z dxf 0(x) g(x) : (4.96)In other words, we assume that our 
lass of fun
tions is su
h that[f(x) g(x)℄ba = 0 : (4.97)Then, after integrating by parts twi
e on the �rst term in (4.95), and on
e on the se
ondterm, we shall have Z ba dx((p0 v)00 � (p1 v)0 + p2 v)u ; (4.98)9To 
omplete all the te
hni
al spe
i�
ation, we shall assume that the �rst 2 derivatives of p0 are 
ontin-uous, the �rst derivative of p1 is 
ontinuous, and that p2 is 
ontinuous, for a � x � b.51



and so Z ba dx v Lu = Z ba dx(Lv)u ; (4.99)where L is de�ned in equation (4.94). So the adjoint operator L is the one that arises whenwe throw the derivatives over from the original operand fun
tion u and onto the fun
tion vthat multiplies it in (4.95). We shall dis
uss later why we dropped the boundary terms.It is 
lear that if the fun
tions pi(x) are related to ea
h other in an appropriate way,then the adjoint operator L will in fa
t be identi
al to the original operator L. From these
ond line in (4.94), we see that this will be true if it happens to be the 
ase that p0 andp1 are related by p00(x) = p1(x) : (4.100)Then, we shall have Lu = Lu = p0 u00 + p00 u0 + p2 u = (p0 u0)0 + p2 u : (4.101)Now that we are down to just two fun
tion p0 and p2, we may as well give them nameswithout indi
es, say P (x) and Q(x). Not surprisingly, an operator L that is equal to itsadjoint L is 
alled a self-adjoint operator.Note that any di�erential operator of the form (4.93), even if it is not itself self-adjoint,is related to a self-adjoint operator that is obtained by multiplying it by some appropriatefun
tion h(x). To see, this, we note that the analogue of (4.100) for the operator multipliedby h will be (h p0)0 = h p1, or in other words,h0h = p1 � p00p0 : (4.102)This equation 
an then simply be integrated to determine the required multiplying fun
tionh that will make the operator be
ome self-adjoint. (Re
all that we imposed the 
onditionp0 6= 0 at the outset, so there is no problem in prin
iple with performing the integration.)Thus we 
an pro
eed with our dis
ussion by assuming that by this means, we have renderedour operator self-adjoint.4.5.2 The Sturm-Liouville eigenvalue problemAssuming now that we have a self-adjoint operator L, we may 
onsider the following eigen-value problem, Lu(x) + �w(x)u(x) = 0 ; (4.103)52



where w(x) is some given fun
tion, 
alled a weight fun
tion or density fun
tion, and � is a
onstant. It is assumed that w(x) > 0 in the interval a � x � b, ex
ept possibly for isolatedpoints where w(x) = 0.The idea is that we look for solutions u(x), subje
t to 
ertain boundary 
onditionsimposed at x = a and x = b. By analogy with the eigenvalue problem for a matrix M witheigenve
tors V and eigenvalues � M V = �V ; (4.104)the solutions u(x) to (4.103) are 
alled eigenfun
tions, and the 
orresponding 
onstant � is
alled the eigenvalue. The typi
al situation is that � is an as-yet undetermined 
onstant,and that one wants to �nd all the possible values � for whi
h the equation (4.103) admitssolutions u(x) that satisfy the spe
i�ed boundary 
onditions. Commonly, it turns out thatonly a dis
rete (usually in�nite) set of values of � 
an o

ur.We have met an example of su
h a Sturm-Liouville eigenvalue problem already in this
ourse. Re
all that we obtained the asso
iated Legendre equation (2.28), by separating theHelmholtz equation in spheri
al polar 
oordinates. This equation is((1� x2)u0)0 � m21� x2 u+ �u = 0 ; (4.105)whi
h is 
learly of the form (4.103), withLu = ((1� x2)u0)0 � m21� x2 u ; w(x) = 1 : (4.106)It is 
lear by 
omparing the form of L here with the general form in (4.101) that it isself-adjoint. When we solved for the solutions of the equation (a
tually, we 
onsidered thespe
ial 
ase m = 0 for simpli
ity), we imposed the requirement that the fun
tions u(x)should be regular at x = �1. We were in fa
t solving the Sturm-Liouville problem for theLegendre equation, seeking all the solutions in the interval �1 � x � 1 that are regularat the endpoints. We found that su
h eigenfun
tions exist only if the eigenvalue � takesthe form � = `(`+ 1), where ` is a non-negative integer. The 
orresponding eigenfun
tionsP`(x) are the Legendre polynomials.The example of the Legendre equation illustrates the typi
al way in whi
h a Sturm-Liouville problem arises in physi
s. One separates an equation su
h as the Lapla
e equa-tion, Helmholtz equation or wave equation, and obtains ODE's for fun
tions in the variousindependent variables. The required solutions to these ODE's must satisfy 
ertain bound-ary 
onditions, and one then looks for the allowed values of the separation 
onstants for53



whi
h regular solutions arise. Thus the eigenvalue in a Sturm-Liouville problem is typi
allya separation 
onstant.To pro
eed, let us return to the question of boundary 
onditions. Re
all that we moti-vated the introdu
tion of the adjoint operator L in (4.94) by 
onsidering the integral R vLu,and throwing the derivatives over from u and onto v, by integration by parts. In the pro
ess,we ignored the possible 
ontributions from the boundary terms arising from the integrationsby parts, promising to return to dis
uss it later. This is what we shall now do. First ofall, we should a
tually be a little more general than in the previous dis
ussion, and allowfor the possibility that the fun
tions on whi
h L a
ts might be 
omplex. For any pair offun
tions u and v, we then de�ne the inner produ
t (v; u), as(v; u) � Z ba dx �v(x)u(x) ; (4.107)where the bar on v denotes the 
omplex 
onjugate.Let's see what happens if we go through the details of integrating by parts, for theself-adjoint operator L, de�ned byLu = (P (x)u0)0 +Q(x)u : (4.108)What we get is (v;Lu) = Z ba dx��v (P u0)0 + �v Qu�= Z ba dx�� �v0 (P u0) + �v Qu�+ hP �v u0iba= Z ba dx�(P �v0)0 u+ �v Qu�+ hP �v u0 � P �v0 uiba : (4.109)The integrand in the last line is just like the one in the �rst line, but with the roles of uand �v inter
hanged. Thus if the boundary terms in the last line were to vanish, we wouldhave established that (v;Lu) = (Lv; u) : (4.110)We make the boundary terms vanish by �at; i.e. we de
lare that the spa
e of fun
tions weshall 
onsider will be su
h that the boundary terms vanish. One way to do this is to requirethat P (a) �u1(a)u02(a) = 0 ; P (b) �u1(b)u02(b) = 0 ; (4.111)for any pair of eigenfun
tions (possibly the same one) u1 and u2. In pra
ti
e, we mighta
hieve this by requiring, for example, that ea
h eigenfun
tion satisfyu(a) = u(b) = 0 : (4.112)54



Another possibility is to require insteadu0(a) = u0(b) = 0 (4.113)for ea
h eigenfun
tion. Yet a third possibility is to impose a weaker 
ondition than (4.112),and require that ea
h eigenfun
tion satisfyP (a)u(a) = 0 ; P (b)u(b) = 0 : (4.114)Any of these last three 
onditions will ensure that (4.111) is satis�ed, and hen
e that theboundary terms from the integrations by parts give no 
ontribution. Our Legendre equationanalysis was an example where we were e�e
tively imposing boundary 
onditions of the type(4.114). In that 
ase we had P (x) = (1 � x2), and we required our eigenfun
tions to beregular at x = �1 and x = 1. Therefore the P (x) fa
tor ensured that (4.111) was satis�edin that example.A slightly more general way to make the boundary terms in the last line of (4.109)vanish is simply to require P (a) �u1(a)u02(a) = P (b) �u1(b)u02(b) ; (4.115)for all possible pairs of eigenfun
tions u1 and u2, without demanding that this quantityitself be zero. Su
h a 
ondition might naturally arise if the independent variable x rep-resented a periodi
 
oordinate, or else was e�e
tively des
ribing a periodi
 dire
tion, su
has a 
oordinate on an in�nite latti
e. Having imposed boundary 
onditions su
h that theboundary terms in the last line of (4.109) vanish, one says that the self-adjoint operator Lis Hermitean with respe
t to the fun
tions u and v that satisfy su
h boundary 
onditions.One should therefore keep in mind this distin
tion between the meaning of self-adjoint andHermitean. Any operator L of the form (4.108) is self-adjoint. If in addition, one restri
tsattention to fun
tions that satisfy the boundary 
onditions (4.111) or (4.115), then theoperator L is Hermitean with respe
t to this 
lass of eigenfun
tions.Note that we 
an a
tually extend the notion of Hermitean operators to in
lude 
aseswhere operator itself is not built purely from real quantities. This situation arises, forexample, in quantum me
hani
s. Consider, for instan
e, the momentum operatorpx � �i ddx (4.116)(we 
hoose units where �h = 1 here, sin
e Plan
k's 
onstant plays an inessential rôle here).Let us assume that we impose boundary 
onditions on u and v (whi
h would be 
alled55



wave-fun
tions, in this quantum-me
hani
al 
ontext) su
h that we 
an drop the boundaryterms after integration by parts. Then we see that(v; px u) = �i Z ba dx �v u0 = i Z ba dx �v0 u = (px v; u) : (4.117)Note that the sign worked out ni
ely in the end be
ause (px v; u) means, by virtue of thede�nition (4.107), Z ba dx (px v) u ; (4.118)and so the 
omplex 
onjugation of the �i fa
tor in (4.116) produ
es +i. Of 
ourse thisexample is a �rst-order operator, rather than being of the general 
lass of se
ond-orderoperators that we were previously dis
ussing. The key point, though, is that we 
an extendthe notion of hermiti
ity to any di�erential operator A, through the requirement (v;Au) =(Av; u), where appropriate boundary 
onditions are imposed so that the boundary termsfrom the integrations by parts 
an be dropped.4.5.3 Eigenfun
tions of Hermitean OperatorsWe already alluded to the fa
t that there is a 
lose analogy between the Sturm-Liouvilleeigenvalue problem for di�erential operators, and the eigenvalue problem in the theory ofmatri
es. Before pro
eeding with the Sturm-Liouville problem, let us �rst brie
y re
allsome of the features of the matrix eigenvalue problem.Suppose that A is an Hermitean matrix, whi
h we write as A = Ay. By de�nition, Ay isthe matrix obtained by transposing A, and 
omplex 
onjugating its 
omponents. Supposewe are looking for eigenve
tors V of the matrix A, namely ve
tors that satisfy the equationAV = �V ; (4.119)where � is some 
onstant, 
alled the eigenvalue. Let us suppose that A is an N �N matrix(it must, of 
ourse, be square, sin
e we are requiring that it equal the 
omplex 
onjugate ofits transpose). In terms of indi
es labelling the rows and 
olumns of A, we 
an represent itby Aij , where the indi
es range over the values 1 � i � N , 1 � j � N , labelling the rowsand the 
olumns respe
tively. Of 
ourse V will be an N -
omponent ve
tor, with elementslabelled by Vi. Thus in terms of the index notation, (4.119) be
omesAij Vj = �Vi ; (4.120)where summation over the repeated index j is understood.56



Rewriting (4.119) as (A� �1l)V = 0 ; (4.121)where 1l means the unit N �N matrix, we know from the theory of linear algebra that the
ondition for solutions of this equation to exist is thatdet(A� �1l) = 0 : (4.122)This gives an N 'th order polynomial equation for �, 
alled the 
hara
teristi
 equation, andthus we will have N roots, whi
h we may 
all �(n), for 1 � n � N , and asso
iated with ea
hroot will be the 
orresponding eigenve
tor V(n).10 In general, for an arbitrary square matrixA they 
ould be 
omplex. However here, sin
e we are requiring that A be Hermitean, we
an show that the eigenvalues �(n) are real. We do this by taking the eigenve
tor equation(4.119) for a parti
ular eigenve
tor V(n) and asso
iated eigenvalue �(n), and multiplying fromthe left by the Hermitean 
onjugate of V(n):V y(n)AV(n) = �(n) V y(n) V(n) : (4.123)Now, take the Hermitean 
onjugate of this expression, re
alling that for matri
es X and Ywe have (XY )y = Y yXy. Thus we getV y(n)Ay V(n) = ��(n) V y(n) V(n) : (4.124)Sin
e we are assuming A is Hermitean, this givesV y(n)AV(n) = ��(n) V y(n) V(n) : (4.125)Subtra
ting this from (4.123), we get(�(n) � ��(n))V y(n) V(n) = 0 : (4.126)Bearing in mind that V y(n) V(n) equals the sum of the modulus-squares of all the 
omponentsof V(n), i.e. V y V = Pi �Vi Vi, we see that for any non-zero ve
tor V(n) (whi
h we have),(4.126) implies that ��(n) = �(n) ; (4.127)and hen
e all the eigenvalues of an Hermitean matrix are real.10Take 
are not to 
onfuse the integer n whi
h labels the n'th eigenve
tor V(n) with the index i thatdenotes the 
omponents Vi of a given eigenve
tor V . It should always be 
lear from 
ontext whi
h we mean,and also we en
lose the label n in parentheses. 57



By a small extension of the previous pro
edure, one 
an show also that if two eigenve
torsV(n) and V(m) have unequal eigenvalues, �(n) 6= �(m), then the eigenve
tors are orthogonal toea
h other, meaning V y(n) V(m) = 0. To show this, we take the eigenve
tor equation (4.119)for V(m), i.e. AV(m) = �(m) V(m), and multiply on the left by V y(n). From this we subtra
t theequation obtained by Hermitean 
onjugating AV(n) = �(n) V(n) and multiplying on the rightby V(m): V y(n)AV(m) � V y(n)AV(m) = 0 = (�(m) � �(n))V y(n) V(m) ; (4.128)where we have made use of Ay = A, the already-established fa
t that ��(n) = �(n). In the 
asewhere two di�erent eigenve
tors V(1) and V(2) happen to have the same eigenvalue � (i.e. theyare degenerate), then it means that we have a two-dimensional spa
e of eigenve
tors U �aV(1)+b V(2) whi
h satisfy AU = �U for arbitrary 
onstants a and b. Clearly, we 
an always
hoose two members from this family, say U1 and U2, by judi
ious 
hoi
e of the 
onstantsa and b, su
h that U y1 U2 = 0. This 
an easily be generalised to a s
heme, known as Gram-S
hmidt Orthogonalisation, for dealing with arbitrary numbers of degenerate eigenvalues.Thus either by ne
essity, in the 
ase of non-degenerate eigenvalues, supplemented by
hoi
e, in the 
ase of degenerate eigenvalues, we 
an arrange always that the set of Neigenve
tors are orthogonal, V y(n) V(m) = 0 ; m 6= n : (4.129)Of 
ourse we 
an easily arrange also to make ea
h eigenve
tor have unit length, V y(n) V(n) = 1,by res
aling it if ne
essary. Thus we 
an always 
hoose the eigenve
tors to be orthonormal:V y(n) V(m) = Ænm ; (4.130)for all m and n.After this interlude on the eigenvalue problem for Hermitean matri
es, let us return nowto the Sturm-Liouville theory for Hermitean di�erential operators. As we already saw, theproblem here is to study the eigenvalues � and eigenfun
tions u for the operator equationLu(x) + �w(x)u(x) = 0 ; (4.131)where L is an Hermitean operator and w(x) is 
alled the weight fun
tion. It will be assumedthat w(x) is non-negative in the interval a � x � b, and in fa
t that w(x) > 0 ex
ept possiblyfor isolated points where w(x) = 0.We 
an now rerun the previous derivations for Hermitean matri
es in the 
ase of ourHermitean Sturm-Liouville operator L. To e
onomise on the writing, re
all that we are58



de�ning the inner produ
t (v; u) of any fun
tions u and v by(v; u) � Z ba dx �v(x)u(x) : (4.132)Note that it follows immediately from this de�nition that we shall have(v; u) = (u; v) ; (4.133)and that if f is any real fun
tion, (v; f u) = (f v; u) : (4.134)Of 
ourse it is also the 
ase that any 
onstant fa
tor a 
an be pulled outside the integral,and so (v; a u) = a (v; u) ; (a v; u) = �a (v; u) : (4.135)Note that we are allowing for the possibility that a is 
omplex; the 
omplex 
onjugation ofa in the se
ond equation here is an immediate 
onsequen
e of the de�nition (4.132) of theinner produ
t.Further properties of the inner produ
t are that for any fun
tion u, we shall have(u; u) � 0 ; (4.136)sin
e we are integrating the quantity ju(x)j2, whi
h is pointwise non-negative, over theinterval a � x � b. In fa
t, the only way that (u; u) 
an equal zero is if u(x) = 0 for all xin the interval a � x � b. More generally, if f is a positive fun
tion in the interval [a; b℄, weshall have (u; f u) � 0 ; (4.137)with equality a
hieved if and only if u = 0.Re
all also that the Sturm-Liouville operator L, being Hermitean, satis�es(v;Lu) = (L v; u) : (4.138)Now, suppose that we have eigenfun
tions un with eigenvalues �n for the Sturm-Liouvilleproblem (4.131): Lun + �nw un = 0 : (4.139)Consequently, we have (um;Lun) + �n (um; w un) : (4.140)59



Now we 
omplex 
onjugate this equation, getting0 = (um;Lun) + ��n (um; w un) == (Lun; um) + ��n (w un; um)= (un;Lum) + ��n (un; w um) ; (4.141)where we have made use of various of the properties of the inner produ
t detailed above,and the Hermiti
ity of L. By inter
hanging the indi
es m and n, this last line tells us that(um;Lun) + ��m (um; w un) = 0 : (4.142)Subtra
ting this from (4.140), we therefore �nd that(�n � ��m) (um; w un) = 0 : (4.143)(This treatment is pre
isely analogous to the one we followed for the 
ase of Hermiteanmatri
es. We have just shortened the argument a bit here, by handling the n = m andn 6= m 
ases all in one go. We 
ould have done the same for the matrix 
ase.)Consider �rst the 
ase where we take m = n, giving(�n � ��n) (un; w un) = 0 : (4.144)Now, our foresight in insisting that the weight fun
tion w(x) be non-negative in the interval[a; b℄ be
omes apparent, sin
e it means that for a non-vanishing eigenfun
tion un we shallhave (un; w un) > 0. Thus equation (4.144) implies that��n = �n ; (4.145)and so all the eigenvalues in the Sturm-Liouville problem are real.Using the reality of the �n, we 
an now rewrite (4.143) as(�n � �m) (um; w un) = 0 : (4.146)Thus if two eigenfun
tions um and un have unequal eigenvalues, �m 6= �n, then we 
andedu
e that they are orthogonal, by whi
h we mean(um; w un) = 0 : (4.147)As in the analogous matrix 
ase, if there is a degenera
y of eigenfun
tions, for examplewith two eigenfun
tions u1 and u2 having the same eigenvalue �, then it follows that any60



linear 
ombination U = �u1+� u2 will satisfy the equation (4.131), for arbitrary 
onstants� and �. We 
an 
learly always 
hoose two pairs of 
onstants �1, �1 and �2, �2, de�ningtwo 
ombinations U1 = �1 u1 + �1 u2 and U2 = �2 u1 + �2 u2, su
h that we arrange that(U1; w U2) = 0. This pro
ess 
an be extended to deal with arbitrary numbers of degenerateeigenfun
tions, in the operator version of the Gram-S
hmidt orthogonalisation pro
edure.In order not to be
ome too abstra
t, let us pause at this point to 
onsider a simpleexample. It will also serve to illustrate an important feature of a typi
al Sturm-Liouvilleproblem, whi
h we have been ta
itly assuming so far without 
omment. Namely, we havebeen labelling our eigenfun
tions by an subs
ript n, with the impli
ation that n is someinteger that enumerates the set of eigenfun
tions. In other words, we seem to have beenassuming that there is a dis
rete set of eigenfun
tions, although we have not yet addressedthe question of how many there are. In fa
t, for the kind of situation we are 
onsidering,with boundary 
onditions of the form (4.111) or (4.115), the set of eigenfun
tions un willindeed be dis
rete, so that we 
an sensibly label them by an integer n. The number ofeigenfun
tions is in�nite, so we 
an think of the label n as running from 1 to 1.Let's see how this works in an example. Take the operator L and the weight fun
tionw(x) to be L = d2dx2 ; w(x) = 1 : (4.148)It is 
lear that this operator L is indeed self-adjoint. The Sturm-Liouville problem in thisexample is therefore to study the eigenvalues and eigenfun
tions of the equationu00 + �u = 0 : (4.149)Of 
ourse this equation is so easy that we 
an solve it in our sleep:u(x) = A 
os � 12 x+B sin� 12 x : (4.150)Now, we have to 
onsider boundary 
onditions. Suppose for example, that we 
hoose ourinterval to be 0 � x � �, so a = 0, b = �. One 
hoi
e for the boundary 
onditions wouldbe to require u(0) = 0 ; u(�) = 0 ; (4.151)in whi
h 
ase we would dedu
e that the eigenvalues � must take the form�n = n2 ; (4.152)where n is an integer, and the allowed eigenfun
tions would beUn = sinnx : (4.153)61



We see here a dis
rete in�nity of eigenfun
tions and eigenvalues.Of 
ourse these boundary 
onditions are a bit of an overkill, sin
e we really need onlydemand that the boundary terms from the integrations by parts vanish, and their vanishingwill be ensured if the periodi
 boundary 
onditions (4.115) are satis�ed, whi
h amounts to�v(a)u0(a) = �v(b)u0(b) (4.154)for any pair of eigenfun
tions u and v (in
luding, possibly, the same eigenfun
tion for uand v), sin
e the fun
tion P (x) = 1. Now, we 
an see that the set of fun
tions sin 2nx and
os 2nx will all be satisfa
tory eigenfun
tions. Let us give these names,Un = sin 2nx ; Vn = 
os 2nx : (4.155)Thus for any 
hoi
e of any two fun
tions u and v taken from this total set, it will alwaysbe the 
ase that v(0)u0(0) = v(�)u0(�) : (4.156)(A non-trivial 
ase to 
he
k here is when u = Vn and v = Um.) Note that now the twoeigenfun
tions Un and Vn have the same eigenvalue �n = 4n2.4.5.4 Eigenfun
tion expansionsThe example we have just looked at, where L = d2dx2 , and indeed the example of the Legendreequation that we 
onsidered earlier, illustrate some general features of the eigenfun
tionsand eigenvalues of any Sturm-Liouville operator of the kind we are 
onsidering. Thesefeatures 
an be shown to be true in general, but sin
e the proofs are slightly intri
ate andlong-winded, we shall not present them here, but merely state them. The statements areas follows, for any Sturm-Liouville operator with a � x � b, where b � a is �nite, andappropriate boundary 
onditions imposed at x = a and x = b (we shall spe
ify what isappropriate below):1. There is always a lowest eigenvalue, whi
h we shall 
all �1.2. There is a non-zero gap between ea
h eigenvalue and the next largest one. Thus wemay order them �1 < �2 < �3 < � � � : (4.157)The gap 
an never be
ome in�nitesimal, for any �n+1��n, no matter how large n is.(Assuming, as we are, that b� a is �nite.)62



3. Consequently, the eigenvalues in
rease without bound; there is no \largest" eigenvalue,and eigenvalues o

ur that are larger than any given �nite value.4. The number of nodes in the eigenfun
tion un in
reases with in
reasing n. In otherwords, the fun
tion un os
illates more and more rapidly with in
reasing n.Let us deal straight away with the issue of what is meant by \appropriate boundary
onditions." In parti
ular, noti
e that Property 2 here is not satis�ed by the L = d2dx2example with the periodi
 boundary 
onditions (4.156), although it is satis�ed in the 
aseof the more stringent boundary 
ondition (4.151) we 
onsidered previously. The point isthat the slightly less restri
tive boundary 
onditions of the periodi
 type tend to allow bothindependent solutions of the se
ond-order ODE at a �xed value of �, whereas the morefor
eful 
onditions like (4.151) tend to allow only one of the two solutions. So there is
ommonly a two-fold degenera
y of eigenvalues when the weaker kinds of boundary 
ondi-tion are imposed. It is perfe
tly straightforward to a

ommodate this in some appropriategeneralisations of the properties listed above, but it is on
e again one of those exampleswhere one 
an spend time endlessly dotting all the i's and 
rossing all the t's, and at theend of the day one has not really added hugely to the understanding of the key points.Let us assume for now that we 
hoose suÆ
iently powerful boundary 
onditions that thedegenera
ies are avoided.Now, to pro
eed, let us 
onsider the following problem. It is familiar from the theory ofFourier series that if we have an arbitrary fun
tion f(x) de�ned in the interval 0 � x � �,su
h that f(0) = 0 and f(�) = 0, we 
an expand it in terms of the fun
tions sinnx, asf(x) = Xn�1 
n sinnx ; (4.158)where 
n = 2� Z �0 dx f(x) sinnx : (4.159)Sin
e we have seen that the fun
tions sinnx arise as the eigenfun
tions of the Sturm-Liouville problem with L = d2dx2 , with the boundary 
onditions u(0) = u(�) = 0, it isnatural to suppose that we should be able to 
arry out analogous series expansions in termsof the eigenfun
tions for other Sturm-Liouville operators. This is the subje
t we shall nowpursue.Let us begin by supposing that we 
an indeed expand an arbitrary fun
tion f(x), sat-isfying our 
hosen Sturm-Liouville boundary 
onditions, in terms of the eigenfun
tions un:f(x) = Xn�1 
n un(x) : (4.160)63



Using the orthonormality of the eigenfun
tions un, i.e. (um; w un) = Æmn, it follows that(um; w f) = Xn�0 
n (um; w un) ;= Xn�1 
n Æmn ; (4.161)= 
m :Thus we have solved for the 
oeÆ
ients 
n in the expansion (4.160),
n = (un; w f) � Z ba dxw(x) f(x) �un(x) : (4.162)Is this the end of the story? Well, not quite. We have ta
itly assumed in the abovedis
ussion that it is possible to make an expansion of the form (4.160). The question ofwhether or not it is a
tually possible is the question of whether or not the eigenfun
tions unform a 
omplete set. Think of the analogous question for �nite-dimensional ve
tors. What
onstitutes a 
omplete set of basis ve
tors in an N -dimensional ve
tor spa
e? The answer isyou need N independent basis ve
tors, whi
h 
an span the entire spa
e. In terms of these,you 
an expand any ve
tor in the spa
e. For example, in three-dimensional Cartesian spa
ewe 
an use the three unit ve
tors lying along the x, y and z axes as basis ve
tors; they forma 
omplete set.The problem in our present 
ase is that we e�e
tively have an in�nite-dimensionalve
tor spa
e; there are in�nitely many independent eigenfun
tions. Certainly, we knowthat a 
omplete set of basis fun
tions must be in�nite in number. We indeed have in�nitelymany fun
tions un, the eigenfun
tions of the Sturm-Liouville problem. But is it a \bigenough" in�nity? This is the question we need to look at in a little bit of detail. It is worthdoing be
ause it lies at the heart of so many te
hniques that one uses in physi
s. Think ofquantum me
hani
s, for example, where one expands an arbitrary wave fun
tion in termsof the eigenfun
tions of the S
hr�odinger equation. To do this, one needs to be sure one hasa 
omplete set of basis fun
tions. It is the same basi
 question as the one we shall look athere for the Sturm-Liouville problem. To do so, we �rst need to study a another aspe
t ofSturm-Liouville theory:A Variational Prin
iple for the Sturm-Liouville Equation:To begin, we note that the Sturm-Liouville equation Lu + �w u = 0, with Lu �(P (x)u0)0 + Q(x)u, 
an be derived rather elegantly from a variational prin
iple. De�ne64



the fun
tional11 
(f) for any fun
tion f(x), by
(f) � (f 0; P f 0)� (f;Q f) = Z ba dx (P f 02 �Qf2) : (4.163)(We shall, for simpli
ity, assume for now that we deal with real fun
tions. There is no greatsubtlety involved in treating 
omplex fun
tions; essentially we would just write jf j2 in pla
eof f2, et
.. It is just a bit simpler to let them be real, and no great point of prin
iplewill be lost. Redo all the steps for 
omplex fun
tions if you wish.) Let us also de�ne thenorm-squared of the fun
tion f :N (f) � (f;w f) = Z ba dxw(x) (f(x))2 ; (4.164)It is useful also to de�ne more general bilinear fun
tionals 
(f; g) and N (f; g), by
(f; g) � (f 0; P g0)� (f;Q g) ;N (f; g) = � (f;w g) : (4.165)Comparing with (4.163) and (4.164), we see that 
(f) = 
(f; f), and N (f) = N (f; f).Note that other properties of these fun
tionals areN (f; g) = N (g; f) ;N (f + g) = N (f) +N (g) + 2N (f; g) ;
(f; g) = 
(g; f) ; (4.166)
(f + g) = 
(f) + 
(g) + 2
(f; g) ;
(f; g) = �(f;Lg) = �(Lf; g) ;where as usual L is the Sturm-Liouville operator, Lu = (P u0)0 + Qu. Note that in deriv-ing the last line, we must assume that the fun
tions f and g satisfy our Sturm-Liouvilleboundary 
onditions, so the boundary terms from integrations by parts 
an be dropped.All fun
tions that we shall 
onsider from now on will be assumed to satisfy these boundary
onditions. We shall sometimes refer to them as admissible fun
tions.We shall now show how the eigenfun
tions and eigenvalues of the Sturm-Liouville prob-lem 
an be built up, one by one, by 
onsidering the following minimisation problem. Westart by looking for the fun
tion f that minimises the ratioR � 
(f)N (f) : (4.167)11\Fun
tional" is just a fan
y name for an operator that takes a fun
tion as its argument, and produ
esa number from it. 65



(Of 
ourse f 
an be determined only up to a 
onstant s
aling, sin
e the ratio in is invariantunder f(x) �! k f(x), where k is any 
onstant. Thus it will always be understood thatwhen we speak of \the minimising fun
tion," we mean modulo this s
aling arbitrariness.)Suppose that the minimising fun
tion is  1, and that the minimum value for R in 4.167is �1, so 
( 1) = �1N ( 1) : (4.168)Then by de�nition it must be that
( 1 + � �) � �1N ( 1 + � �) : (4.169)Here, � is an arbitrary 
onstant, and � is any fun
tion that satis�es the Sturm-Liouvilleboundary 
onditions. Thus from the various properties of N and 
 given above, we seethat 
( 1) + 2�
( 1; �) + �2
(�) � �1N ( ) + 2� �1N ( 1; �) + �2 �1N (�) : (4.170)Now, by de�nition we have 
( 1) = �1N ( 1), and so the terms independent of � in thisinequality 
an
el. We are left with2� [
( 1; �)� �1N ( 1; �)℄ + �2 [
(�)� �1N (�)℄ � 0 : (4.171)Now, by taking � suÆ
iently small (so that the �2 terms be
ome unimportant) and of theproper sign, we 
ould 
learly violate this inequality unless the 
oeÆ
ient of the � termvanishes. Thus we dedu
e that 
( 1; �)� �1N ( 1; �) = 0 ; (4.172)where � is an arbitrary fun
tion satisfying the boundary 
onditions. This equation is nothingbut Z ba dx�(P  01)0 +Q 1 + �1 w 1� � = 0 ; (4.173)and if this is to hold for all �, it must be that the integrand vanishes, implying(P  01)0 +Q 1 + �1 !  1 = 0 : (4.174)In other words, we have learned that the fun
tion  1 that minimises the ratio R in (4.167)is pre
isely an eigenfun
tion of the Sturm-Liouville equation, L 1 + �1 !  1 = 0. Sin
e �1is as small as possible, it follows that  1 is the lowest eigenfun
tion, and �1 is the lowest66



eigenvalue. Let us emphasise also that we now know that for any fun
tion f that satis�esthe boundary 
onditions, we must have
(f) � �1N (f) ; (4.175)with equality a
hieved if and only if f is the lowest eigenfun
tion.We now pro
eed to build the next eigenfun
tion. We 
onsider the same minimisationproblem, but now with the additional 
onstraint that our fun
tion f should be orthogonalto  1, i.e. N ( 1; f) = 0. In other words, we want to �nd the next-to-smallest minimumof the ratio R in (4.167), for fun
tions orthogonal to  1. Let us 
all the solution to this
onstrained minimisation  2. Thus it will satisfy
( 2) = �2N( 2) ; N ( 1;  2) = 0 : (4.176)Let us emphasise again that we are not yet assuming that  2 is the se
ond eigenfun
tion,nor that �2 is the 
orresponding eigenvalue. We only assume that  2 is the fun
tion thatminimises 
(f)=N (f), subje
t to the 
onstraint N ( 1; f) = 0.Now by de�nition, if we look at 
( 2+ � �), where � is a 
onstant, and � is an arbitraryfun
tion satisfying the boundary 
onditions, and in addition the 
onstraintN( 1; �) = 0 ; (4.177)then by de�nition we must have
( 2 + � �) � �2N( 2 + � �) : (4.178)This is be
ause � is orthogonal to  1, and so adding � � to  2 gives pre
isely a fun
tionf =  2 + � � that satis�es the 
onstraint N ( 1; f) = 0. We agreed that  2 was the solutionto this 
onstrained minimisation problem, and so therefore (4.178) must be true.Now, we 
an 
onstru
t � satisfying (4.177) from an arbitrary un
onstrained fun
tion �,by writing � = � � 
  1 ; (4.179)where 
 = N ( 1; �)N ( 1) : (4.180)(Of 
ourse �, like every fun
tion we ever talk about, will still be assumed to satisfy ourSturm-Liouville boundary 
onditions.) Thus from (4.178) we will have
( 2 + � � � � 
  1) � �2N ( 2 + � � � � 
  1) : (4.181)67



Expanding everything out, we have for 
( 2 + � � � � 
  1):
( 2 + � � � � 
  1) = �2N ( 2) + 2�
( 2; �)� 2� 

( 2;  1)+�2
(�) + �2 
2 
( 1)� 2�2 

( 1; �) ; (4.182)= �2N ( 2) + 2�
( 2; �) + �2 
(�)� �2 
2 �1N ( 1) :For N ( 2 + � � � � 
  1) we haveN ( 2 + � � � � 
  1) = N ( 2) + 2�N ( 2; �)� 2� 
N ( 2;  1)+�2N (�) + �2 
2N ( 1)� 2�2 
N ( 1; �) ;= N ( 2) + 2�N ( 2; �) + �2N (�)� �2 
2N ( 1) : (4.183)In ea
h 
ase, we have made use of previously-derived results in arriving at the se
ond lines.Plugging into (4.181), we thus �nd that the O(�0) terms 
an
el out, and we are left with2� [
( 2; �)� �2N ( 2; �)℄ + �2 [
(�)� �2N (�) + (�2 � �1)N ( 1)℄ � 0 : (4.184)By the same argument as we used in the original  1 minimisation, this equality 
an onlybe true for arbitrary small � if the 
oeÆ
ient of � vanishes:
( 2; �)� �2N ( 2; �) = 0 : (4.185)Sin
e this must hold for all � that satisfy the boundary 
onditions, it follows that like inthe previous  1 dis
ussion, here we shall haveL 2 + �2 w 2 = 0 : (4.186)So the fun
tion that minimises 
(f)=N (f) subje
t to the 
onstraint that it be orthogonalto  1 is an eigenfun
tion of the Sturm-Liouville equation. By de�nition, �2 is the smallestvalue we 
an a
hieve for R in (4.167), for fun
tions f orthogonal to  1. Therefore �2 is thenext-to-smallest eigenvalue.It should now be evident that we 
an pro
eed iteratively in the same manner, to 
on-stru
t all the eigenfun
tions and eigenvalues in sequen
e. At the next step, we 
onsiderthe 
onstrained minimisation problem where we require that the fun
tions f in 
(f)=N (f)must be orthogonal both to  1 and  2. Following pre
isely analogous steps to those de-s
ribed above, we then �nd that the fun
tion  3 that a
hieves the minimum value �3 forthis ratio is again an eigenfun
tion of the Sturm-Liouville equation. This will therefore bethe third eigenfun
tion, in the sense �1 < �2 < �3.68



At the (N +1)'th stage in in the pro
ess, we look for the fun
tion  N+1 that minimisesR = 
(f)=N (f), subje
t to the requirements thatN ( n; f) = 0 ; 1 � n � N : (4.187)The resulting minimum value for R will be the (N + 1)'th eigenvalue �N+1, and  N+1 willbe the (N + 1)'th eigenfun
tion.Let us 
on
lude this part of the dis
ussion by emphasising one important point, whi
hwe shall need later. If f(x) is any admissible fun
tion that is orthogonal to the �rst Neigenfun
tions, as in (4.187), then it satis�es the inequality
(f) � �N+1N (f) : (4.188)Completeness of the Sturm-Liouville Eigenfun
tions:One way to formulate the question of 
ompleteness is the following. Suppose we makea partial expansion of the form (4.160), with 
onstant 
oeÆ
ients 
n 
hosen as in (4.162),but where we run the summation not up to in�nity, but instead up to some number N .Obviously we will not in general \hit the target" and get a perfe
t expansion of the fun
tionf(x) like this; at best, we will have some sort of approximation to f(x), whi
h we hope willget better and better as higher and higher modes are in
luded in the sum. In fa
t we 
ande�ne fN(x) � f(x)� NXn=1 
n un(x) ; (4.189)where the 
oeÆ
ients 
n are de�ned in (4.162). What we would like to be able to show isthat as we send N to in�nity, the fun
tions fN(x), whi
h measure the dis
repan
y betweenthe true fun
tion f(x) and our attempted series expansion, should in some sense tend tozero. The best way to measure this is to de�nea2N � Z ba dxw(x) (fN (x))2 = (fN ; w fN) = N (fN ) : (4.190)Now, if we 
an show that a2N goes to zero as N goes to in�nity, we will be a
hieving a goodleast-squares �t.To show this, we now use the fun
tional 
(f) that was de�ned in (4.163), and theproperties that we derived. Before we begin, let us observe that we 
an, without loss ofgenerality, make the simplifying assumption that �1 = 0. We 
an do this for the followingreason. We know that the eigenvalue spe
trum is bounded below, meaning that �1, the69



smallest eigenvalue, must satisfy �1 > �1. We 
an then shift the Sturm-Liouville operatorL, de�ned by Lu = (P u0)0 + Qu, to eL = L + �1 w, whi
h is a
hieved by taking eLu �(P u0)0+ eQu, where eQ = Q+�1 w. Thus we 
an just as well work with the rede�ned operatoreL, whi
h will therefore have eigenvalues ~�n = �n � �1 � 0. The set of eigenfun
tions willbe identi
al to before, and we have simply arranged to shift the eigenvalues. Let us assumefrom now on that we have done this, so we drop the tildes, and simply assume that �1 = 0,and in general �n � 0.Now, we de�ne FN (x) � fN(x)aN : (4.191)From (4.190), it is 
lear that N (FN ) = 1 : (4.192)Now 
onsider N (un; FN ). Using (4.189), we haveN (un; FN ) = 1aN N (un; f)� 1aN NXm=1 
mN (un; um) ;= 1aN �
n � NXm=1 
m Æmn� : (4.193)The delta fun
tion in the se
ond term \
li
ks" only if n lies within the range of the sum-mation index, and so we get:1 � n � N : (un; w FN ) = 0 ;n � N + 1 : (un; w FN ) = 
naN : (4.194)This means that FN (x) is pre
isely one of those fun
tions that we examined earlier, whi
his orthogonal to all of the �rst N eigenfun
tions, and thus satis�es (4.187). Sin
e FN isnormalised, satisfying N (FN ) = 1, it then follows from (4.188) and (4.192) that
(FN ) � �N+1 : (4.195)Now, let us 
al
ulate 
(FN ) dire
tly. From (4.189) and (4.191), we will geta2N 
(FN ) = 
(f) + 2 NXm=1 
m (f;Lum)� NXm=1 NXn=0 
m 
n (un;Lum) : (4.196)In the last two terms, where we have already integrated by parts, we now use the fa
tthat the um are Sturm-Liouville eigenfun
tions, and so Lum 
an be repla
ed by ��m wum.70



Now, from the de�nition (4.162) of the 
oeÆ
ients 
n, we see that we eventually geta2N 
(FN ) = 
(f)� NXn=1 
2n �n : (4.197)Sin
e we arranged that the eigenvalues satisfy �n � 0, it follows from this equation thata2N � 
(f)
(FN ) : (4.198)But we saw earlier in (4.195), that 
(FN ) � �N+1, so we dedu
e thata2N � 
(f)�N+1 : (4.199)Now, 
(f) is just a fun
tional of the original fun
tion f(x) that we are trying to expand inan eigenfun
tion series, so it 
ertainly doesn't depend on N . Furthermore, 
(f) is de�nitelypositive, 
(f) > 0 (ex
ept in the spe
ial 
ase where f = 
 u1). The upshot of all this, then,is that (4.199) is telling us that as we send N to in�nity, implying that �N+1 goes to in�nity,we will have aN �! 0 : (4.200)This is what we wanted to show. It means that if we take N = 1 in (4.189), we get ana

urate least-squares �t, and we may say thatf(x) = 1Xn=1 
n un(x) ; (4.201)where 
n is given by (4.162). Thus the set of eigenfun
tions un(x) is 
omplete.Let us take sto
k of what has been a
hieved. We started by supposing that we 
ouldexpand any admissible fun
tion f(x) as an in�nite sum over the Sturm-Liouville eigenfun
-tions un(x), f(x) = Xn�1 
n un(x) : (4.202)Immediately, by 
al
ulating N (um; f), and using the orthonormality N (um; un) = Æmn ofthe un, one sees that if su
h an expansion is valid, then the 
oeÆ
ients 
n will be given by
n = N (un; f) = Z ba dxw(x)un(x) f(x) : (4.203)The thing that has taken us so long to show is that an expansion of the assumed kind (4.202)really does work. That is to say, we showed, after quite a long 
hain of arguments, thatthe set of eigenfun
tions un really is 
omplete. This is the sort of exer
ise that one usuallytends not to go through, but sin
e eigenfun
tion expansions play su
h an important rôle in71



all kinds of bran
hes of physi
s (for example, they are heavily used in quantum me
hani
s),it is worthwhile just for on
e to see how the 
ompleteness is established.Now that we have established the validity of the expansion (4.202), we 
an restate thenotion of 
ompleteness as follows. Take the expression (4.203), and substitute it into (4.202):f(x) = Xn�1N (un; f)un(x) : (4.204)Making this expli
it, we havef(x) = Z ba dy w(y) f(y) Xn�1un(x)un(y) ; (4.205)where, being physi
ists, we are allowed to sneak the summation through the integral withouttoo mu
h 
on
ern. (It is one of those �ne points that stri
tly speaking ought to be examined
arefully, but in the end it turns out to be justi�ed.) What we are seeing in (4.205) is thatPn un(x)un(y) is behaving exa
tly like the Dira
 delta fun
tion Æ(x � y), whi
h has thede�ning property that f(x) = Z ba dy f(y) Æ(x� y) ; (4.206)for all reasonable fun
tions f . So we haveXn�1w(x)un(x)un(y) = Æ(x� y) : (4.207)The point about the 
ompleteness of the eigenfun
tions is that the left-hand side of thisexpression does indeed share with the Dira
 delta fun
tion the property that it is ableto take any admissible fun
tion f and regenerate it as in (4.206); it doesn't \miss" anyfun
tions.12 Thus it is often 
onvenient to take (4.207) as the de�nition of 
ompleteness.Note that it is often more 
onvenient to think of the weight fun
tion w(x) as part of theintegration measure, in whi
h 
ase we 
ould de�ne a slightly di�erent delta-fun
tion, let us
all it Æ(x; y), as Æ(x; y) = Xn�1un(x)un(y) (4.208)We would then have f(x) = Z ba dy w(y) f(y) Æ(x; y) : (4.209)Put another way, we would have Æ(x� y) = w(x) Æ(x; y) : (4.210)12We 
an put either w(x) or w(y) in this expression, sin
e the right-hand side tells us that the fun
tion isnon-zero only when x = y. 72



The Dira
 delta fun
tion is an example of what are 
alled generalised fun
tions. WhenDira
 �rst introdu
ed the delta fun
tion, the mathemati
ians were a bit sni�y about it,sin
e they hadn't thought of them �rst, 
omplaining that they weren't well-de�ned, thatderivatives of delta fun
tions were even less well-de�ned, and so on.13 These were in fa
tperfe
tly valid obje
tions to raise, and sorting out the new mathemati
s involved in makingthem \respe
table" led to the whole subje
t of generalised fun
tions. However, it is perhapsworth noting that unlike Dira
, who simply went ahead with using them regardless, themathemati
ians who sorted out the details never won the Nobel Prize.4.5.5 Eigenfun
tion expansions for Green fun
tionsSuppose now that we want to solve the inhomogeneous equationLu(x) + �w(x)u(x) = f(x) ; (4.211)where as usual Lu = (P u0)0+Qu is a Sturm-Liouville operator, w(x) is the weight fun
tion,and now we have the inhomogeneous sour
e term f(x). Let us assume that for some suitableadmissible boundary 
onditions at a and b, we have eigenfun
tions un(x) with eigenvalues�n for the usual Sturm-Liouville problem:Lun + �nw un = 0 : (4.212)Now, let us look for a solution u(x) to the inhomogeneous problem (4.211), wherewe shall assume that u(x) satis�es the same boundary 
onditions as the eigenfun
tionsun(x). Sin
e u(x) is thus assumed to be an admissible fun
tion, it follows from our previousdis
ussion of 
ompleteness that we 
an expand it asu(x) = Xn�1 bn un(x) ; (4.213)for 
onstant 
oeÆ
ients bn that we shall determine. Plugging this into (4.211), and makinguse of (4.212) to work out Lun, we therefore obtainXn�1 bn (�� �n)w(x)un(x) = f(x) : (4.214)Now multiply this um(x) and integrate from a to b. Using the orthogonality of eigenfun
tionsum, we therefore get bm (�� �m) = Z ba dxum(x) f(x) : (4.215)13It is surprisingly 
ommon in resear
h to en
ounter one or more of the following rea
tions: (1) \It'swrong;" (2) \It's trivial;" (3) \I did it �rst." Interestingly, it is not unknown to get all three rea
tionssimultaneously from the same person. 73



Plugging this ba
k into (4.213), we see that we haveu(x) = Z ba dx0 f(x0) Xn�1 un(x)un(x0)�� �n ; (4.216)where as usual we exer
ise our physi
ist's prerogative of taking summations freely throughintegrations. Note that we have been 
areful to distinguish the integration variable x0 fromthe free variable x in u(x).Equation (4.216) is of the formu(x) = Z ba dx0G(x; x0) f(x0) ; (4.217)with G(x; x0) given here by G(x; x0) = Xn�1 un(x)un(x0)�� �n : (4.218)The quantity G(x; x0) is known as the Green Fun
tion for the problem; it is pre
isely thekernel whi
h allows one to solve the inhomogeneous equation by integrating it times thesour
e term, as in (4.217).14We may note the following properties of the Green fun
tion. First of all, from (4.218),we see that it is symmetri
 in its two arguments,G(x; x0) = G(x0; x) : (4.219)Se
ondly, sin
e by 
onstru
tion the fun
tion u(x) in (4.217) must satisfy (4.211), we maysubstitute in to �nd what equation G(x; x0) must satisfy. Doing this, we getLu+ �w u = Z ba dx0 (L+ �w)G(x; x0) f(x0) = f(x) ; (4.220)where it is understood that the fun
tions P , Q and w depend on x, not x0, and that thederivatives in L are with respe
t to x. Sin
e the se
ond equality here must hold for any14A little digression on English usage is unavoidable here. Contrary to what one might think from the waymany physi
ists and mathemati
ians write (in
luding, regrettably, in the A&M Graduate Course Catalogue),these fun
tions are named after George Green, who was an English mathemati
ian (1793-1841); he was not
alled George Greens, nor indeed George Green's. Consequently, they should be 
alled Green Fun
tions,and not Green's Fun
tions. It would be no more proper to speak of \a Green's fun
tion" than it would tospeak of \a Legendre's polynomial," or \a Fermi's surfa
e" or \a Lorentz's transformation" or \a Taylor'sseries" or \the Dira
's equation" or \the quantum Hall's e�e
t." By 
ontrast, another 
ommon error (alsoto be seen in the Graduate Course Catalogue) is to speak of \the Peierl's Instability" in 
ondensed matterphysi
s. The relevant person here is Rudolf Peierls, not Rudolf Peierl's or Rudolf Peierl.74



f(x), it follows that the quantity multiplying f(x0) in the integral must be pre
isely theDira
 delta fun
tion, and so it must be thatLG(x; x0) + �wG(x; x0) = Æ(x� x0) ; (4.221)again with the understanding that L and w depend on x.We 
an test dire
tly that our expression (4.218) for G(x; x0) indeed satis�es (4.221).Substituting it in, and making use of the fa
t that the eigenfun
tions un satisfy (4.212), wesee that we get LG(x; x0) + �wG(x; x0) = Xn�1w(x)un(x)un(x0) : (4.222)But this is pre
isely the expression for Æ(x � x0) that we obtained in (4.207).There are interesting, and sometimes useful, 
onsequen
es of the fa
t that we 
an expressthe Green fun
tion in the form (4.218). Re
all that the 
onstant � in (4.218) is just aparameter that appeared in the original inhomogeneous equation (4.211) that we are solving.It has nothing dire
tly to do with the eigenvalues �n arising in the Sturm-Liouville problem(4.212). However, it is 
lear from the expression (4.218) that there will be a divergen
e, i.e.pole, in the expression for G(x; x0) whenever � is 
hosen to be equal to any of the Sturm-Liouville eigenvalues �n. It is a bit like a \resonan
e" phenomenon, where the solution of afor
ed harmoni
 os
illator equation goes berserk if the sour
e term (the for
ing fun
tion) is
hosen to be os
illatory with the natural period of os
illation of the homogeneous (unfor
ed)equation.Here, what is happening is that if the 
onstant � is 
hosen to be equal to one of theSturm-Liouville eigenvalues, say � = �N , then we suddenly �nd that we are free to add ina 
onstant multiple of the 
orresponding eigenfun
tion uN (x) to our inhomogeneous solu-tion, sin
e uN (x) now happens to be pre
isely the solution of the homogeneous equationLu + �w u = 0. (For generi
 �, none of the eigenfun
tions un(x) solves the homogeneousequation.) The divergen
e in the Green fun
tion is arising be
ause suddenly that parti
u-lar eigenfun
tion uN (x) is playing a dominant rôle in the eigenfun
tion expansion for thesolution.Re
all now that some le
tures ago we a
tually en
ountered another way of 
onstru
tingthe Green fun
tion for this problem, although we didn't 
all it that at the time. In (4.45)we obtained a solution to the inhomogeneous se
ond-order ODE, in a form that translates,in our present 
ase, to u(x) = Z x dt f(t)�y1(t) y2(x)� y2(t) y1(x)�(y1; y2) � ; (4.223)75



where y1 and y2 are the two solutions of the homogeneous equation, whi
h for us will beLy+�w y = 0, and �(y1; y2) = y1(t) y02(t)�y2(t) y01(t) is the Wronskian of the two solutions.Re
all that we we 
an add arbitrary 
onstant multiples of the homogeneous solutions tothe parti
ular integral given in (4.223). This freedom is used in order to �t the boundary
onditions we wish to impose on u(x).Suppose, for simpli
ity, that we require u(a) = 0 = u(b). A moment's thought will showthat by the time we have added the right amounts of y1 and y2, the result will beu(x) = Z xa dt f(t)y1(t) y2(x)�(y1; y2) + Z bx dt f(t) y2(t) y1(x)�(y1; y2) ; (4.224)where we 
hoose the homogeneous solutions y1 and y2 to satisfyy1(a) = 0 ; y2(b) = 0 (4.225)respe
tively. (The full spe
i�
ation of y1 and y2 would require one more 
ondition for ea
hof them. This 
ould 
onsist of spe
ifying the value of y01 at x = a, and the value of y02 atx = b. for example. But this is not important, sin
e we 
an still res
ale y1 and y2 by any
onstant fa
tors we like, without upsetting the already-imposed 
onditions (4.225). Su
hs
alings will 
an
el out in (4.224), and so therefore it is unimportant to impose any spe
i�
s
ale 
onditions on y1 and y2.)Note that (4.224) 
an be interpreted as the equationu(x) = Z ba dtG(x; t) f(t) ; (4.226)where the Green fun
tion G(x; t) is given byG(x; t) = y1(x) y2(t)�(y1; y2) if x � t ;= y2(x) y1(t)�(y1; y2) if x � t : (4.227)Here �(y1; y2) is a fun
tion of the integration variable, t.We 
an now try 
omparing this result with our previous eigenfun
tion expansion (4.218)for the Green fun
tion, sin
e the two should in prin
iple agree. Doing this in general wouldbe diÆ
ult, sin
e one is an in�nite sum and the other is not. Let us 
onsider a simpleexample, and just 
ompare some of the key features. Take the 
ase that we looked atearlier, where L = d2dx2 ; w(x) = 1 : (4.228)76



Let us 
hoose our boundaries to be at a = 0 and b = �, at whi
h points we require oureigenfun
tions to vanish. We also seek a solution of the inhomogeneous equationd2u(x)dx2 + �u(x) = f(x) (4.229)for whi
h u(0) = u(�) = 0. We saw before that the eigenfun
tions and eigenvalues for theSturm-Liouville problem u00n + �n un = 0 (4.230)will be un(x) = r 2� sinnx ; �n = n2 ; (4.231)for the positive integers n. (We didn't give the normalisation before.) Thus from (4.218)the Green fun
tion for the inhomogeneous problem isG(x; t) = 2� Xn�1 sinnx sinnt�� n2 : (4.232)On the other hand, for the 
losed-form expression (4.227), the required solutions of thehomogeneous equation y00 + � y = 0, su
h that y1(0) = 0 and y2(�) = 0 are (
hoosing thes
ale fa
tors to be 1 for simpli
ity)y1(x) = sin (� 12 x) ; y2(x) = sin (� 12 (x� �)) : (4.233)From these, the Wronskian is easily found:�(y1; y2) = � 12 h sin (� 12 x) 
os (� 12 (x� �))� 
os (� 12 x) sin (� 12 (x� �))i ;= � 12 sin(� 12 �) : (4.234)We should be able to see the same resonan
e phenomenon of whi
h we spoke earlier,in both of the (equivalent) expressions for the Green fun
tion. In (4.232), we 
learly seea resonan
e whenever � is equal to the square of an integer, � = N2. On the other hand,in the 
losed-form expression (4.227), we 
an see in this 
ase that the only divergen
es 
anpossibly 
ome from the Wronskian in the denominator, sin
e y1 and y2 themselves are justsine fun
tions. Sure enough, we see from (4.234) that the Wronskian vanishes if � 12 � = N �,or, in other words, at � = N2. So indeed the pole stru
ture of the Green fun
tion is thesame in the two expressions.
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5 Fun
tions of a Complex Variable5.1 Complex Numbers, Quaternions and O
tonionsThe extension from the real number system to 
omplex numbers is an important one bothwithin mathemati
s itself, and also in physi
s. The most obvious area of physi
s wherethey are indispensable is quantum me
hani
s, where the wave fun
tion is an intrinsi
ally
omplex obje
t. In mathemati
s their use is very widespread. One very important point isthat by generalising from the real to the 
omplex numbers, it be
omes possible to treat thesolution of polynomial equations in a uniform manner, sin
e now not only equations likex2 � 1 = 0 but also x2 + 1 = 0 
an be solved.The 
omplex numbers 
an be de�ned in terms of ordered pairs of real numbers. Thuswe may de�ne the 
omplex number z to be the ordered pair z = (x; y), where x and y arereal. Of 
ourse this doesn't tell us mu
h until we give some rules for how these quantitiesbehave. First, we may de�ne (x; 0) to be an ordinary real number, so that we may take(x; 0) � x : (5.1)If z = (x; y), and z0 = (x0; y0) are two 
omplex numbers, and a is any real number, then therules 
an be stated as z + z0 = (x+ x0; y + y0) ;a z = (ax; a y) ; (5.2)z z0 = (xx0 � y y0; x y0 + x0 y) :We also de�ne the 
omplex 
onjugate of z = (x; y), denoted by �z, as�z = (x;�y) : (5.3)and the modulus of z, denoted by jzj, as the positive square root of jzj2 de�ned byjzj2 = �z z = (x2 + y2; 0) = x2 + y2 : (5.4)It is manifest that jzj � 0, with jzj = 0 if and only if z = 0.It is now straightforward to verify that the following fundamental laws of algebra aresatis�ed:1. Commutative and Asso
iative Laws of Addition:z1 + z2 = z2 + z1 ;z1 + (z2 + z3) = (z1 + z2) + z3 = z1 + z2 + z3 ; (5.5)78



2. Commutative and Asso
iative Laws of Multipli
ation:z1 z2 = z2 z1 ;z1 (z2 z3) = (z1 z2) z3 = z1 z2 z3 ; (5.6)3. Distributive Law: (z1 + z2) z3 = z1 z3 + z2 z3 : (5.7)We 
an also de�ne the operation of division. If z1 z2 = z3, then we see from the previousrules that, multiplying by �z1, we have�z1 (z1 z2) = (�z1 z1) z2 = jz1j2 z2 = �z1 z3 ; (5.8)and so, provided that jz1j 6= 0, we 
an write the quotientz2 = z3z1 = z3 �z1jz1j2 : (5.9)We 
an, of 
ourse, re
ognise that from the previous rules we have that the square of the
omplex number (0; 1) is (�1; 0), whi
h we agreed to 
all simply �1. Thus we 
an view(0; 1) as being the square root of �1:(0; 1) � i = p�1 : (5.10)We 
an now use the familiar abbreviated notation for 
omplex numbersz = x+ i y : (5.11)The symbol i is 
alled the imaginary unit.One might be wondering at this stage what all the fuss is about; we appear to be makingrather a meal out of saying some things that are pretty obvious. Well, one reason for this isthat one 
an also go on to 
onsider more general types of \number �elds," in whi
h some ofthe previous properties 
ease to hold. It then be
omes very important to formalise thingsproperly, so that there is a 
lear set of statements of what is true and what is not. Forexample, the \next" extension beyond the 
omplex numbers is to the quaternions, whereone has three independent imaginary units, usually denoted by i, j and k, subje
t to therulesi2 = j2 = k2 = �1 ; i j = �j i = k ; j k = �k j = i ; k i = �i k = j : (5.12)A quaternion q is then a quantity of the formq = q0 + q1 i + q2 j + q3 k ; (5.13)79



where q0, q1, q2 and q3 are all real numbers. There is again an operation of 
omplex
onjugation, �q, in whi
h the signs of all three of i, j and k are reversed�q = q0 � q1 i� q2 j� q3 k ; (5.14)The modulus jqj of a quaternion q is a real number, de�ned to be the positive square rootof jqj2 � �q q = q �q = q20 + q21 + q22 + q23 : (5.15)Clearly jqj � 0, with equality if and only if q = 0.Whi
h of the previously-stated properties of 
omplex numbers still hold for the quater-nions? It is not so obvious, until one goes through and 
he
ks. It is perfe
tly easy to do this,of 
ourse; the point is, though, that it does now need a bit of 
areful 
he
king, and the valueof setting up a formalised stru
ture that de�nes the rules be
omes apparent. The answeris that for the quaternions, one has now lost multipli
ative 
ommutativity, so q q0 6= q0 q ingeneral. A 
onsequen
e of this is that there is no longer a unique de�nition of the quotientof quaternions. However, a very important point is that we do keep the following property.If q and q0 are two quaternions, then we havejq q0j = jqj jq0j ; (5.16)as one 
an easily verify from the previous de�nitions.Let us note that for the quaternions, if we introdu
e the notation 
a for a = 1; 2; 3 by
1 = i ; 
2 = j ; 
3 = k ; (5.17)then the algebra of the quaternions, given in (5.12), 
an be written as
a 
b = �Æab + �ab
 

 : (5.18)(Einstein summation 
onvention for the repeated 
 index is understood here.) In fa
t, one
an re
ognise this as the multipli
ation algebra of �p�1 times the Pauli matri
es �a ofquantum me
hani
s, 
a = �p�1�a, whi
h 
an be represented as�1 =  0 11 0! ; �2 =  0 �p�1p�1 0 ! ; �3 =  1 00 �1! : (5.19)(We use the rather 
lumsy notation p�1 here to distinguish this \ordinary" square root ofminus one from the i quaternion.) In this representation, the quaternion de�ned in (5.13)is therefore written as q =  q0 �p�1 q3 �p�1 q1 � q2�p�1 q1 + q2 q0 +p�1 q3 ! : (5.20)80



Sin
e the quaternions are now represented by matri
es, it is immediately 
lear that we shallhave asso
iativity, but not 
ommutativity, under multipli
ation.As a �nal remark about the quaternions, note that we 
an de�ne them as an orderedpair of 
omplex numbers. Thus we may de�neq = (a; b) = a+ b j = a0 + a1 i + b0 j + b1 k ; (5.21)where a = a0 + a1 i, b = b0 + b1 i. Here, we assign to i and j the multipli
ation rules givenin (5.12), and k is, by de�nition, nothing but i j. Quaternioni
 
onjugation is given by�q = (�a;�b). The multipli
ation rule for the quaternions q = (a; b) and q0 = (
; d) 
an theneasily be seen to be q q0 = (a 
� b �d; a d+ b �
) : (5.22)Note that the 
omplex 
onjugations in this expression arise from taking the quaternion jthrough the quaternion i, whi
h generates a minus sign. This has the same e�e
t, therefore,as 
omplex 
onjugation: 
 j = j �
. Noti
e that the way quaternions are de�ned here asordered pairs of 
omplex numbers is 
losely analogous to the de�nition of the 
omplexnumbers themselves as ordered pairs of real numbers. The multipli
ation rule (5.22) is alsovery like the multipli
ation rule in the last line in (5.2) for the 
omplex numbers. Indeed,the only real di�eren
e is that for the quaternions, the notion of 
omplex 
onjugation ofthe 
onstituent 
omplex numbers arises. It is be
ause of this that 
ommutativity of thequaternions is lost.The next stage after the quaternions is the o
tonions, where one has 7 independentimaginary units. The rules for how these 
ombine is quite intri
ate, leading to the rathersplendidly-named Zorn Produ
t between two o
tonions. It turns out that for the o
tonions,not only does one not have multipli
ative 
ommutativity, but multipli
ative asso
iativity isalso lost, meaning that A (BC) 6= (AB)C in general.For the o
tonions, let us denote the 7 imaginary units by 
a, where now 1 � a � 7.Their multipli
ation rule is reminis
ent of (5.18), but instead is
a 
b = �Æab + 
ab
 

 ; (5.23)where 
ab
 are a set of totally-antisymmetri
 
onstant 
oeÆ
ients. (Totally antisymmetri
means that the inter
hange of any pair of indi
es 
auses a sign 
hange; for example, 
ab
 =�
ba
.) A 
onvenient 
hoi
e for the 
ab
, whi
h are known as the stru
ture 
onstants of theo
tonion algebra, is
147 = 
257 = 
367 = 
156 = 
264 = 
345 = �1 ; 
123 = 1 : (5.24)81



Here, it is to be understood that all 
omponents related to these by the antisymmetry of
ab
 will take the values implied by the antisymmetry, while all other 
omponents not yetspe
i�ed are zero.We may think of an o
tonion w as an obje
t built from 8 real numbers w0 and wa, withw = w0 + wa 
a : (5.25)Again, there is a 
omplex 
onjugate, where the signs of the 7 imaginary units are reversed:�w = w0 � wa 
a ; (5.26)and there is a modulus jwj, whi
h is a real number de�ned byjwj2 � �ww = w20 + 7Xa=1w2a : (5.27)Note that jwj � 0, and jwj vanishes if and only if w = 0.One 
an verify from (5.24) that
ab
 
ade = Æbd Æ
e � Æbe Æ
d + 
b
de ; (5.28)where an absolutely 
ru
ial point is that 
b
de is also totally antisymmetri
. In fa
t,
b
de = 16�b
defgh 
fgh ; (5.29)where �b
defgh is the totally-antisymmetri
 tensor of 7 dimensions, with �1234567 = +1.It is straightforward to see that the o
tonions are non-asso
iative. For example, fromthe rules given above we 
an see that 
3 (
1 
7) = 
3 
4 = �
5, while on the other hand(
3 
1) 
7 = 
2 
7 = +
5. So what does survive? A 
ru
ial thing that is still true for theo
tonions is that any two of them, say w and w0, will satisfyjww0j = jwj jw0j : (5.30)All of the real, 
omplex, quaternioni
 and o
tonioni
 algebras are division algebras. Thismeans that the 
on
ept of division makes sense, whi
h is perhaps quite surprising in the
ase of the o
tonions. Suppose that A, B and C are any three numbers in any one of thesefour number systems. First note that we have�A (AB) = ( �AA)B : (5.31)This is obvious from the asso
iativity for the real, 
omplex or quaternioni
 algebras. It isnot obvious for the o
tonions, sin
e they are not asso
iative (i.e. A (BC) 6= (AB)C), but82



a straightforward 
al
ulation using the previously-given properties shows that it is true forthe spe
ial 
ase �A (AB) = ( �AA)B. Thus we 
an 
onsider the following manipulation. IfAB = C, then we will have �A (AB) = jAj2B = �AC : (5.32)Hen
e we have B = �ACjAj2 ; (5.33)where we are allowed to divide by the real number jAj2, provided that it doesn't vanish.Thus as long as A 6= 0, we 
an give meaning to the division of C by A. This shows that allfour of the number systems are division algebras.Finally, note that again we 
an de�ne the o
tonions as an ordered pair of the previousobje
ts, i.e. quaternions, in this 
hain of real, 
omplex, quaternioni
 and o
tonioni
 divisionalgebras. Thus we de�ne the o
tonion w = (a; b) = a+ b 
7, where a = a0+a1 i+a2 j+a3 kand b = b0 + b1 i + b2 j + b3 k are quaternions, and i = 
1, j = 
2 and k = 
3. The 
onjugateof w is given by �w = (�a;�b). It is straightforward to show, from the previously-givenmultipli
ation rules for the imaginary o
tonions, that the rule for multiplying o
tonionsw = (a; b) and w0 = (
; d) is ww0 = (a 
� �d b; d a+ b �
) : (5.34)This is very analogous to the previous multipli
ation rule (5.22) that we found for thequaternions. Note, however, that the issue of ordering of the 
onstituent quaternions inthese o
tonioni
 produ
ts is now important, and indeed a 
areful 
al
ulation from themultipli
ation rules shows that the ordering must be as in (5.34). In fa
t (5.34) is rathergeneral, and en
ompasses all three of the multipli
ation rules that we have met. As a rulefor the quaternions, the ordering of the 
omplex-number 
onstituents in (5.34) would beunimportant, and as a rule for the 
omplex numbers, not only the ordering but also the
omplex 
onjugation of the real-number 
onstituents would be unimportant.After dis
ussing the generalities of division algebras, let us return now to the 
omplexnumbers, whi
h is the subje
t we wish to develop further here. Sin
e a 
omplex numberz is an ordered pair of real numbers, z = (x; y), it is natural to represent it as a point inthe two-dimensional plane, whose Cartesian axes are simply x and y. This is known as theComplex Plane, or sometimes the Argand Diagram. Of 
ourse it is also often 
onvenient toemploy polar 
oordinates r and � in the plane, related to the Cartesian 
oordinates byx = r 
os � ; y = r sin � : (5.35)83



Sin
e we 
an also write z = x+ i y, we therefore havez = r (
os � + i sin �) : (5.36)Note that jzj2 = r2 (
os2 � + sin2 �) = r2.Re
alling that the power-series expansions of the exponential fun
tion, the 
osine andthe sine fun
tions are given byex = Xn�0 xnn! ; 
os x =Xp�0 (�1)p x2p(2p)! ; sinx =Xp�0 (�1)p x2p+1(2p+ 1)! ; (5.37)we 
an see that in parti
ular, in the power series expansion of ei � the real terms (even powersof � assemble into the power series for 
os �, whilst the imaginary terms (odd powers of �)assemble into the series for sin �. In other wordsei � = 
os � + i sin � : (5.38)Turning this around, whi
h 
an be a
hieved by adding or subtra
ting the 
omlex 
onjugate,we �nd 
os � = 12 (ei � + e�i �) ; sin � = 12i(ei � � e�i �) : (5.39)Combining (5.36) and (5.38), we therefore havez = r ei � : (5.40)Note that we 
an also write this as z = jzj ei �. The angle � is known as the phase, or theargument, of the 
omplex number z. When 
omplex numbers are multiplied together, thephases are additive, and so if z1 = jz1j ei �1 and z2 = jz2j ei �2 , thenz1 z2 = jz1j jz2j ei (�1+�2) : (5.41)We may note that the following inequality holds:jz1 + z2j � jz1j+ jz2j : (5.42)This 
an be seen by 
al
ulating the square:jz1 + z2j2 = (�z1 + �z2)(z1 + z2) = jz1j2 + jz2j2 + �z1 z2 + �z2 z1 ;= jz1j2 + jz2j2 + 2jz1 jz2j 
os(�1 � �2) ; (5.43)� jz1j2 + jz2j2 + 2jz1 jz2j = (jz1j+ jz2j)2 ;where we write z1 = jz1j ei�1 and z2 = jz2j ei�2 . (The inequality follows from the fa
t that
os � � 1.) By indu
tion, the inequality (5.42) extends to any �nite number of terms:jz1 + z2 + � � � + znj � jz1j+ jz2j+ � � �+ jznj : (5.44)84



5.2 Analyti
 or Holomorphi
 Fun
tionsHaving introdu
ed the notion of 
omplex numbers, we 
an now 
onsider situations wherewe have a 
omplex fun
tion depending on a 
omplex argument. The most general kind ofpossibility would be to 
onsider a 
omplex fun
tion f = u+i v, where u and v are themselvesreal fun
tions of the 
omplex variable z = x+ i y;f(z) = u(x; y) + i v(x; y) : (5.45)As it stands, this notion of a fun
tion of a 
omplex variable is too broad, and 
on-sequently of limited value. If fun
tions are to be at all interesting, we must be able todi�erentiate them. Suppose the fun
tion f(z) is de�ned in some region, or domain, D inthe 
omplex plane (the two-dimensional plane with Cartesian axes x and y). We wouldnaturally de�ne the derivative of f at a point z0 in D as the limit off(z)� f(z0)z � z0 = ÆfÆz (5.46)as z approa
hes z0. The key point here, though, is that in order to be able to say \thelimit," we must insist that the answer is independent of how we let z approa
h the pointz0. The 
omplex plane, being 2-dimensional, allows z to approa
h z0 on any of an in�nityof di�erent traje
tories. We would like the answer to be unique.A 
lassi
 example of a fun
tion of z whose derivative is not unique is f(z) = jzj2 = �z z.Thus from (5.46) we would attempt to 
al
ulate the limitjzj2 � jz0j2z � z0 = z �z � z0 �z0z � z0 = �z + z0 �z � �z0z � z0 : (5.47)Now, if we write z � z0 = jz � z0j ei �, we see that this be
omes�z + z0 e�2i � = �z + z0 (
os 2� � i sin 2�) ; (5.48)whi
h shows that, ex
ept at z0 = 0, the answer depends on the angle � at whi
h z approa
hesz0 in the 
omplex plane. One say that the fun
tion jzj2 is not di�erentiable ex
ept at z = 0.The interesting fun
tions f(z) to 
onsider are those whi
h are di�erentiable in somedomain D in the 
omplex plane. Pla
ing the additional requirement that f(z) be singlevalued in the domain, we have the de�nition of an analyti
 fun
tion, sometimes known as aholomorphi
 fun
tion. Thus:A fun
tion f(z) is analyti
 or holomorphi
 in a domain D in the 
omplex plane if it issingle-valued and di�erentiable everywhere in D.85



Let us look at the 
onditions under whi
h a fun
tion is analyti
 in D. It is easy to derivene
essary 
onditions. Suppose �rst we take the limit in (5.46) in whi
h z + Æz approa
hesz along the dire
tion of the real axis (the x axis), so that Æz = Æx;ÆfÆz = Æu+ i ÆÆx+ i Æy = ux Æx+ i vx ÆxÆx = ux + i vx : (5.49)(Clearly for this to be well-de�ned the partial derivatives ux � �u=�x and vx � �v=�x mustexist.)Now suppose instead we approa
h along the imaginary axis, Æz = i Æy so that nowÆfÆz = Æu+ i ÆÆx+ i Æy = uy Æy + i vy Æyi Æy = �iuy + vy : (5.50)(This time, we require that the partial derivatives uy and vy exist.) If this is to agree withthe previous result from approa
hing along x, we must have ux + i vx = vy � iuy, whi
h,equating real and imaginary parts, givesux = vy ; uy = �vx : (5.51)These 
onditions are known as the Cau
hy-Riemann equations. It is quite easy to show thatwe would derive the same 
onditions if we allowed Æz to lie along any ray that approa
hesz at any angle.The Cau
hy-Riemann equations by themselves are ne
essary but not suÆ
ient for theanalyti
ity of the fun
tion f . The full statement is the following:A 
ontinuous single-valued fun
tion f(z) is analyti
 or holomorphi
 in a domain D if thefour derivatives ux, uy, vx and vy exist, are 
ontinuous and satisfy the Cau
hy-Riemannequations.15There is a ni
e alternative way to view the Cau
hy-Riemann equations. Sin
e z = x+i y,and hen
e �z = x� i y, we may solve to express x and y in terms of z and �z:x = 12(z + �z) ; y = � i2 (z � �z) : (5.52)Formally, we 
an think of z and �z as being independent variables. Then, using the 
hainrule, we shall have �z � ��z = �x�z ��x + �y�z ��y = 12�x � i2 �y ;��z � ���z = �x��z ��x + �y��z ��y = 12�x + i2 �y ; (5.53)15A fun
tion f(z) is 
ontinuous at z0 if, for any given � > 0 (however small), we 
an �nd a number Æ su
hthat jf(z)� f(z0)j < � for all points z in D satisfying jz � z0j < Æ.86



where �x � �=�x and �y � �=�y. (Note that �z means a partial derivative holding �z �xed,et
.) So if we have a 
omplex fun
tion f = u+ i v, then ��zf is given by��zf = 12ux + i2 uy + i2vx � 12 vy ; (5.54)whi
h vanishes by the Cau
hy-Riemann equations (5.51).16 So the Cau
hy-Riemann equa-tions are equivalent to the statement that the fun
tion f(z) depends on z but not on �z. Wenow see instantly why the fun
tion f = jzj2 = �z z was not in general analyti
, although itwas at the origin, z = 0.We have seen that the real and imaginary parts u and v of an analyti
 fun
tion satisfy theCau
hy-Riemann equations (5.51). From these, it follows that uxx = vyx = vxy = �uyy, andsimilarly for v. In other words, u and v ea
h satisfy Lapla
e's equation in two dimensions:r2u = 0 ; r2v = 0 ; where r2 � �2�x2 + �2�y2 : (5.55)This is a very useful property, sin
e it provides us with ways of solving Lapla
e's equationin two dimensions. It has appli
ations in 2-dimensional ele
trostati
s and gravity, and inhydrodynami
s.Note that another 
onsequen
e of the Cau
hy-Riemann equations (5.51) is thatux vx + uy vy = 0 ; (5.56)or, in other words, ~ru � ~rv = 0 ; (5.57)where ~r � ( ��x; ��y ) (5.58)is the 2-dimensional gradient operator. Equation (5.57) says that families of 
urves in the(x; y) plane 
orresponding to u = 
onstant and v = 
onstant interse
t at right-angles at allpoints of interse
tion. This is be
ause ~ru is perpendi
ular to the lines of 
onstant u, while~rv is perpendi
ular to the lines of 
onstant v.16One might feel uneasy with treating z and �z as independent variables, sin
e one is a
tually the 
omplex
onjugate of the other. The proper way to show that it is a valid pro
edure is temporarily to introdu
e agenuinely independent 
omplex variable ~z, and to write fun
tions as depending on z and ~z, rather than zand �z. After performing the di�erentiations in this enlarged 
omplex 2-plane, one then sets ~z = �z, whi
hamounts to taking the standard \se
tion" that de�nes the 
omplex plane. It then be
omes apparent thatone 
an equally well just treat z and �z as independent, and 
ut out the intermediate step of enlarging thedimension of the 
omplex spa
e. 87



5.2.1 Power SeriesA very important 
on
ept in 
omplex variable theory is the idea of a power series, and itsradius of 
onvergen
e. We 
ould 
onsider the in�nite series P1n=0 an (z � z0)n, but sin
e asimple shift of the origin in the 
omplex plane allows us to take z0 = 0, we may as wellmake life a little bit simpler by assuming this has been done. Thus, let us 
onsiderf(z) = 1Xn=0 an zn ; (5.59)where the an are 
onstant 
oeÆ
ients, whi
h may in general be 
omplex.A useful 
riterion for 
onvergen
e of a series is the Cau
hy test. This states that if theterms bn in an in�nite sum Pn bn are all non-negative, then Pn bn 
onverges or divergesa

ording to whether the limit of (bn) 1n (5.60)is less than or greater than 1, as n tends to in�nity.We 
an apply this to determine the 
onditions under whi
h the series (5.59) is absolutely
onvergent. Namely, we 
onsider the series1Xn=0 janj jzjn ; (5.61)whi
h is 
learly a sum of non-negative terms. Ifjanj 1n �! 1=R (5.62)as n �! 1, then it is evident that the power series (5.59) is absolutely 
onvergent if jzj < R,and divergent if jzj > R. (As always, the borderline 
ase jzj = R is tri
kier, and dependson �ner details of the 
oeÆ
ients an.) The quantity R is 
alled the radius of 
onvergen
eof the series. The 
ir
le of radius R (
entred on the expansion point z = 0 in our 
ase) is
alled the 
ir
le of 
onvergen
e. The series (5.59) is absolutely 
onvergent for any z thatlies in within the 
ir
le of 
onvergen
e.We 
an now establish the following theorem, whi
h is of great importan
e.If f(z) is de�ned by the power series (5.59), then f(z) is an analyti
 fun
tion at everypoint within the 
ir
le of 
onvergen
e.This is all about establishing that the power series de�ning f(z) is di�erentiable withinthe 
ir
le of 
onvergen
e. Thus we de�ne�(z) = 1X(n)=1nan zn�1 ; (5.63)88



without yet prejudging that �(z) is the derivative of f(z). Suppose the series (5.59) hasradius of 
onvergen
e R. It follows that for any � su
h that 0 < � < R, jan �nj must bebounded, sin
e we know that even the entire in�nite sum is bounded. We may say, then,that jan �nj < K for any n, where K is some positive number. Then, de�ning r = jzj, and� = jhj, it follows that if r < � and r + � < �, we havef(z + h)� f(z)h � �(z) = 1Xn=0 an �(z + h)n � znh � n zn�1� : (5.64)Using the inequality (5.44), we have���(z + h)n � znh � n zn�1��� = ��� 12! n(n� 1) zn�2 h+ 13! n(n� 1)(n� 2) zn�3 h2 + � � � + hn�1��� ;� 12! n(n� 1) rn�2 � + 13! n(n� 1)(n� 2) rn�3 �2 + � � � + �n�1 ;= (r + �)n � rn� � n rn�1 : (5.65)Hen
e 1Xn=0 janj ���(z + h)n � znh � n zn�1��� � K 1Xn=0 1�n h(r + �)n � rn� � n rn�1i ;= K h1� � ��� r � � � ��� r�� �(�� r)2 i ;= K ��(�� r � �)(�� r)2 : (5.66)Clearly this tends to zero as � goes to zero. This proves that �(z) given in (5.63) is indeedthe derivative of f(z). Thus f(z), de�ned by the power series (5.59), is di�erentiable withinits 
ir
le of 
onvergen
e. Sin
e it is also manifestly single-valued, this means that it isanalyti
 with the 
ir
le of 
onvergen
e.It is also 
lear that the derivative f 0(z), given, as we now know, by (5.63), is has thesame radius of 
onvergen
e as the original series for f(z). This is be
ause the limit ofjnanj1=n as n tends to in�nity is 
learly the same as the limit of janj1=n. The pro
ess ofdi�erentiation 
an therefore be 
ontinued to higher and higher derivatives. In other words,a power series 
an be di�erentiated term by term as many times as we wish, at any pointwithin its 
ir
le of 
onvergen
e.5.3 Contour Integration5.3.1 Cau
hy's TheoremA very important result in the theory of 
omplex fun
tions is Cau
hy's Theorem, whi
hstates: 89



� If a fun
tion f(z) is analyti
, and it is 
ontinuous within and on a smooth 
losed
ontour C, then IC f(z) dz = 0 : (5.67)The symbol H denotes that the integration is taken around a 
losed 
ontour; sometimes,when there is no ambiguity, we shall omit the subs
ript C that labels this 
ontour.To see what (5.67) means, 
onsider �rst the following. Sin
e f(z) = u(x; y) + i v(x; y),and z = x+ i y, we may write (5.67) asIC f(z) dz = IC(u dx� v dy) + i IC(v dx+ u dy) ; (5.68)where we have separated the original integral into its real and imaginary parts. Written inthis way, ea
h of the 
ontour integrals 
an be seen to be nothing but a 
losed line integral ofthe kind familiar, for example, in ele
tromagnetism. The only di�eren
e here is that we arein two dimensions rather than three. However, we still have the 
on
ept Stokes' Theorem,known as Green's Theorem in two dimensions, whi
h asserts thatI ~E � d~̀= ZS ~r� ~E � d~S ; (5.69)where C is a 
losed 
urve bounding a domain S, and ~E is any ve
tor �eld de�ned in Sand on C, with well-de�ned derivatives in S. In two dimensions, the 
url operator ~r� justmeans ~r� ~E = �Ey�x � �Ex�y : (5.70)(It is e�e
tively like the z 
omponent of the three-dimensional 
url.) ~E � d~̀ means Ex dx+Ey dy, and the area element d~S will just be dx dy.Applying Green's theorem to the integrals in (5.68), we therefore obtainIC f(z) dz = � ZS ��v�x + �u�y� dx dy + i ZS ��u�x � �v�y� dx dy : (5.71)But the integrands here are pre
isely the quantities that vanish by virtue of the Cau
hy-Riemann equations (5.51), and thus we see that H f(z) dz = 0, verifying Cau
hy's theorem.An alternative proof of Cau
hy's theorem 
an be given as follows. De�ne �rst the slightlymore general integral F (�) � � I f(�z) dz ; 0 � � � 1 ; (5.72)where � is a 
onstant parameter that 
an be freely 
hosen in the interval 0 � � � 1.Cau
hy's theorem is therefore the statement that F (1) = 0. To show this, �rst di�erentiateF (�) with respe
t to �: F 0(�) = I f(�z) dz + � I z f 0(�z) dz : (5.73)90



(The prime symbol 0 always means the derivative of a fun
tion with respe
t to its argument.)Now integrate the se
ond term by parts, givingF 0(�) = I f(�z) dz + ��[��1 z f(�z)℄� ��1 I f(�z) dz�= [��1 z f(�z)℄ ; (5.74)where the square bra
kets indi
ate that we take the di�eren
e between the values of theen
losed quantity at the beginning and end of the integration range. But sin
e we areintegrating around a 
losed 
urve, and sin
e z f(�z) is a single-valued fun
tion, this mustvanish. Thus we have established that F 0(�) = 0, implying that F (�) = 
onstant. We 
andetermine this 
onstant by 
onsidering any value of � we wish. Taking � = 0, it is 
learfrom (5.72) that F (0) = 0, when
e F (1) = 0, proving Cau
hy's theorem.Why did we appear not to need the Cau
hy-Riemann equations (5.51) in this proof?The answer, of 
ourse, is that e�e
tively we did, sin
e we assumed that we 
ould sensiblytalk about the derivative of f , 
alled f 0. As we saw when we dis
ussed the Cau
hy-Riemannequations, they are the 
onsequen
e of requiring that f 0(z) have a well-de�ned meaning.Cau
hy's theorem has very important impli
ations in the theory of integration of 
om-plex fun
tions. One of these is that if f(z) is an analyti
 fun
tion in some domain D, thenif we integrate f(z) from points z1 to z2 within D the answerZ z2z1 f(z) dz (5.75)is independent of the path of integration within D. This follows immediately by noting thatif we 
onsider two integration paths P1 and P2 then the total path 
onsisting of integrationfrom z1 to z2 along P1, and then ba
k to z1 in the negative dire
tion along P2 
onstitutesa 
losed 
urve C = P1 � P2 within D. Thus Cau
hy's theorem tells us that0 = IC f(z) dz = ZP1 f(z) dz � ZP2 f(z) dz : (5.76)Another related impli
ation from Cau
hy's theorem is that it is possible to de�ne aninde�nite integral of f(z), by g(z) = Z zz0 f(z0) dz0 ; (5.77)where the 
ontour of integration 
an be taken to be any path within the domain of analyt-i
ity. Noti
e that the integrated fun
tion, g(z), has the same domain of analyti
ity as theintegrand f(z). To show this, we just have to show that the derivative of g(z) is unique.This (almost self-evident) property 
an be made evident by 
onsideringg(z) � g(�)z � � � f(�) = R z� (f(z0)� f(�)) dz0z � � : (5.78)91



Sin
e f(z) is 
ontinuous and single-valued, it follows that jf(z0)� f(�)j will tend to zero atleast as fast as jz � �j for any point z0 on a dire
t path joining � to z, as z approa
hes �.Together with the fa
t that the integration range itself is tending to zero in this limit, itis evident that the right-hand side in (5.78) will tend to zero as � approa
hes �, implyingtherefore that g0(z) exists and is equal to f(z).A third very important impli
ation from Cau
hy's theorem is that if a fun
tion f(z)that does 
ontain some sort of singularities within a 
losed 
urve C is integrated around C,then the result will be un
hanged if the 
ontour is deformed in any way, provided that itdoes not 
ross any singularity of f(z) during the deformation. This property will prove tobe invaluable later, when we want to perform expli
it evaluations of 
ontour integrals.Finally, on the subje
t of Cau
hy's theorem, let us note that we 
an turn it around,and e�e
tively use it as a de�nition of an analyti
 fun
tion. This is the 
ontent of Morera'sTheorem, whi
h states:� If f(z) is 
ontinuous and single-valued within a 
losed 
ontour C, and if H f(z) dz = 0for any 
losed 
ontour within C, then f(z) is analyti
 within C.This 
an provide a useful way of testing whether a fun
tion is analyti
 in some domain.5.3.2 Cau
hy's Integral FormulaSuppose that the fun
tion f(z) is analyti
 in a domain D. Consider the integralG(a) = IC f(z)z � a dz ; (5.79)where the 
ontour C is any 
losed 
urve within D. There are three 
ases to 
onsider,depending on whether the point a lies inside, on, or outside the 
ontour of integration C.Consider �rst the 
ase when a lies within C. By an observation in the previous se
tion,we know that the value of the integral (5.79) will not alter if we deform the 
ontour in anyway provided that the deformation does not 
ross over the point z = a. We 
an exploit thisin order to make life simple, by deforming the 
ontour into a small 
ir
le C 0, of radius �,
entred on the point a. Thus we may writez � a = � ei� ; (5.80)with the deformed 
ontour C 0 being parameterised by taking � from 0 to 2�.1717Note that this means that we de�ne a positively-oriented 
ontour to be one whose path runs anti-
lo
kwise, in the dire
tion of in
reasing �. Expressed in a 
oordinate-invariant way, a positively-oriented
losed 
ontour is one for whi
h the interior lies to the left as you walk along the path.92



Thus we have dz = i � ei� d�, and soG(a) = i Z 2�0 f(a+ � ei�) d� = i f(a) Z 2�0 d� + i Z 2�0 [f(a+ � ei�)� f(a)℄ d� : (5.81)In the limit as � tends to zero, the 
ontinuity of the fun
tion f(z) implies that the lastintegral will vanish, sin
e f(a+ � ei �) = f(a) + f 0(a) � ei � + � � �, and so we have that if f(z)is analyti
 within and on any 
losed 
ontour C thenIC f(z)z � a dz = 2� i f(a) ; (5.82)provided that C 
ontains the point z = a. This is Cau
hy's integral formula.Obviously if the point z = a were to lie outside the 
ontour C, then we would, byCau
hy's theorem, have IC f(z)z � a dz = 0 ; (5.83)sin
e then the integrand would be a fun
tion that was analyti
 within C.The third 
ase to 
onsider is when the point a lies exa
tly on the path of the 
ontourC. It is somewhat a matter of de�nition, as to how we should handle this 
ase. The mostreasonable thing is to de
ide, like in the Judgement of Solomon, that the point is to beviewed as being split into two, with half of it lying inside the 
ontour, and half outside.Thus if a lies on C we shall have IC f(z)z � a dz = � i f(a) : (5.84)We 
an view the Cau
hy integral formula as a way of evaluating an analyti
 fun
tion ata point z in terms of a 
ontour integral around any 
losed 
urve C that 
ontains z:f(z) = 12� i IC f(�) d�� � z : (5.85)A very useful 
onsequen
e from this is that we 
an use it also to express the derivatives off(z) in terms of 
ontour integrals. Essentially, one just di�erentiates (5.85) with respe
t toz, meaning that on the right-hand side it is only the fun
tion (��z)�1 that is di�erentiated.We ought to be a little 
areful just on
e to verify that this \di�erentiation under the integral"is justi�ed, so that having established the validity, we 
an be 
avalier about it in the future.The demonstration is in any 
ase pretty simple. We havef(z + h)� f(z)h = 12� i I f(�)h � 1� � z � h � 1� � z� d� ;= 12� i I f(�) d�(� � z)(� � z � h) : (5.86)93



Now in the limit when h �! 0 the left-hand side be
omes f 0(z), and thus we getf 0(z) = 12� i I f(�) d�(� � z)2 : (5.87)The question of the validity of this pro
ess, in whi
h we have taken the limit h �! 0 underthe integration, 
omes down to whether it was valid to assume thatT � � I f(�) � 1(� � z)2 � 1(� � z � h)(� � z)� d�= h I f(�) d�(� � z)2 (� � z � h) (5.88)vanishes as h tends to zero. Now it is evident thatjT j � jhjM Lb2 (b� jhj) ; (5.89)where M is the maximum value of jf(�)j on the 
ontour, L is the length of the 
ontour,and b is the minimum value of of j� � zj on the 
ontour. These are all �xed numbers,independent of h, and so we see that indeed T must vanish as h is taken to zero.More generally, by 
ontinuing the above pro
edure, we 
an show that the n'th derivativeof f(z) is given by f (n)(z) = 12� i I f(�) dndzn� 1� � z� d� ; (5.90)or, in other words, f (n)(z) = n!2� i IC f(�) d�(� � z)n+1 : (5.91)Note that sin
e all the derivatives of f(z) exist, for all point C within the 
ontour C, itfollows that f (n)(z) is analyti
 within C for any n.5.3.3 The Taylor SeriesWe 
an use Cau
hy's integral formula to derive Taylor's theorem for the expansion of afun
tion f(z) around a point z = a at whi
h f(z) is analyti
. An important out
ome fromthis will be that we shall see that the radius of 
onvergen
e of the Taylor series extends upto the singularity of f(z) that is nearest to z = a.From Cau
hy's integral formula we have that if f(z) is analyti
 inside and on a 
ontourC, and a+ h lies inside C, thenf(a+ h) = 12� i I f(z) dzz � a� h : (5.92)Now, bearing in mind that the geometri
 series PNn=0 xn sums to give (1�xN+1) (1�x)�1,we have that NXn=0 hn(z � a)n+1 = 1z � a� h � hN+1(z � a� h) (z � a)N+1 : (5.93)94



We 
an use this identity as an expression for 1z�a�h in (5.92), implying thatf(a+ h) = NXn=0 hn2� i I f(z) dz(z � a)n+1 + hN+12� i I f(z) dz(z � a� h) (z � a)N+1 : (5.94)In other words, in view of our previous result (5.91), we havef(a+ h) = NXn=0 hnn! f (n)(a) +RN ; (5.95)where the \remainder" term RN is given byRN = hN+12� i IC f(z) dz(z � a� h) (z � a)N+1 : (5.96)Now, if M denotes the maximum value of jf(z)j on the 
ontour C, then by taking C tobe a 
ir
le of radius r 
entred on z = a, we shall havejRN j � jhjN+1M r(r � jhj) rN+1 = M rr � jhj � jhjr �N+1 : (5.97)Thus if we 
hoose h su
h that jhj < r, it follows that as N is sent to in�nity, RN will go tozero. This means that the Taylor seriesf(a+ h) = 1Xn=0 hnn! f (n)(a) (5.98)will be 
onvergent for any h lying within the 
ir
le of radius r 
entred on z = a. But we 
an
hoose this 
ir
le to be as large as we like, provided that it does not en
lose any singularityof f(z). Therefore, it follows that the radius of 
onvergen
e of the Taylor series (5.98) ispre
isely equal to the distan
e between z = a and the nearest singularity of f(z).5.3.4 The Laurent SeriesSuppose now that we want to expand f(z) around a point z = a where f(z) has a singularity.Clearly the previous Taylor expansion will no longer work. We 
an, however, 
onstru
t amore general kind of series expansion, known as a Laurent series. To do this, 
onsider a
ontour 
omprising two 
ir
les C1 and C2 
entred on the point z = a, where C1 has a largerradius that takes it out as far as possible before hitting the next singularity of f(z), whileC2 is an arbitrarily small 
ir
le en
losing a. Take the path C1 to be anti
lo
kwise, whilethe path C2 is 
lo
kwise. We 
an make C1 and C2 into a single 
losed 
ontour, by joiningthem along a narrow \
auseway," as shown in Figure 1.
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Figure 1: The 
ontour C = C1 + C2 for Cau
hy's integralNow 
onsider Cau
hy's integral formula for this 
ontour, whi
h will givef(a+ h) = 12� i IC f(z) dzz � a� h ; (5.99)sin
e the resulting 
omplete 
urve C = C1+C2 en
loses no singularities ex
ept for the poleat z = a+ h. We 
an write this asf(a+ h) = 12� i IC1 f(z) dzz � a� h + 12� i IC2 f(z) dzz � a� h : (5.100)For the �rst integral, around the large 
ir
le C1, we 
an use the same expansion for (z�a�h)�1 as we used in the Taylor series previously, obtained by setting N =1 in (5.93), andusing the fa
t that the se
ond term on the right-hand side then vanishes, sin
e hN+1=jz �ajN+1 goes to zero on C1 when N goes to in�nity, as a result of the radius of C1 being largerthan jhj. In other words, we expand (z � a� h)�1 as1z � a� h = 1(z � a)(1� h (z � a)�1) ;= 1z � a �1 + hz � a + h2(z � a)2 + � � � � ; (5.101)= 1Xn=0 hn(z � a)n+1 :On the other hand, in the se
ond integral in (5.100) we 
an expand (z � a� h)�1 in a96



series valid for jz � aj << jhj, namely1z � a� h = � 1h(1� (z � a)h�1) ;= �1h �1 + z � ah + (z � a)2h2 + � � � � ; (5.102)= � 1Xn=1 (z � a)n�1hn :Thus we �ndf(a+ h) = 12� i 1Xn=0hn IC1 f(z) dz(z � a)n+1 + 12� i 1Xn=1 1hn IC+2 f(z) (z � a)n�1 dz ; (5.103)where we de�ne C+2 to mean the 
ontour C2 but with the dire
tion of the integration pathreversed, i.e. C+2 runs anti-
lo
kwise around the point z = a, whi
h means it is now thestandard positive dire
tion for a 
ontour. Thus we havef(a+ h) = 1Xn=�1an hn ; (5.104)where the 
oeÆ
ients an are given byan = 12� i I f(z) dz(z � a)n+1 : (5.105)Here, the integration 
ontour is C1 when evaluating an for n � 0, and C+2 when evaluatingan for n < 0. Noti
e that we 
an in fa
t just as well 
hoose to use the 
ontour C1 forthe n < 0 integrals too, sin
e the deform of the 
ontour C+2 into C1 does not 
ross anysingularities of the integrand when n < 0.The expansion in (5.104) is known as the Laurent Series. By similar arguments to thosewe used for the Taylor series, one 
an see that the series 
onverges in an annulus whoselarger radius is de�ned by the 
ontour C1. This 
ontour 
ould be 
hosen to be the largestpossible 
ir
le 
entred on the singularity of f(z) at z = a that does not en
lose any othersingularity of f(z).In the Laurent series, the fun
tion f(z) has been split as the sum of two parts. The�rst part (the terms with n � 0 in (5.104)), is analyti
 everywhere inside the larger 
ir
leC1. The se
ond part (the terms with n � �1 in (5.104)) is analyti
 everywhere outside thesmall 
ir
le C2 en
losing the singularity as z = a.5.4 Classi�
ation of SingularitiesWe are now in a position to 
lassify the types of singularity that a fun
tion of a 
omplexvariable may possess. 97



Suppose that f(z) has a singularity at z = a, and that its Laurent expansion for f(a+h),given in general in (5.104), a
tually terminates at some spe
i�
 negative value of n, sayn = �N . Thus we have f(a+ h) = 1Xn=�N an hn : (5.106)We then say that f(z) has a pole of order N at z = a. In other words, as z approa
hes athe fun
tion f(z) has the behaviourf(z) = a�N(z � a)N + less singular terms : (5.107)If, on the other hand, the sum over negative values of n in (5.104) does not terminate,but goes on to n = �1, then the fun
tion f(z) has an essential singularity at z = a. A
lassi
 example is the fun
tion f(z) = e 1z : (5.108)This has the Laurent expansion f(z) = 1Xn=0 1n! zn (5.109)around z = 0, This has terms in arbitrarily negative powers of z, and so z = 0 is an essentialsingularity.Fun
tions have quite a 
ompli
ated behaviour near an essential singularity. For example,if z approa
hes zero along the positive real axis, e1=z tends to in�nity. On the other hand, ifthe approa
h to zero is along the negative real axis, e1=z instead tends to zero. An approa
hto z = 0 along the imaginary axis 
auses e1=z to have unit modulus, but with an ever-in
reasing phase rotation. In fa
t a fun
tion f(z) with an essential singularity 
an take onany value, for z near to the singular point.Note that the Laurent expansion (5.104) that we have been dis
ussing here is appli
ableonly if the singularity of f(z) is an isolated one.18 There 
an also exist singularities of adi�erent kind, whi
h are neither poles nor essential singularities. Consider, for example,the fun
tions f(z) = pz, or f(z) = log z. Neither of these 
an be expanded in a Laurentseries around z = 0. They are both dis
ontinuous along an entire semi-in�nite line startingfrom the point z = 0. Thus the singularity at z = 0 is not an isolated one; it is 
alled abran
h point. We shall dis
uss these in more detail later.For now, just take note of the fa
t that a singularity in an analyti
 fun
tion does notne
essarily mean that the fun
tion is in�nite there. By de�nition, a fun
tion f(z) is singular18By de�nition, if a fun
tion f(z) has a singularity at z = a, then it is an isolated singularity if f(z) 
anbe expanded in a Laurent series around z = a. 98



at z = a if it is not analyti
 at z = a. Thus, for example, f(z) = z1=2 is singular at z = 0,even though f(0) = 0. This 
an be seen from the fa
t that we 
annot expand z1=2 as apower series around z = 0, and therefore z1=2 
annot be analyti
 there.For now, let us look in a bit more detail at fun
tions with isolated singularities.5.4.1 Entire Fun
tionsA very important, and initially perhaps rather surprising, result is the following, known asLiouville's Theorem:A fun
tion f(z) that is analyti
 for all �nite values of z and is bounded everywhere isa 
onstant.We 
an prove this using the result obtained earlier from Cau
hy's integral formula, forf 0(a): f 0(a) = 12� i I f(z) dz(z � a)2 : (5.110)Take the 
ontour of integration to be a 
ir
le of radius R 
entred on z = a. Sin
e we areassuming that f(z) is bounded, we may take jf(z)j � M for all points z on the 
ontour,where M is some �nite positive number. Then, using (5.110), we must havejf 0(a)j � � M2� R2� (2� R) = MR : (5.111)Thus by taking R to in�nity, and re
alling our assumption that f(z) remains bounded forall �nite z (meaning that M is �nite, no matter how large R is), we see that f 0(a) must bezero. Thus f(a) is a 
onstant, independent of a. Thus Liouville's theorem is established.An illustration of Liouville's theorem 
an be given with the following example. Supposewe 
onstru
t a fun
tion that is well-behaved, and bounded, everywhere on the real axis. Anexample might be f(x) = 11 + x2 ; (5.112)whi
h rather boringly falls o� to zero as x tends to +1 or �1, having attained the ex
itingpeak of f = 1 at the origin. However, viewed as a fun
tion of the variable z in the 
omplexplane, it has a more interesting behaviour, sin
e we havef(z) = 11 + z2 = 1(z � i)(z + i) = i2(z + i) � i2(z � i) ; : (5.113)Thus the fun
tion f(z) a
tually has poles at z = �i, away from the z axis. Liouville'stheorem tells us that any bounded fun
tion we try to 
onstru
t is inevitably going to havesingularities somewhere, unless we are 
ontent with the humble 
onstant fun
tion.99



A similar argument to the above allows us to extend Liouville's theorem to the following:If f(z) is analyti
 for all �nite z, and if jf(z)j is proportional to jzjk for some integerk as z approa
hes in�nity, then f(z) is a polynomial of degree � k.To show this, we follow the same strategy as before, by using the higher-derivative
onsequen
es of Cau
hy's integral:f (n)(a) = n!2� i I f(z) dz(z � a)n+1 : (5.114)Assume that jf(z)j �M jzjk on the 
ontour at radius R 
entred on z = a. Then we havejf (n)(a)j � �n!M Rk2�Rn+1� (2� R) = n!M Rk�n : (5.115)Thus we see that as R tends to in�nity all the terms with k < n will vanish, and sof (n)(a) = 0 ; for n > k : (5.116)But this is just telling us that f(z) is a polynomial in z with zk as its highest power, whi
hproves the theorem. Liouville's theorem itself is just the spe
ial 
ase k = 0.A fun
tion f(z) that is a polynomial in z of degree k,f(z) = kXn=0 an zn ; (5.117)is 
learly analyti
 for all �nite values of z. However, if k > 0 it will inevitably have a poleat in�nity. To see this, we use the usual tri
k of making the 
oordinate transformation� = 1z ; (5.118)and then looking at the behaviour of the fun
tion f(1=�) at � = 0. Clearly, for a polynomialof degree k of the form (5.117), we shall getf(1=�) = kXn=0 an ��n ; (5.119)implying that there are poles of orders up to and in
luding k at z =1.Complex fun
tions that are analyti
 in every �nite region in the 
omplex plane are 
alledentire fun
tions. All polynomials, as we have seen, are therefore entire fun
tions. Anotherexample is the exponential fun
tion ez, de�ned by the power-series expansionez = 1Xn=0 znn! : (5.120)100



By the Cau
hy test for the 
onvergen
e of series, we see that (jzjn=n!)1=n tends to zero asn tends to in�nity, for any �nite jzj, and so the exponential is analyti
 for all �nite z. Of
ourse the situation at in�nity is another story; here, one has to look at e1=� as � tendsto zero, and as we saw previously this has an essential singularity, whi
h is more divergentthan any �nite-order pole. Other examples of entire fun
tions are 
os z, and the Besselfun
tions of integer order, Jn(z). These have the power-series expansionsJn(z) = 1X̀=0 (�1)``! (n+ `)! �z2�n+2` : (5.121)Of 
ourse we know from Liouville's theorem that any interesting entire fun
tion (i.e.anything ex
ept the purely 
onstant fun
tion) must have some sort of singularity at in�nity.5.4.2 Meromorphi
 Fun
tionsEntire fun
tions are analyti
 everywhere ex
ept at in�nity. Next on the list aremeromorphi
fun
tions:A Meromorphi
 Fun
tion f(z) is analyti
 everywhere in the 
omplex plane ex
ept forisolated poles.We insist, in the de�nition of a meromorphi
 fun
tion, that the only singularities thatare allowed are poles, and not, for example, essential singularities.The number of poles in a meromorphi
 fun
tion must be �nite. This follows from thefa
t that if there were an in�nite number then there would exist some singular point, eitherat �nite z or at z =1, whi
h would not be isolated, thus 
ontradi
ting the de�nition of aneverywhere-meromorphi
 fun
tion.Any meromorphi
 fun
tion f(z) 
an be written as a ratio of two polynomials. Su
h aratio is known as a rational fun
tion. To see why we 
an always write f(z) in this way, wehave only to make use of the observation above that the number of poles must be �nite. Letthe number of poles at �nite z be N . Thus at a set of N points zn in the 
omplex plane,the fun
tion f(z) has poles of orders dn. It follows that the fun
tiong(z) � f(z) NYn=1(z � zn)dn (5.122)must be analyti
 everywhere (ex
ept possibly at in�nity), sin
e we have 
leverly arrangedto 
an
el out every pole at �nite z. Even if f(z) does have a pole at in�nity, it followsfrom (5.122) that g(z) will diverge no faster than jzjk for some �nite integer k. But we101



saw earlier, in the generalisation of Liouville's theorem, that any su
h fun
tion must be apolynomial of degree � k. Thus we 
on
lude that f(z) is a ratio of polynomials:f(z) = g(z)QNn=1(z � zn)dn : (5.123)The fa
t that a meromorphi
 fun
tion 
an be expressed as a ratio of polynomials 
anbe extremely useful. Also, let us remark that it is sometimes useful to introdu
e the notionof a fun
tion that is meromorphi
 only in some given region of the 
omplex plane. In otherwords, we may 
onsider a fun
tion whose only singularities in some region are poles.19A ratio of two polynomials 
an be expanded out as a sum of partial fra
tions. Forexample 1 + z21� z2 = 1z + 1 � 1z � 1 � 1 : (5.124)Therefore it follows that a fun
tion f(z) that is meromorphi
 
an be expanded out as a sumof partial fra
tions in that region. Sin
e we are allowing for the possibility of a singularityat in�nity, the sum may be an in�nite one.Let us 
onsider an example of a fun
tion f(z) that is meromorphi
 in some region, andfurthermore where every pole is of order 1. This is in fa
t a very 
ommon 
ir
umstan
e. Asa pie
e of terminology, a pole of order 1 is also known as a simple pole. Let us assume for
onvenien
e that f(z) is analyti
 at z = 0, and that the poles are lo
ated at the points an,numbered in in
reasing order of distan
e from the origin. Thus near z = an, we shall havef(z) � bnz � an ; (5.125)where the 
onstant bn 
hara
terises the \strength" of the pole. In fa
t bn is known as theresidue at the pole z = an.Consider a 
ir
le Cp 
entred on z = 0 and with radius Rp 
hosen so that it en
loses pof the poles. To avoid problems, we 
hoose Rp so that it does not pass through any pole.Then the fun
tion Gp(z) � f(z)� pXn=1 bnz � an (5.126)will be analyti
 within the 
ir
le, sin
e we have expli
itly arranged to subtra
t out allthe poles (whi
h we are assuming all to be of order 1). Using Cau
hy's integral, we shalltherefore haveGp(z) = 12� i ICp Gp(�) d�� � z = 12� i ICp f(�) d�� � z � 12� i pXn=1 bn ICp d�(� � z)(� � an) : (5.127)19Note that we are not 
hanging the de�nition here. A meromorphi
 fun
tion will always mean a fun
tionthat has only pole singularities in the entire 
omplex plane (in
luding in�nity). But it is useful in additionto be able to talk about more general fun
tions that are meromorphi
 only in a region.102



Now, ea
h term in the sum here integrates to zero. This is be
ause the integrand is1(� � z)(� � an) = 1z � an h 1� � z � 1� � an i (5.128)The integral (over �) is taken around a 
ontour that en
loses both the simple pole at � = zand the simple pole at � = an. We saw earlier, in the proof of Cau
hy's integral formula, thata 
ontour integral running anti-
lo
kwise around a simple pole 
=(� � �0) gives the answer2� 
 i, and so the result of integrating (5.128) around our 
ontour is (2� i�2� i)=(z�an) = 0.Thus we 
on
lude that Gp(z) = 12� i ICp f(�) d�� � z : (5.129)Now, 
onsider a sequen
e of ever-larger 
ir
les Cp, en
losing larger and larger numbers ofpoles. This de�nes a sequen
e of fun
tions Gp(z) for in
reasing p, ea
h of whi
h is analyti
within Rp. We want to show that Gp(z) is bounded as p tends to in�nity, whi
h will allow usto invoke Liouville's theorem and dedu
e that G1(z) = 
onstant. By a now-familiar methodof argument, we suppose that Mp is the maximum value that jf(�)j attains anywhere onthe 
ir
ular 
ontour of radius Rp. Then from (5.129) we shall havejGp(z)j � MpRpRp � jzj : (5.130)Consider �rst the 
ase of a fun
tion f for whi
h Mp is bounded in value as Rp goesto in�nity. Then, we see from (5.130) that jGp(z)j is bounded as p goes to in�nity. ByLiouville's theorem, it follows that G1(z) must just be a 
onstant, 
. Thus in this 
ase wehave f(z) = 
+ 1Xn=1 bnz � an : (5.131)Re
alling that we 
hose things so that f(z) is analyti
 at z = 0, we 
an determine the
onstant 
 by setting z = 0 in this equation. Thusf(z) = f(0) + 1Xn=1 h bnz � an + bnan i : (5.132)We obtained this result by assuming that f(z) was bounded on the 
ir
le of radius Rp,as Rp was sent to in�nity. Even if this is not the 
ase, one 
an often 
onstru
t a relatedfun
tion, for example f(z)=zk for some suitable integer k, whi
h is bounded on the 
ir
le.With appropriate minor modi�
ations, a formula like (5.132) 
an then be obtained.An example is long overdue. Consider the fun
tion f(z) = tan z. whi
h is, of 
ourse(sin z)= 
os z. Now we havesin z = sin(x+ i y) = sinx 
osh y + i 
os x sinhy ;
os z = 
os(x+ i y) = 
os x 
osh y � i sinx sinh y ; (5.133)103



where we have used the standard results that 
os(i y) = 
osh y and sin(i y) = i sinhy. Thuswe havej sin zj2 = sin2 x 
osh2 y+
os2 x sinh2 y ; j 
os zj2 = 
os2 x 
osh2 y+sin2 x sinh2 y : (5.134)It is evident that j sin zj is �nite for all �nite z, and that therefore tan z 
an have poles onlywhen 
os z vanishes. From the expression for j 
os zj2, we see that this 
an happen only ify = 0 and 
os x = 0, i.e. at z = (n+ 12)� ; (5.135)where n is an integer.Near z = (n+ 12)�, say z = � + (n+ 12 )�, where j�j �! 0, we shall havesin z �! sin(n+ 12 )� = (�1)n ;
os z �! � sin(n+ 12)� sin � �! �(�1)n � ; (5.136)and so the pole at z = an = (n+ 12)� has residue bn = �1.We also need to examine the boundedness of f(z) = tan z on the 
ir
les Rp. These
ir
les are most 
onveniently taken to go pre
isely half way between the poles, so we shouldtake Rp = p �. Now from (5.134) we havej tan zj2 = sin2 x 
osh2 y + 
os2 x sinh2 y
os2 x 
osh2 y + sin2 x sinh2 y : (5.137)Bearing in mind that sinx and 
os x 
an never vanish simultaneously, and that sinh2 y and
osh2 y both diverge like 14e2jyj as jyj tends to in�nity, we see that j tan zj is indeed boundedon the 
ir
les Rp of radius p �, as p tends to in�nity. Thus we 
an now invoke our result(5.132), to dedu
e thattan z = � 1Xn=�1 h 1z � (n+ 12)� + 1(n+ 12�)i : (5.138)We 
an split the summation range into the poles at positive and at negative values of x, bywriting1Xn=�1un = 1Xn=0 un + �1Xn=�1un = 1Xn=0un + 1Xm=0 u�m�1 = 1Xn=0un + 1Xn=0 u�n�1 ; (5.139)where in the third expression we have written n = �m � 1, and in the last expression wehave repla
ed m by n again. Thus (5.138) givestan z = � 1Xn=0 h 1z � (n+ 12)� + 1(n+ 12�)i� 1Xn=0 h 1z + (n+ 12)� � 1(n+ 12�)i (5.140)104



whi
h, grouping the summands together, be
omestan z = 1Xn=0 2z(n+ 12 )2 �2 � z2 : (5.141)Another appli
ation of the result (5.132) is to obtain an expansion of an entire fun
tionas an in�nite produ
t. Suppose f(z) is entire, meaning that it is analyti
 everywhere ex
eptat in�nity. It follows that f 0(z) is an analyti
 fun
tion too, and so the fun
tiong(z) � f 0(z)f(z) = ddz log f(z) (5.142)is meromorphi
 for all �nite z. (Its only singularities are poles at the pla
es where f(z)vanishes, i.e. at the zeros of f(z).)Let us suppose that f(z) has only simple zeros, i.e. it vanishes like 
n (z � an) near thezero at z = an, and furthermore, suppose that f(0) 6= 0. Thus we 
an apply the formula(5.132) to g(z), implying thatddz log f(z) = f 0(0)f(0) + 1Xn=1 h 1z � an + 1an i : (5.143)This 
an be integrated to givelog f(z) = log f(0) + f 0(0)f(0 z + 1Xn=1 h log �1� zan�+ zan i : (5.144)Finally, exponentiating this, we getf(z) = f(0) e[f 0(0)=f(0)℄ z 1Yn=1 �1� zan� ez=an : (5.145)This in�nite-produ
t expansion is valid for any entire fun
tion f(z) with simple zeros atz = an, none of whi
h is lo
ated at z = 0, whose logarithmi
 derivative f 0=f is bounded ona set of 
ir
les Rp. Obviously, without too mu
h trouble, generalisations 
an be obtainedwhere some of these restri
tions are removed.Let us apply this result in an example. Consider the fun
tion sin z. From (5.134) wesee that it has zeros only at y = 0, x = n�. The zero at z = 0 is unfortunate, sin
e in thederivation of (5.145) we required our entire fun
tion f(z) to be non-zero at z = 0. But thisis easily handled, by taking our entire fun
tion to be f(z) = (sin z)=z, whi
h tends to 1 atz = 0. We now have a fun
tion that satis�es all the requirements, and so from (5.145) weshall have sin zz = 1Yn=�1�1� zn�� e zn � ; (5.146)105



where the term n = 0 in the produ
t is to be omitted. Combining the positive-n andnegative-n terms pairwise, we therefore �nd thatsin z = z 1Yn=1 h1� � zn��2 i : (5.147)It is manifest that this has zeros in all the right pla
es.5.4.3 Bran
h Points, and Many-valued Fun
tionsAll the fun
tions we have 
onsidered so far have been single-valued ones; given a point z,the fun
tion f(z) has a unique value. Many fun
tions do not enjoy this property. A 
lassi
example is the fun
tion f(z) = z1=2. This 
an take two possible values for ea
h non-zeropoint z, for the usual reason that there is an ambiguity of sign in taking the square root.This 
an be made more pre
ise here, by 
onsidering the representation of the point z asz = r ei�. Thus we shall have f(z) = (r ei�) 12 = r 12 e i2 � : (5.148)But we 
an also write z = r ei(�+2�), sin
e � is periodi
, with period 2�, on the 
omplexplane. Now we obtain f(z) = (r ei (�+2�)) 12 = r 12 e i2 �+i� = �r 12 e i2 � : (5.149)In fa
t, if we look at the value of f(z) = z1=2 on the 
ir
le z = r ei �, taking � from � = 0to �0 = 2� � �, where � is a small positive 
onstant, we see thatf(r ei �) �! �f(r) ; (5.150)as � approa
hes �0. But sin
e we are ba
k essentially to where we started in the 
omplexplane, it follows that f(z) must be dis
ontinuous; it undergoes a jump in its value, on
ompleting a 
ir
uit around the origin.Of 
ourse although in this des
ription we seemed to atta
h a parti
ular signi�
an
e tothe positive real axis there is not really anything espe
ially distinguished about this line.We 
ould just as well have re-oriented our dis
ussion, and 
on
luded that the jump in thevalue of f(z) = z1=2 o

urred on some other axis emanating from the origin. The importantinvariant statement is that if you tra
e around any 
losed path that en
ir
les the origin, thevalue of z1=2 will have 
hanged, by an overall fa
tor of (�1), on returning to the startingpoint. The fun
tion f(z) = z1=2 is double-valued on the 
omplex plane.106



If we 
ontinue on and take a se
ond trip around the 
losed path, we will return againwith a fa
tor of (�1) relative to the previous visitation of the starting point. So after tworotations, we are ba
k where we started and the fun
tion f(z) = z1=2 is ba
k to its originalvalue too. This is expressed mathemati
ally by the fa
t thatf(r ei (�+4�)) = r 12 e i2 � e2� i = r 12 e i2 � = f(r ei �) : (5.151)An elegant way to deal with a multi-valued fun
tion su
h as f(z) = z1=2 is to 
onsideran enlarged two-dimensional surfa
e on whi
h the fun
tion is de�ned. In the 
ase of thedouble-valued fun
tion f(z) = z1=2, we 
an do it as follows. Imagine taking the 
omplexplane, and making a semi-in�nite 
ut along the real axis, from x = 0 to x = +1. Now,sta
k a se
ond 
opy of the 
omplex plane above this one, again with a 
ut from x = 0 tox = +1. Now, identify (i.e. glue) the lower edge of the 
ut of the underneath 
omplexplane with the upper edge of the 
ut of the 
omplex plane that sits on top. Finally (a littletri
kier to imagine!), identify the lower 
ut edge of the 
omplex plane on top with the upper
ut edge of the 
omplex plane that sits underneath. We have 
reated something a bit likea multi-story 
ar-park (with two levels, in this 
ase). As you drive anti-
lo
kwise aroundthe origin, starting on the lower 
oor, you �nd, after one 
ir
uit, that you have driven uponto the upper 
oor. Carrying on for one more 
ir
uit, you are ba
k on the lower 
ooragain.20 What has been a
hieved is the 
reation of a two-sheeted surfa
e, 
alled a RiemannSurfa
e, on whi
h one has to take z around the origin through a total phase of 4� beforebefore it returns to its starting point. The fun
tion f(z) = z1=2 is therefore single-valuedon this two-sheeted surfa
e. \Ordinary" fun
tions, i.e. ones that were single-valued on theoriginal 
omplex plane, simply have the property of taking the same value on ea
h of thetwo sheets, at z = r ei � and z = r ei (�+2�).We already noted that the 
hoi
e of where to run the 
ut was arbitrary. The importantthing is that for the fun
tion f(z) = z1=2, it must run from z = 0 out to z =1, along anyarbitrarily spe
i�able path. It is often 
onvenient to take this to be the 
ut along the realpositive axis, but any other 
hoi
e will do.The reason why the origin is so important here is that it is at z = 0 that the a
tualbran
h point of the fun
tion f(z) = z1=2 lies. It is easy to see this, by following the valueof f(z) = z1=2 as z is taken around various 
losed paths (it is simplest to 
hoose 
ir
les) inthe 
omplex plane. One easily sees that the f(z) �! �f(z) dis
ontinuity is en
ountered20Of 
ourse multi-story 
ar-parks don't work quite like that in real life, owing to the need to be able toembed them in three dimensions! 107



for any path that en
loses the origin, but no dis
ontinuity arises for any 
losed path thatdoes not en
lose the origin.If one en
ir
les the origin, one also en
ir
les the point at in�nity, so f(z) = z1=2 also hasa bran
h point at in�nity. (Clearly f(1=�) = ��1=2 is also double valued on going around� = 0.) So in fa
t, the bran
h 
ut that we must introdu
e is running from one bran
h pointto the other. This is a general feature of multi-valued fun
tions. In more 
ompli
ated 
ases,this 
an mean that there are various possible 
hoi
es for how to sele
t the bran
h 
uts. Inthe present 
ase, 
hoosing the bran
h 
ut along any arbitrary path from z = 0 to z = 1will do. Then, as one follows around a 
losed path, there is a dis
ontinuity in f(z) ea
h timethe bran
h 
ut is 
rossed. If a 
losed path 
rosses it twi
e (in opposite dire
tions), then thetwo 
an
el out, and the fun
tion returns to its original value without any dis
ontinuity.21Consider another example, namely the fun
tionf(z) = (z2 � 1) 12 = (z � 1) 12 (z + 1) 12 : (5.152)It is easy to see that sin
e z1=2 has a bran
h point at z = 0, here we shall have bran
hpoints at z = 1 and z = �1. Any 
losed path en
ir
ling either z = �1 or z = +1 (but notboth) will reveal a dis
ontinuity asso
iated with the two-valuedness of (z + 1) 12 or (z � 1) 12respe
tively. On the other hand, a 
ir
uit that en
loses both of the points z = 1 and z = �1will not en
ounter any dis
ontinuity. The minus sign 
oming from en
ir
ling one bran
hpoint is 
an
elled by that 
oming from en
ir
ling the other. The upshot is that we 
an
hoose our bran
h 
uts in either of two super�
ially-di�erent ways. One of the 
hoi
es isto run the bran
h 
ut from z = �1 to z = +1. Another quite di�erent-looking 
hoi
e is torun a bran
h 
ut from z = 1 to z = +1 along the real positive axis, and another 
ut fromz = �1 to z = �1 along the real negative axis.For either of these 
hoi
es, one gets the right 
on
lusion. Namely, as one follows alongany path, there is a dis
ontinuity whenever a bran
h 
ut is 
rossed. Crossing twi
e in agiven path will 
ause the two dis
ontinuities to 
an
el out. so even if 
onsider the se
ond
hoi
e of bran
h 
uts, with two 
uts running out to in�nity from the points z = �1 and21In the spe
ial 
ase of z1=2, for whi
h the fun
tion is exa
tly two-valued, then 
rossing over the 
ut twi
eeven both in the same dire
tion will 
ause a 
an
ellation of the dis
ontinuity. But more generally, a double
rossing of the bran
h will 
ause the dis
ontinuities to 
an
el only if the 
rossings are in opposite dire
tions.Of 
ourse multiple 
rossings of the 
ut in the same dire
tion might lead to a 
an
ellation, if the fun
tion isonly �nitely-many valued. For example, f(z) = z1=n is n-valued, so winding n times around in the samedire
tion gets ba
k to the original value, if n is an integer. On the other hand f(z) = z1=� will never returnto its original value, no matter how many 
omplete 
ir
uits of the origin are made.108



z = +1, we get the 
orre
t 
on
lusion that a 
losed path that en
ir
les both z = �1 andz = +1 will reveal no dis
ontinuity after returning to its starting point.A
tually the two apparently-di�erent 
hoi
es for the bran
h 
uts are not so very di�erent,topologi
ally-speaking. Really, z =1 is like a single point, and one e�e
tively should viewthe 
omplex plane as the surfa
e of a sphere, with everywhere out at in�nity 
orrespondingto the same point on the sphere. Think of making a stereographi
 proje
tion from the northpole of the sphere onto the in�nite plane tangent to the south pole. We think of this planeas the 
omplex plane. A straight line joining the north pole to a given point in the 
omplexplane therefore passes through a single point on the sphere. This gives a mapping from ea
hpoint in the 
omplex plane into a point on the sphere. Clearly, things get a bit degenerateas we go further and further out in the 
omplex plane. Eventually, we �nd that all pointsat jzj = 1, regardless of their dire
tion out from the origin, map onto a single point onthe sphere, namely the north pole. This sphere, known as the Riemann Sphere, is reallywhat the 
omplex plane is like. Of 
ourse as we have seen, a lot of otherwise well-behavedfun
tions tend to have more severe singularities at z = 1, but that doesn't detra
t fromthe usefulness of the pi
ture. Figure 2 below show the mapping of a point Q in the 
omplexplane into a 
orresponding point P on the Riemann sphere.As it happens, our fun
tion f(z) = (z2 � 1)1=2 is rather moderately behaved at z =1;it has a Laurent expansion with just a simple pole:f(1=�) = (��2 � 1) 12 = ��1 (1� �2) 12 ;= 1� � 12� � 18�3 � 116 �5 + � � � : (5.153)Sin
e it has no bran
h point there, we 
an a
tually take the se
ond 
hoi
e of bran
h 
uts,where the two 
uts ran from z = �1 and z = +1 to in�nity (in other words a single linefrom z = �1 to the north pole and ba
k to z = +1), and deform it 
ontinuously into the�rst 
hoi
e, where the bran
h 
ut simply runs from z = �1 to z = +1. If you think of thebran
h 
ut as an elasti
 band joining z = �1 to z = +1 via the north pole, it only takessomeone like Superman wandering around at the north pole to give it a little tweak, and it
an 
ontra
t smoothly and 
ontinuously from the se
ond 
hoi
e of bran
h 
ut to the �rst.5.5 The Oppenheim FormulaBefore pro
eeding with the mainstream of the development, let us pause for an interludeon a rather elegant and 
urious topi
. It is a rather little-known method for solving the109
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Figure 2: The point Q in the 
omplex plane proje
ts onto P on the Riemann sphere.following problem. Suppose we are given the real part u(x; y) of an analyti
 fun
tionf(z) = u(x; y)+i v(x; y). It is a 
lassi
 exer
ise, to work out the imaginary part v(x; y), andhen
e to learn what the full analyti
 fun
tion f(z) is, by making use of the Cau
hy-Riemannequations.Let us �rst 
onsider this standard way to solve the problem. Before trying to solve forv(x; y), it is worth 
he
king to be sure that a solution exists. In other words, we 
an �rstverify that u(x; y) is indeed the real part of an analyti
 fun
tion. We know that if it is,then the Cau
hy-Riemann equations (5.51) must hold. As we saw earlier, these equations,ux = vy, uy = �vx, imply in parti
ular that uxx + uyy = 0; i.e. that u satis�es the two-dimensional Lapla
e equation. In fa
t the impli
ation goes in the other dire
tion too; ifu(x; y) satis�es the Lapla
e equation uxx + uyy = 0 then it follows that it 
an be taken tobe the real part of some analyti
 fun
tion. We 
an say that uxx+uyy = 0 is the integrability
ondition for the pair of equations ux = vy, uy = �vx to admit a solution for v(x; y).To solve for v(x; y) by the traditional method, one di�erentates u(x; y) with respe
t tox or y, and integrates with respe
t to y or x respe
tively, to 
onstru
t the fun
tion v(x; y)
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using (5.51): v(x; y) = Z yy0 �u(x; y0)�x dy0 + �(x) ;v(x; y) = � Z xx0 �u(x0; y)�y dx0 + �(y) : (5.154)The �rst integral, whi
h 
omes from integrating ux = vy, leaves an arbitrary fun
tionof x unresolved, while the se
ond, 
oming from integrating uy = �vx, leaves an arbitraryfun
tion of y unresolved. Consisten
y between the two resolves everything, up to an additive
onstant in v(x; y). This 
onstant never 
an be determined purely from the given data, sin
e
learly if f(z) is analyti
 then so is f(z)+i 
, where 
 is a real 
onstant. But the rela parts off(z) and f(z)+i 
 are identi
al, and so 
learly we 
annot dedu
e the value of 
, merely fromthe given u(x; y). Note that we do need both equations in (5.154), in order to determinev(x; y) up to the additive 
onstant 
. Of 
ourse the freedom to pi
k di�erent 
onstant lowerlimits of integration y0 and x0 in (5.154) just amounts to 
hanging the arbitrary fun
tions�(x) and �(y), so we 
an 
hoose y0 and x0 in any way we wish.Let us 
he
k this with an example. Suppose we are given u(x; y) = ex 
os y, and askedto �nd v(x; y). A qui
k 
he
k shows that uxx+ uyy = 0, so we will not be wasting our timeby sear
hing for v(x; y). We haveux = vy = ex 
os y ; uy = �vx = �ex sin y ; (5.155)and so integrating as in (5.154) we getv(x; y) = ex sin y + �(x) ; v(x; y) = ex sin y + �(y) : (5.156)Sure enough, the two expressions are 
ompatible, and we see that �(x) = �(y). By thestandard argument that is the same as one uses in the separation of variables, it must bethat �(x) = �(y) = 
, where 
 is a (real) 
onstant. Thus we have found that v(x; y) =ex sin y + 
, and sof(z) = u+ i v = ex (
os x+ i sin y) + i 
 = ex ei y + i 
 = ex+i y + i 
= ez + i 
 : (5.157)What is not so well known is that one 
an do the job of �nding v(x; y) from u(x; y)without ever needing to di�erentiate or integrate at all. This makes a ni
e party tri
k, ifyou go to the right (or maybe wrong!) sort of nerdish parties. The way it works is absurdlysimple, and so, in the best traditions of a 
onjuring tri
k, here �rst is the \show." Unlike111



the 
onjuror's tri
k, however, we shall see afterwards how the rabbit was slipped into thehat. I have not been able to �nd very full referen
es to it; the earliest I 
ame a
ross is to a
ertain Prof. A. Oppenheim, so I shall refer to it as the \Oppenheim Method."The way to derive the analyti
 fun
tion f(z), given its real part u(x; y), is the following:f(z) = 2u(z2 ; z2 i) + 
 ; (5.158)where 
 is a 
onstant. The real part of 
 
an be �xed by using the known given expressionfor the real part of f(z). The imaginary part of 
 is not determinable. Of 
ourse this isalways the 
ase; f(z) and f(z) + i 
, where 
 is a real 
onstant, have the same real partsand the same analyti
ity properties, so no method 
ould tell us what 
 is, in the absen
e offurther spe
i�
ation. (In the usual Cau
hy-Riemann derivation of v(x; y), this arbitrarinessarose as a 
onstant of integration.)Just to show that it really does work, 
onsider the same example that we treated aboveusing the traditional method. Suppose we are given that u(x; y) = ex 
os y is the real partof an analyti
 fun
tion f(z). What is f(z)? A

ording to (5.158), the answer isf(z) = 2e 12 z 
os(� i2 z) + 
 = 2e 12 z 
osh(12z) + 
 ;= ez + 1 + 
 : (5.159)Now, we �x 
 by noting, for example, that from the original u(x; y) we have u(0; 0) = 1,and so we should 
hoose 
 so that f(z) has real part 1 at z = 0. Thus we have 
 = �1, andhen
e f(z) = ez. (There is no need to be tedious about always adding i 
, sin
e this trivialpoint about the arbitrariness over the imaginary 
onstant is now well understood.) Finally,we 
an easily verify that indeed f(z) = ez is the answer we were looking for, sin
eez = ex+i y = ex (
os y + i sin y) ; (5.160)and so sure enough, this analyti
 fun
tion has real part ex 
os y.How did it work? Like all the best 
onjuring tri
ks, the explanation is ludi
rously simple.Sin
e f(z) is analyti
, we 
an expand it as a power series, f(z) = Pn�0 an zn. Note thatwe are assuming here that it is in parti
ular analyti
 at z = 0; we shall show later how toremove this assumption. If we write the expansion 
oeÆ
ients an as an = �n + i�n, where�n and �n are real, then from the series expansion we shall have2u(x; y) = f(z) + f(z) = Xn�0 h(�n + i�n) (x + i y)n + (�n � i�n) (x� i y)ni : (5.161)112



Now plug in the values x = z=2, y = z=(2i), as required in the Oppenheim formula:2u(z2 ; z2i) = Xn�0 h(�n + i�n)�z2 + z2�n + (�n � i�n)�z2 � z2�ni ; (5.162)nn = Xn�0(�n + i�n) zn + �0 � i�0 ; (5.163)= f(z) + �0 � i�0 :That's all there is to it! The result is proven. Omne ignotum pro magni�
o.We assumed in the proof that f(z) was analyti
 at z = 0. If it's not, then in itspresent form the pro
edure 
an sometimes break down. For example, suppose we 
onsiderthe fun
tion u(x; y) = 12 log(x2 + y2). (Se
retly, we know that this is the real part of thefun
tion f(z) = log z, whi
h of 
ourse is analyti
 for all �nite z ex
ept for the bran
h pointat z = 0.) Trying the Oppenheim formula (5.158), we getf(z) = log(14z2 � 14z2) + 
 = log 0 + 
 : (5.164)Oooppps!! Not to worry, we know why it has failed. We need to �nd a generalisation of theOppenheim formula, to allow for su
h 
ases where the fun
tion we are looking for happensto be non-analyti
 at z = 0. The answer is the following:f(z) = 2u(z + a2 ; z � a2i ) + 
 ; (5.165)where a is an arbitrary 
onstant, to be 
hosen to avoid any unpleasantness. Let's try thisin our fun
tion u(x; y) = 12 log(x2 + y2):f(z) = log h�z + a2 �2 � �z � a2 �2i+ 
 ;= log(a z) + 
 = log z + log a+ 
 : (5.166)So for any value of a other than a = 0, everything is �ne. As usual, an elementary exami-nation of a spe
ial 
ase �xes the real part of the 
onstant 
, to give 
 = � log a.It is easy to see why the generalisation (5.165) works. We just repeat the derivationin (5.163), but now 
onsider an expansion of the fun
tion f(z) around z = a rather thanz = 0; f(z) =Pn�0 an (z�a)n. Provided we don't 
hoose a so that we are trying to expandaround a singular point of f(z), all must then be well:2u(z + a2 ; z � a2i ) = Xn�0 h(�n + i�n)�z + a2 + z � a2 � a�n + (�n � i�n)�z + a2 � z � a2 � a�ni ;= Xn�0(�n + i�n) (z � a)n + �0 � i�0 ; (5.167)= f(z) + �0 � i�0 : 113



Just to show o� the method in one further example, suppose we are givenu(x; y) = e xx2+y2 
os yx2 + y2 : (5.168)Obviously we shall have to use (5.165) with a 6= 0 here. Thus we getf(z) = 2e z+a2a z 
os z � a2i a z + 
 = 2e z+a2a z 
osh z � a2a z ;= e z+a2a z �e z�a2a z + ea�z2a z �+ 
 ; (5.169)= e 1a + e 1z + 
 :Fixing the 
onstant 
 from a spe
ial 
ase, we getf(z) = e 1z : (5.170)The method has even worked for a fun
tion with an essential singularity, provided that wetake 
are not to try using a = 0. (Try doing the 
al
ulation by the traditional pro
edureusing (5.154) to see how mu
h simpler it is to use the generalised Oppenheim formula.)Having shown how e�e
tive the Oppenheim method is, it is perhaps now time to admitto why in some sense a little bit of a 
heat is being played here. This is not to say thatanything was in
orre
t; all the formulae derived are perfe
tly valid. It is a slightly unusualkind of tri
k that has been played, in fa
t.Normally, when a 
onjuror performs a tri
k, it is he who \slips the rabbit into thehat," and then pulls it out at the appropriate moment to astound his audien
e. Ironi
allyenough, in the 
ase of the Oppenheim formula it is the audien
e itself that unwittingly slipsthe rabbit into the hat, and yet nevertheless it is duly amazed when the rabbit reappears.The key point is that if one were a
tually working with a realisti
 problem, in whi
honly the real part of an analyti
 fun
tion were known, one would typi
ally be restri
tedto knowing it only as an \experimental result" from a set of observations. Indeed, in a
ommon 
ir
umstan
e su
h information about the real part of an analyti
 fun
tion mightarise pre
isely from an experimental observation of, for example, the refra
tive index of amedium as a fun
tion of frequen
y. The imaginary part, on the other hand, is related to thede
ay of the wave as it moves through the medium. There are quite profound DispersionRelations that 
an be derived that relate the imaginary part to the real part. They arederived pre
isely by making use of the Cau
hy-Riemann relations, to derive v(x; y) fromu(x; y) by taking the appropriate derivatives and integrals of u(x; y), as in (5.154).So why was the Oppenheim formula a 
heat? The answer is that it assumes that oneknows what happens if one inserts 
omplex values like x = (z + a)=2 and y = (z � a)=(2i)114



into the \slots" of u(x; y) that are designed to take the real numbers x and y. In a real-lifeexperiment one 
annot do this; one 
annot set the frequen
y of a laser to a 
omplex value!So the knowledge about the fun
tion u(x; y) that the Oppenheim formula requires one tohave is knowledge that is not available in pra
ti
al situations. In those real-life 
ases, onewould instead have to use (5.154) to 
al
ulate v(x; y). And the pro
ess of integration is\non-lo
al," in the sense that the value for the integral depends upon the values that theintegrand takes in an entire region in the (x; y) plane. This is why dispersion relationsa
tually 
ontain quite subtle information.The ironi
 thing is that although the Opennheim formula is therefore in some sense a\
heat," it nevertheless works, and works 
orre
tly, in any example that one is likely to
he
k it with. The point is that when we want to test a formula like that, we tend not to goout and start measuring refra
tive indi
es; rather, we rea
h into our memories and drag outsome familiar fun
tion whose properties have already been established. So it is a formulathat is \almost never" usable, and yet it works \almost always" when it is tested with toyexamples. It is a bit like asking someone to pi
k a random number. Amongst the set of allnumbers, the 
han
e that an arbitrarily 
hosen number will be rational is zero, and yet the
han
e that the person's 
hosen number will be rational is pretty 
lose to unity.5.6 Cal
ulus of ResiduesAfter some rather lengthy preliminaries, we have now established the groundwork for thefurther development of the subje
t of 
omplex integration. First, we shall derive a generalresult about the integration of fun
tions with poles.If f(z) has an isolated pole of order n at z = a, then by de�nition, it 
an be expressedas f(z) = a�n(z � a)n + a�n+1(z � a)n�1 + � � �+ a�1z � a + �(z) ; (5.171)where �(z) is analyti
 at and near z = a. The 
oeÆ
ient of a�1 in this expansion is 
alledthe residue of f(z) at the pole at z = a.Let us 
onsider the integral of f(z) around a 
losed 
ontour C whi
h en
loses the poleat z = a, but within whi
h �(z) is analyti
. (So C en
loses no other singularities of f(z)ex
ept the pole at z = a.) We haveIC f(z) dz = nXk=1 a�k IC dz(z � a)k + I �(z) dz : (5.172)By Cau
hy's theorem we know that the last integral vanishes, sin
e �(z) is analyti
 withinC. To evaluate the integrals under the summation, we may deform the 
ontour C to a 
ir
le115



of radius � 
entred on z = a, respe
ting the previous 
ondition that no other singularitiesof f(z) shall be en
ompassed.Letting z � a = � ei�, the deformed 
ontour C is then parameterised by allowing � torange from 0 to 2�, while holding � �xed. Thus we shall haveIC dz(z � a)k = Z 2�0 i � ei� d��keik � = i �1�k Z 2�0 e(1�k) i � d� = �1�k he(1�k) i �1� k i2�0 : (5.173)When the integer k takes any value other than k = 1, this 
learly gives zero. On the otherhand, when k = 1 we have IC dzz � a = i Z 2�0 d� = 2� i (5.174)as we saw when deriving Cau
hy's integral formula. Thus we arrive at the 
on
lusion thatIC f(z) dz = 2� i a�1 : (5.175)The result (5.175) gives the value of the integral when the 
ontour C en
loses only thepole in f(z) lo
ated at z = a. Clearly, if the 
ontour were to en
lose several poles, atlo
ations z = a, z = b, z = 
, et
., we 
ould smoothly deform C so that it des
ribed 
ir
lesaround ea
h of the poles, joined by narrow \
auseways" of the kind that we en
ounteredpreviously, whi
h would 
ontribute nothing to the total integral.Thus we arrive at the Theorem of Residues, whi
h asserts that if f(z) be analyti
everywhere within a 
ontour C, ex
ept at a number of isolated poles inside the 
ontour,then IC F (z) dz = 2� i Xs Rs ; (5.176)where Rs denotes the residue at pole number s.It is useful to note that if f(z) has a simple pole at z = a, then the residue at z = a isgiven by taking the limit of (z � a) f(z) as z tends to a.5.7 Evaluation of real integralsThe theorem of residues 
an be used in order to evaluate many kinds of integrals. Sin
e thisis an important appli
ation, we shall look at a number of examples. First, a list of threemain types of real integral that we shall be able to evaluate:(1) Integrals of the form Z 2�0 R(
os �; sin �) d� ; (5.177)where R is a rational fun
tion of 
os � and sin �. (Re
all that if f(z) is a rationalfun
tion, it means that it is the ratio of two polynomials.)116



(2) Integrals of the form Z 1�1 f(x) dx ; (5.178)where f(z) is analyti
 in the upper half plane (y > 0) ex
ept for poles that do not lieon the real axis. The fun
tion f(z) is also required to have the property that z f(z)should tend to zero as jzj tends to in�nity whenever 0 � arg(z) � �. (arg(z) is thephase of z. This 
ondition means that z f(z) must go to zero for all points z that goto in�nity in the upper half plane.)(3) Integrals of the form Z 10 x��1 f(x) dx ; (5.179)where f(z) is a rational fun
tion, analyti
 at z = 0, with no poles on the positive realaxis. Furthermore, z� f(z) should tend to zero as z approa
hes 0 or in�nity.First, 
onsider the type (1) integrals. We introdu
e z as the 
omplex variable z = ei �.Thus we have 
os � = 12(z + z�1) ; sin � = 12i(z � z�1) : (5.180)Re
alling that R is a rational fun
tion of 
os � and sin �, it follows that the integral (5.177)will be
ome a 
ontour integral of some rational fun
tion of z, integrated around a unit 
ir
le
entred on the origin. It is a straightforward pro
edure to evaluate the residues of the polesin the rational fun
tion, and so, by using the theorem of residues, the result follows.Let us 
onsider an example. Suppose we wish to evaluateI(p) � Z 2�0 d�1� 2p 
os � + p2 ; (5.181)where 0 < p < 1. Writing z = ei �, we shall have d� = �i z�1 dz, and hen
eI(p) = IC dzi (1� p z)(z � p) (5.182)Sin
e we are assuming that 0 < p < 1, it follows from the fa
t that C is the unit 
ir
le thatthe only pole en
losed is the simple pole at z = p. Thus the residue of the integrand atz = p is given by taking the limit of(z � p) h 1i (1� p z)(z � p)i (5.183)as z tends to p, i.e. �i=(1� p2). Thus from the theorem of residues (5.176), we getZ 2�0 d�1� 2p 
os � + p2 = 2�1� p2 ; 0 < p < 1 : (5.184)117



Note that if we 
onsider the same integral (5.181), but now take the 
onstant p to begreater than 1, the 
ontour C (the unit 
ir
le) now en
loses only the simple pole at z = 1=p.Multiplying the integrand by (z � 1=p), and taking the limit where z tends to 1=p, we now�nd that the residue is +i=(1� p2), when
eZ 2�0 d�1� 2p 
os � + p2 = 2�p2 � 1 ; p > 1 : (5.185)In fa
t the results for all real p 
an be 
ombined into the single formulaZ 2�0 d�1� 2p 
os � + p2 = 2�jp2 � 1j : (5.186)For a more 
ompli
ated example, 
onsiderI(p) � Z 2�0 
os2 3� d�1� 2p 
os 2� + p2 ; (5.187)with 0 < p < 1. Now, we haveI(p) = IC �12z3 + 12z�3�2 dzi z (1� p z2)(1 � p z�2) = IC (z6 + 1)2 dz4i z5 (1� p z2)(z2 � p) : (5.188)The integrand has poles at z = 0, z = �p 12 and z = �p� 12 . Sin
e we are assuming 0 < p < 1,it follows that only the poles at z = 0 and z = �p 12 lie within the unit 
ir
le 
orrespondingto the 
ontour C. The only slight 
ompli
ation in this example is that the pole at z = 0 isof order 5, so we have to work a little harder to extra
t the residue there. Let us pause toderive a general result for how to evaluate the residue at an n'th-order pole:If f(z) has a pole of order n at z = a, it follows that it will have the formf(z) = g(z)(z � a)n ; (5.189)where g(z) is analyti
 in the neighbourhood of z = a. Thus we may expand g(z) in a Taylorseries around z = a, givingf(z) = 1(z � a)n �g(a) + (z � a) g0(a) + � � �+ 1(n� 1)! (z � a)n�1 g(n�1)(a) + � � � � ;= g(a)(z � a)n + g0(a)(z � a)n�1 + � � �+ g(n�1)(a)(n� 1)! (z � a) + � � � : (5.190)We then read o� the residue, namely the 
oeÆ
ient of the �rst-order pole term 1=(z � a),�nding g(n�1)(a)=(n � 1)!. Re-expressing this in terms of the original fun
tion f(z), using(5.189), we arrive at the general result that118



If f(z) has a pole of order n at z = a, then the residue R is given byR = 1(n� 1)! h dn�1dzn�1 ((z � a)n f(z))iz=a : (5.191)Returning to our example, it is now a 
ompletely me
hani
al pro
edure to 
al
ulate theresidues at z = 0, z = p 12 and z = �p 12 . After a little algebra, we get residuesi (1 + p2 + p4)4p3 ; � i (1 + p3)28p3 (1� p2) ; � i (1 + p3)28p3 (1� p2) ; (5.192)respe
tively. Plugging into the theorem of residues (5.176), we therefore obtain the resultZ 2�0 
os2 3� d�1� 2p 
os 2� + p2 = � (1� p+ p2)(1� p) ; (5.193)when 0 < p < 1.Note that using formula (5.191) is not ne
essarily the easiest way of evaluating theresidue at a high-order pole. All that we are really asking for is to know the 1=(z � a)term in the Laurent expansion of the fun
tion f(z). Let us take our example in the integralin (5.188), and its 5'th-order pole at z = 0. We want the Laurent-series expansion of theintegrand around z = 0. Inspe
tion of the integrand reveals that the pole terms 
ome onlyfrom the 1=z5 fa
tor; the rest of the terms that multiply this have no singularities at z = 0.Thus the other fa
tors are all analyti
 around z = 0, so we 
an just expand them in Taylorseries. We need only keep terms up to order z4 in the Taylor expansion of the fun
tion thatmultiplies 1=z5, sin
e we only 
are about �nding the 1=z term in the Laurent expansion ofthe integrand. Thus we have(z6 + 1)24i z5 (1� p z2)(z2 � p) = i4p z5 (1 + z6)2 (1� p z2)�1 (1� z2=p)�1= i4p z5 (1 + � � �)(1 + p z2 + p2 z4 + � � �)(1 + z2=p+ z4=p2 + � � �)= i4p z5 �1 + (p+ p�1) z2 + (1 + p2 + p�2) z4 + � � � �= i4p z5 + i (p+ p�1)4p z3 + i (1 + p2 + p�2)4p z + � � � (5.194)From this, we 
an read o� the residue, and it indeed agrees with the �rst expression in(5.192). Of 
ourse what we have just done here is 
ompletely equivalent to the 
al
ulationthat led to (5.191). But as a way of organising the 
al
ulation in a spe
i�
 example,espe
ially if one does not have an algebrai
 
omputer program available, it is probablysimpler to 
onstru
t the Taylor expansion of the analyti
 fun
tion that multiplies the polefa
tor \by hand," as in (5.194). 119



As a �nal example of the type (1) 
lass of integrals, 
onsiderI(a; b) � Z 2�0 d�(a+ b 
os �)2 = IC 4z dzi (b+ 2a z + b z2)2 ; (5.195)where a > b > 0. The integrand has (double) poles atz = �a�pa2 � b2b ; (5.196)and so just the pole at z = (�a + pa2 � b2)=b lies inside the unit 
ir
le. After a little
al
ulation, one �nds the residue there, and hen
e, from (5.176), we getZ 2�0 d�(a+ b 
os �)2 = 2� a(a2 � b2) 32 : (5.197)Turning now to integrals of type 2 (5.178), the approa
h here is to 
onsider a 
ontourintegral of the form I � IC f(z) dz ; (5.198)where the 
ontour C is taken to 
onsist of the line from x = �R to x = +R along the xaxis, and then a semi
ir
le of radius R in the upper half plane, thus altogether forming a
losed path.The 
ondition that z f(z) should go to zero as jzj goes to in�nity with 0 � arg(z) � �ensures that the 
ontribution from integrating along the semi
ir
ular ar
 will vanish whenwe send R to in�nity. (On the ar
 we have dz = iRei � d�, and so we would like Rf(Rei �)to tend to zero as R tends to in�nity, for all � in the range 0 � � � �, when
e the 
onditionthat we pla
ed on f(z).) Thus we shall have thatZ 1�1 f(x) dx = 2� i Xs Rs ; (5.199)where the sum is taken over the residues Rs at all the poles of f(z) in the upper half plane.The 
ontour is depi
ted in Figure 3 below.Consider, as a simple example, Z 1�1 dx1 + x2 : (5.200)Clearly, the fun
tion f(z) = (1 + z2)�1 ful�ls all the requirements for this type of integral.Sin
e f(z) = (z + i)�1 (z � i)�1, we see that there is just a single pole in the upper halfplane, at z = i. It is a simple pole, and so the residue of f(z) there is 1=(2i). Consequently,from (5.199) we derive Z 1�1 dx1 + x2 = � : (5.201)120



R-RFigure 3: The 
ontour en
loses poles of f(z) in the upper half planeOf 
ourse in this simple example we 
ould perfe
tly well have evaluated the integralinstead by more \elementary" means. A substitution x = tan � would 
onvert (5.200) intoZ 12�� 12� d� = � : (5.202)However, in more 
ompli
ated examples the 
ontour integral approa
h is often mu
h easierto use. Consider, for instan
e, the integralZ 1�1 x4 dx(a+ b x2)4 ; (5.203)where a > 0 and b > 0. The fun
tion f(z) = z4 (a + b z2)�4 has poles of order 4 atz = �i(a=b) 12 , and so there is just one pole in the upper half plane. Using the formula(5.191) to 
al
ulate the residue, and multiplying by 2� i, we getZ 1�1 x4 dx(a+ b x2)4 = 116 � a� 32 b� 52 : (5.204)Finally, 
onsider integrals of type 3 (5.179). In general, � is assumed to be a realnumber, but not an integer. We 
onsider the fun
tion (�z)��1 f(z), whi
h therefore hasa bran
h-point singularity at z = 0. We 
onsider a 
ontour C of exa
tly the form givenin Figure 1, with a = 0. Eventually, we allow the radius of the larger 
ir
le C1 to be
omein�nite, while the radius of the smaller 
ir
le C2 will go to zero. In view of the assumptionthat z� f(z) goes to zero as z goes to 0 or in�nity, it follows that the 
ontributions fromintegrating around these two 
ir
les will give zero.Unlike the situation when we used the 
ontour of Figure 1 for deriving the Laurent series,we are now fa
ed with a fun
tion (�z)��1 f(z) with a bran
h point at z = 0. Consequently,121



there is a dis
ontinuity as one tra
es the value of (�z)��1 f(z) around a 
losed path thaten
ir
les the origin. This means that the results of integrating along the two sides of the\
auseway" 
onne
ting the 
ir
les C1 and C2 will not 
an
el.We 
an take the phase of (�z)��1 to be real when z lies at the point where the small
ir
le C2 interse
ts the negative real axis. Consequently, on the lower part of the 
auseway(below the real axis), the phase will be ei� (��1). On the other hand, on the upper part ofthe 
auseway (above the real axis), the phase will be e�i� (��1). Thus we �nd thatIC(�z)��1 f(z) dz = �ei� (��1) Z 10 x��1 f(x) dx+ e�i� (��1) Z 10 x��1 f(x) dx ;= 2i sin(� �) Z 10 x��1 f(x) dx ; (5.205)where the minus sign on the �rst term on the right in the top line 
omes from the fa
tthat the integral from x = 0 to x =1 is running in the dire
tion opposite to the indi
ateddire
tion of th 
ontour in Figure 1. The 
ontour integral on the left-hand side pi
ks up allthe 
ontributions from the poles of f(z). Thus we have the result thatZ 10 x��1 f(x) dx = �sin�� Xs Rs ; (5.206)where Rs is the residue of (�z)��1 f(z) at pole number s of the fun
tion f(z).As an example, 
onsider the integralZ 10 x��1 dx1 + x : (5.207)Here, we therefore have f(z) = 1=(z + 1), whi
h just has a simple pole, at z = �1. Theresidue of (�z)��1 f(z) is therefore just 1, and so from (5.206) we obtain that when 0 <� < 1, Z 10 x��1 dx1 + x = �sin�� : (5.208)(The restri
tion 0 < � < 1 is to ensure that the fall-o� 
onditions for type 3 integrands atz = 0 and z =1 are satis�ed.)A 
ommon 
ir
umstan
e is when there is in fa
t a pole in the integrand that lies exa
tlyon the path where we wish to run the 
ontour. An example would be an integral of the type(2) dis
ussed above, but where the integrand now has poles on the real axis. If these aresimple poles, then the following method 
an be used. Consider a situation where we wishto evaluate R1�1 f(x) dx, and f(z) has a single simple pole on the real axis, at z = a. Whatwe do is to make a little detour in the 
ontour, to skirt around the pole, so the 
ontour C inFigure 3 now aquires a little semi
ir
ular \bypass" 
, of radius �, taking it into the upper122



half plane around the point z = a. This is shown in Figure 4 below. Thus before we takethe limit where R �! 1, we shall haveZ a���R f(x) dx+ Z
 f(z) dz + Z Ra+� f(x) dx = 2� i Xj Rj ; (5.209)where as usual Rj is the residue of f(z) at its j'th pole in the upper half plane.
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R-RFigure 4: The 
ontour bypasses a pole at the originTo evaluate the 
ontribution on the semi
ir
ular 
ontour 
, we let z�a = � ei �, implyingthat the 
ontour is parameterised (in the dire
tion of the arrow) by taking � to run from �to 0. Thus near z = a we shall have f(z) � eR=(z� a), where eR is the residue of the simplepole at z = a, and dz = i � ei � d�, when
eZ
 f(z) dz = i eR Z 0� d� = �i�R : (5.210)Sending R to in�nity, and � to zero, the remaining two terms on the left-hand side of (5.209)de�ne what is 
alled the Cau
hy Prin
ipal Value Integral, denoted by P R ,P Z 1�1 f(x) dx � Z a���1 f(x) dx+ Z 1a+� f(x) dx ; (5.211)where one takes the limit where the small positive quantity � goes to zero. Su
h a de�nitionis ne
essary in order to give meaning to what would otherwise be an ill-de�ned integral.In general, we therefore arrive at the result that if f(z) has several simple poles on thereal axis, with residues eRb�, as well as poles in the upper half plane with residues Rj , thenP Z 1�1 f(x) dx = 2� iXj Rj + i� Xk eRk : (5.212)123



Here, the prin
ipal-value pres
ription is used to give meaning to the integral, analogouslyto (5.211), at ea
h of the simple poles on the real axis.Consider, as an example, R1�1(sinx)=x dx. A
tually, of 
ourse, this integrand has nopole on the real axis, sin
e the pole in 1=x is 
an
elled by the zero of sinx. But one way todo the 
al
ulation is to say that we shall 
al
ulate the imaginary part ofZ 1�1 eixx dx = Z 1�1 
osxx dx+ i Z 1�1 sinxx dx : (5.213)We must now use the prin
ipal-value pres
ription to give meaning to this integral, sin
ethe real part of the integrand in (5.213), namely (
os x)=x, does have a pole at x = 0. Butsin
e we are after the imaginary part, the fa
t that we have \regulated" the real part of theintegral will not upset what we want. Thus from (5.212) we �nd thatP Z 1�1 eixx dx = i� ; (5.214)and so from the imaginary part (whi
h is all there is; the prin
ipal-value integral hasregulated the ill-de�ned real part to be zero) we getZ 1�1 sinxx dx = � : (5.215)Noti
e that there is another way that we 
ould have handled a pole on the real axis.We 
ould have bypassed aound it the other way, by taking a semi
ir
ular 
ontour ~
 thatwent into the lower half 
omplex plane instead. Now, the integration (5.210) would berepla
ed by one where � ran from � = � to � = 2� as one follows in the dire
tion of thearrow, giving, eventually, a 
ontribution �i� eR rather than +i� eR in (5.212). But all isa
tually well, be
ause if we make a detour of this kind we should a
tually now also in
ludethe 
ontribution of this pole as an honest pole en
losed by the full 
ontour C, so it will alsogive a 
ontribution 2� i eR in the �rst summation on the right-hand side of (5.212). So atthe end of the day, we end up with the same 
on
lusion no matter whi
h way we detouraround the pole.Another 
ommon kind of real integral that 
an be evaluated using the 
al
ulus of residuesinvolves the log fun
tion. Consider, for example, the following:I � Z 10 log x dx(1 + x2)2 : (5.216)One way to evaluate this is by taking the usual large semi
ir
ular 
ontour in the upper halfplane, with a little semi
ir
ular detour 
 (in the upper half plane) bypassing the bran
hpoint at z = 0, as in Figure 4. Then we shall haveZ ���1 log x dx(1 + x2)2 + Z
 log z dz(1 + z2)2 + Z 1� log x dx(1 + x2)2 = 2� iR ; (5.217)124



where R is the residue of (log z)=(1+z2)2 at the double pole at z = i in the upper half plane.(As usual, we must 
he
k that the integrand indeed has the appropriate fall-o� propertyso that the 
ontribution from the large semi
ir
ular ar
 goes to zero; it does.) There are a
ouple of new features that this example illustrates.First, 
onsider the integral around the little semi
ir
le 
. Letting z = � ei � there weshall have Z
 log z dz(1 + z2)2 = �i � Z �0 log(� ei �) ei � d�(1 + �2 e2i �)2 : (5.218)This looks alarming at �rst, but 
loser inspe
tion reveals that it will give zero, on
e we takethe limit � �! 0. The point is that after writing log(� ei �) = log �+ i �, we see that the �integrations will not introdu
e any divergen
es, and so the overall fa
tors of � or � log � inthe two parts of the answer will both ni
ely kill o� the 
ontributions, as � �! 0.Next, 
onsider the �rst integral on the left-hand side of (5.217). For this, we 
an 
hangevariable from x, whi
h takes negative values, to t, say, whi
h is positive. But we need totake 
are, be
ause of the multi-valuedness of the log fun
tion. So we should de�nex = ei� t : (5.219)In all pla
es ex
ept the log, we 
an simply interpret this as x = �t, but in the log we shallhave log z = log(ei� t) = log t+ i�. Thus the �rst integral in (5.217) givesZ 0�1 log x dx(1 + x2)2 = Z 10 log t dt(1 + t2)2 + i� Z 10 dt(1 + t2)2 : (5.220)(Now that we know that there is no 
ontribution from the little semi
ir
le 
, we 
an justtake � = 0 and forget about it.) The �rst term on the right-hand side here is of exa
tly thesame form as our original integral I de�ned in (5.216). The se
ond term on the right is asimple integral. It itself 
an be done by 
ontour integral methods, as we have seen. Sin
ethere is no new subtlety involved in evaluating it, let's just quote the answer, namelyZ 10 dt(1 + t2)2 = 14� : (5.221)Taking sto
k, we have now arrived at the result that2I + 14 i�2 = 2� iR : (5.222)It remains only to evaluate the residue of (log z)=(1 + z2)2 at the double pole at z = i inthe upper half plane. We do this with the standard formula (5.191). Thus we haveR = ddz h log z(z + i)2 i ; (5.223)125



to be evaluated at z = i = ei�=2. (Note that we should write it expli
itly as ei�=2 in orderto know exa
tly what to do with the log z term.) Thus we getR = i4 + 18� : (5.224)Plugging into (5.222), we see that the imaginary term on the left-hand side is 
an
elled bythe imaginary term in (5.224), leaving just 2I = ��=2. Thus, eventually, we arrive at theresult that Z 10 log x dx(1 + x2)2 = �14� : (5.225)Aside from the spe
i�
s of this example, there are two main general lessons to be learnedfrom it. The �rst is that if an integrand has just a logarithmi
 divergen
e at some pointz = a, then the 
ontour integral around a little semi
ir
le or 
ir
le 
entred on z = a will givezero in the limit when its radius � goes to zero. This is be
ause the logarithmi
 divergen
eof log � is outweighed by the linear fa
tor of � 
oming from writing dz = i � ei � d�.The se
ond general lesson from this example is that one should pay 
areful attention tohow the a 
oordinate rede�nition is performed, for example when re-expressing an integralalong the negative real axis as an integral over a positive variable (like t in our example).In parti
ular, one has to handle the rede�nition with appropriate 
are in the multi-valuedlog fun
tion.5.8 Analyti
 ContinuationAnalyti
ity of a fun
tion of a 
omplex variable is a very restri
tive 
ondition, and 
onse-quently it has many powerful impli
ations. One of these is the 
on
ept of analyti
 
ontin-uation. Let us begin with an example.Consider the fun
tion g(z), whi
h is de�ned by the power seriesg(z) �Xn�0 zn : (5.226)It is easily seen, by applying the Cau
hy test for 
onvergen
e, that this series is absolutely
onvergent for jzj < 1. It follows, therefore, that the fun
tion g(z) de�ned by (5.226) isanalyti
 inside the unit 
ir
le jzj < 1. It is also true, of 
ourse, that g(z) is singular outsidethe unit 
ir
le; the power series diverges.Of 
ouse (5.226) is a very simple geometri
 series, and we 
an see by inspe
tion that it
an be summed, when jzj < 1, to give f(z) = 11� z : (5.227)126



This is analyti
 everywhere ex
ept for a pole at z = 1. So we have two fun
tions, g(z) andf(z), whi
h are both analyti
 inside the unit 
ir
le, and indeed they are identi
al insidethe unit 
ir
le. However, whereas the fun
tion g(z) is singular outside the unit 
ir
le, thefun
tion f(z) is well-de�ned and analyti
 in the entire 
omplex plane, with the ex
eptionof the point z = 1 where it has a simple pole.It is evident, therefore, that we 
an view f(z) = 1=(1 � z) as an extrapolation, or
ontinuation, of the fun
tion g(z) = 1 + z + z2 + � � � outside its 
ir
le of 
onvergen
e. Aswe shall prove below, there is an enormously powerful statement that 
an be made; thefun
tion 1=(1� z) is the unique analyi
 
ontinuation of the original fun
tion g(z) de�ned inthe unit 
ir
le by (5.226). This uniqueness is absolutely 
ru
ial, sin
e it means that one 
ansensibly talk about the analyti
 
ontinuation of a fun
tion that is initially de�ned in somerestri
ted region of the 
omplex plane. A priori, one might have imagined that there 
ouldbe any number of ways of de�ning fun
tions that 
oin
ided with g(z) inside the unit 
ir
le,but that extrapoloated in all sorts of di�erent ways as one went outside the unit 
ir
le. Andindeed, if we don't pla
e the extra, and very powerful, restri
tion of analyti
ity, then thatwould be exa
tly the 
ase. We 
ould indeed dream up all sorts of non-analyti
 fun
tionsthat agreed with g(z) inside the unit 
ir
le, and that extrapolated in arbitrary ways outsidethe unit 
ir
le.22 The amazing thing is that if we insist that the extrapolating fun
tion beanalyti
, then there is pre
isely one, and only one, analyti
 
ontinuation.In the present example, we have the luxury of knowing that the fun
tion g(z), de�ned bythe series expansion (5.226), a
tually sums to give 1=(1�z) for any z within the unit 
ir
le.This immediately allows us to dedu
e, in this example, that the analyti
 
ontinuation ofg(z) is pre
isely given by g(z) = 11� z ; (5.228)whi
h is de�ned everywhere in the 
omplex plane ex
ept at z = 1. So in this toy example,we know what the fun
tion \really is."Suppose, for a moment, that we didn't know that the series (5.226) 
ould be summedto give (5.228). We 
ould, however, dis
over that g(z) de�ned by (5.226) gave perfe
tlysensible results for any z within the unit 
ir
le. (For example, by applying the Cau
hy testfor absolute 
onvergen
e of the series.) Suppose that we use these results to evaluate f(z)in the neighbourhood of the point z = �12 . This allows us, by using Taylor's theorem, to22We 
ould, for example, simply de�ne a fun
tion F (z) su
h that F (z) � g(z) for jzj < 1, and F (z) � h(z)for jzj � 1, where h(z) is any fun
tion we wish. But the fun
tion will in general be horribly non-analyti
 onthe unit 
ir
le jzj = 1 where the 
hangeover o

urs.127




onstru
t a series expansion for g(z) around the point z = �12 :g(z) = Xn�0 g(n)(�12)n! (z + 12)n : (5.229)Where does this 
onverge? We know from the earlier general dis
ussion that it will 
onvergewithin a 
ir
le of radius R 
entred on z = �12 , where R is the distan
e from z = �12 to thenearest singularity. We know that a
tually, this singularity is at z = 1. Therefore our newTaylor expansion (5.229) is 
onvergent in a 
ir
le of radius 32 , 
entered on z = �12 . This
ir
le of 
onvergen
e, and the original one, are depi
ted in Figure 5 below. We see thatthis pro
ess has taken us outside the original unit 
ir
le; we are now able to evaluate \thefun
tion g(z)" in a region outside the unit 
ir
le, where its original power-series expansion(5.226) does not 
onverge.23

Figure 5: The 
ir
les of 
onvergen
e for the two series23Se
retly, we know that the power series we will just have obtained is nothing but the standard Taylorexpansion of 1=(1 � z) around the point z = � 12 :11 � z = 23 + 49 (z + 12 ) + 827 (z + 12 )2 + 1681 (z + 12 )3 + � � � ; (5.230)whi
h indeed 
onverges in a 
ir
le of radius 32 . 128



It should be 
lear that be repeated use of this te
hnique, we 
an eventually 
over theentire 
omplex plane, and hen
e 
onstru
t the analyti
 
ontinuation of g(z) from its originalde�nition (5.226) to a fun
tion de�ned everywhere ex
ept at z = 1.The 
ru
ial point here is that the pro
ess of analyti
 
ontinuation is a unique one. Toshow this, we 
an establish the following theorem:Let f(z) and g(z) be two fun
tions that are analyti
 in a region D, and supposethat they are equal on an in�nite set of points having a limit point z0 in D. Thenf(z) � g(z) for all points z in D.In other words, if we know that the two analyti
 fun
tions f(z) and g(z) agree on anar
 of points ending at point24 z0 in D, then they must agree everywhere in D. (Note thatwe do not even need to know that they agree on a smooth ar
; it is suÆ
ient even to knowthat they agree on a dis
rete set of points that get denser and denser until the end of thear
 at z = z0 is rea
hed.)To prove this theorem, we �rst de�ne h(z) = f(z) � g(z). Thus we know that h(z)is analyti
 in D, and it vanishes on an in�nite set of points with limit point z0. We arerequired to prove that h(z) must be zero everywhere in D. We do this by expanding h(z)in a Taylor series around z = z0: h(z) = 1Xk=0 ak (z � z0)k ; (5.231)whi
h 
onverges in some neighbourhood of z0 sin
e h(z) is analyti
 in the neighbourhoodof z = z0. Sin
e we want to prove that h(z) = 0, this means that we want to show that allthe 
oeÆ
ients ak are zero.Of 
ourse sin
e h(z0) = 0 we know at least that a0 = 0. We shall prove that all theak are zero by the time-honoured pro
edure of supposing that this is not true, and thenarriving at a 
ontradi
tion. Let us suppose that am, for some m, is the �rst non-zero ak
oeÆ
ient. This means that if we de�nep(z) � (z � z0)�m h(z) = (z � z0)�m 1Xk=m ak (z � z0)k ;= am + am+1 (z � z0) + � � � ; (5.232)then p(z) is an analyti
 fun
tion, and its Taylor series is therefore also 
onvergent, in theneighbourhood of z = z0. Now 
omes the pun
h-line. We know that h(z) is zero for all24An example of su
h a set of points would be zn = z0 + 1=n, with n = 1; 2; 3 : : :.129



the points z = zn in that in�nite set that has z0 as a limit point. Thus in parti
ular thereare points zn with n very large that are arbitrarily 
lose to z = z0, and at whi
h h(z)vanishes. It follows from its de�nition that p(z) must also vanish at these points. But sin
ethe Taylor series for p(z) is 
onvergent for points z near to z = z0, it follows that for p(zn)to vanish when n is very large we must have am = 0, sin
e all the higher terms in theTaylor series would be negligible. But this 
ontradi
ts our assumption that am was the �rstnon-vanishing 
oeÆ
ient in (5.231). Thus the premise that there exists a �rst non-vanishing
oeÆ
ient was false, and so it must be that all the 
oeÆ
ients ak vanish. This proves thath(z) = 0, whi
h is what we wanted to show.The above proof shows that h(z) must vanish within the 
ir
le of 
onvergen
e, 
enteredon z = z0, of the Taylor series (5.231). By repeating the dis
ussion as ne
essary, we 
anextend this region gradually until the whole of the domain D has been 
overed. Thus wehave established that f(z) = g(z) everywhere in D, if they agree on an in�nite set of pointswith limit point z0.By this means, we may eventually seek to analyti
ally extend the fun
tion to the whole
omplex plane. There may well be singularities at 
ertain pla
es, but provided we don'trun into a solid \wall" of singularities, we 
an get around them and extend the de�nitionof the fun
tion as far as we wish. Of 
ourse if the fun
tion has bran
h points, then we willen
ounter all the usual multi-valuedness issues as we seek to extend the fun
tion.Let us go ba
k for a moment to our example with the fun
tion g(z) that was originallyde�ned by the power series (5.226). We 
an now immediately invoke this theorem. It iseasily established that the series (5.226) sums to give 1=(1� z) within the unit 
ir
le. Thuswe have two analyti
 fun
tions, namely g(z) de�ned by (5.226) and f(z) de�ned by (5.227)that agree in the entire unit 
ir
le. (Mu
h more than just an ar
 with a limit point, infa
t!) Therefore, it follows that there is a unique way to extend analyti
ally outside theunit 
ir
le. Sin
e f(z) = 1=(1 � z) is 
ertainly analyti
 outside the unit 
ir
le, it followsthat the fun
tion 1=(1 � z) is the unique analyti
 extension of g(z) de�ned by the powerseries (5.226).Let us now 
onsider a less trivial example, to show the power of analyti
 
ontinuation.5.9 The Gamma Fun
tionThe Gamma fun
tion �(z) 
an be represented by the integral�(z) = Z 10 e�t tz�1 dt ; (5.233)130



whi
h 
onverges if Re(z) > 0. It is easy to see that if Re(z) > 1 then we 
an perform anintegration by parts to obtain�(z) = (z � 1) Z 10 e�t tz�2 dt� he�t tz�1i10 = (z � 1) �(z � 1) ; (5.234)sin
e the boundary term then gives no 
ontribution. Shifting by 1 for 
onvenien
e, we have�(z + 1) = z �(z) : (5.235)One easily sees that if z is a positive integer k, the solution to this re
ursion relation is�(k) = (k � 1)!, sin
e it is easily established by elementary integration that �(1) = 1. Theresponsibility for the rather tiresome shift by 1 in the relation �(k) = (k � 1)! lies withLeonhard Euler.Of 
ourse the de�nition (5.233) is valid only when the integral 
onverges. It's 
lear thatthe e�t fa
tor ensures that there is no trouble from the upper limit of integration, but fromt = 0 there will be a divergen
e unless Re(z) > 0. Furthermore, for Re(z) > 0 it is 
lear thatwe 
an di�erentiate (5.233) with respe
t to z as many times as we wish, and the integralswill still 
onverge.25 Thus �(z) de�ned by (5.233) is �nite and analyti
 for all points withRe(z) > 0.We 
an now use (5.235) in order to give an analyti
 
ontiuation of �(z) into the regionwhere Re(z) � 0. Spe
i�
ally, if we write (5.235) as�(z) = �(z + 1)z ; (5.237)then this gives a way of evaluating �(z) for points in the strip �1+ � < Re(z) < � (� a smallpositive quantity) in terms of �(z) at points with Re(z) > 0, where it is known to be analyti
.The fun
tion so de�ned, and the original Gamma fun
tion, have an overlapping region of
onvergen
e, and so we 
an make an analyti
 
ontinuation into the strip �1+� < Re(z) < �.The pro
ess 
an then be applied iteratively, to 
over more and more strips over to the left-hand side of the 
omplex plane, until the whole plane has been 
overed by the analyti
extension.Of 
ourse the analyti
ally 
ontinued fun
tion �(z) is not ne
essarily analyti
 at everypoint in the 
omplex plane, and indeed, as we shall see, it has isolated poles. To explore25Write tz = ez log t, and so, for example,�0(z) = Z 10 dt tz�1 log t e�t : (5.236)Now matter how many powers of log t are brought down by repeated di�erentiation, the fa
tor of tz�1 willensure 
onvergen
e at t = 0. 131



the behaviour of �(z) in the region of some point z with Re(z) � 0, we �rst iterate (5.235)just as many times n as are ne
essary in order to express �(z) in terms of �(z + n+ 1):�(z) = �(z + n+ 1)(z + n)(z + n� 1)(z + n� 2) � � � z ; (5.238)where we 
hoose n so that Re(z + n + 1) > 0 but Re(z + n) < 0. Sin
e we have alreadyestablished that �(z + n + 1) will therefore be �nite, it follows that the only singularitiesof �(z) 
an 
ome from pla
es where the denominator in (5.238) vanishes. By virtue of our
hoi
e of n, this will therefore happen when z = 0 or z is a negative integer.To study the pre
ise behaviour near the point z = �n, we may set z = �n+ �, wherej�j << 1, and use (5.238) to give�(�n+ �) = (�1)n �(1 + �)(n� �)(n� �� 1) � � � (1� �) � : (5.239)Thus there is a simple pole at � = 0. Its residue is 
alulated by multiplying (5.239) by � andtaking the limit � �! 0. Thus we 
on
lude that �(z) is meromorphi
 in the whole �nite
omplex plane, with simple poles at the points z = 0, �1, �2, �3; : : :, with the residue atz = �n being (�1)n=n!. (Sin
e �(1) = 1.)The regular spa
ing of the poles of �(z) is reminis
ent of the poles of the fun
tions
ose
 �z or 
ot �z. Of 
ourse in these 
ases, they have simple poles at all the integers; zeronegative and positive. We 
an in fa
t make a fun
tion with pre
isely this property out of�(z), by writing the produ
t �(z) �(1 � z) : (5.240)From what we saw above, it is 
lear that this fun
tion will have simple poles at pre
iselyall the integers. Might it be that this fun
tion is related to 
ose
 �z or 
ot �z?To answer this, 
onsider again the original integral representation (5.233) for �(z), andnow make the 
hange of variables t �! t2. This implies dt=t �! 2dt=t, and so we shallhave �(z) = 2 Z 10 e�t2 t2z�1 dt : (5.241)Thus we may write�(a) �(1� a) = 4 Z 10 dx Z 10 dy e�(x2+y2) x2a�1 y�2a+1 : (5.242)Introdu
ing polar 
oordinates via x = r 
os �, y = r sin �, we therefore get�(a) �(1 � a) = 4 Z 12�0 (
ot �)2a�1 d� Z 10 r e�r2 dr : (5.243)132



The r integration is trivially performed, giving a fa
tor of 12 , and so we have�(a) �(1 � a) = 2 Z 12�0 (
ot �)2a�1 d� : (5.244)Now, we let s = 
ot �. This gives�(a) �(1 � a) = 2 Z 10 s2a�1 ds1 + s2 : (5.245)If we restri
t a to be a real number in the range 0 < a < 1, this integral falls into the
ategory of type 3 that we dis
ussed a 
ouple of se
tions ago. Thus we have�(a) �(1� a) = 2�sin(2� a) X
 R
 ; (5.246)where R
 are the residues at the poles of (�z)2a�1=(1 + z2). These poles lie at z = �i, andthe residues are easily seen to be 12e�i� a. Thus we get�(a) �(1� a) = 2�sin(2� a) 
os(� a) = 2� 
os(� a)2 sin(� a) 
os(� a) ;= �sin� a : (5.247)By the now-familiar te
hnique of analyti
 
ontinuation, we therefore 
on
lude that�(z) �(1 � z) = �sin� z ; (5.248)in the whole 
omplex plane. This result is one that will be useful in the next se
tion, whenwe shall dis
uss the Riemann Zeta fun
tion.Before moving on to the Riemann Zeta fun
tion, let us �rst use (5.248) to un
over a
ouple more properties of the Gamma fun
tion. The �rst of these is a simple fa
t, namelythat �(12) = p� : (5.249)We see this by setting z = 12 in (5.248).The se
ond, more signi�
ant, property of �(z) that we 
an dedu
e from (5.248) is that�(z)�1 an entire fun
tion. That is to say, �(z)�1 is analyti
 everywhere in the �nite 
omplexplane. Sin
e we have already seen that the only singularities of �(z) are poles, this meansthat we need only show that �(z) has no zeros in the �nite 
omplex plane. Looking at(5.248) we see that if it were to be the 
ase that �(z) = 0 for some value of z, then it wouldhave to be that �(1 � z) were in�nite there.26 But we know pre
isely where �(1 � z) is26Re
all that sin�z is an entire fun
tion, and it therefore has no singularity in the �nite 
omplex plane.Consequently, 1=(sin �z) must be non-vanishing for all �nite z.133



in�nite, namely the poles at z = 1; 2; 3 : : :, and �(z) is 
ertainly not zero there. Therefore�(z) is everywhere non-zero in the �nite 
omplex plane. Consequently, �(z)�1 is analyti
everywhere in the �nite 
omplex plane, thus proving the 
ontention that �(z)�1 is an entirefun
tion.Before 
losing this se
tion, we may observe that we 
an also give 
ontour integral rep-resentations for the Gamma fun
tion, as follows. Consider �rst the Hankel integral�(z) = � 12 i sin�z ZC e�t (�t)z�1 dt ; (5.250)where we integrate in the 
omplex t-plane around the so-
alled Hankel Contour depi
ted inFigure 6 below. This starts at +1 just above the real axis, swings around the origin, andgoes out to +1 again just below the real axis.

Figure 6: The Hankel 
ontourBy methods analogous to those we used previously, we see that we 
an deform this intothe 
ontour depi
ted in Figure 7. If Re(z) > 0, there will be no 
ontribution from integratingaround the small 
ir
le surrounding the origin, in the limit where its radius is sent to zero.Hen
e the 
ontour integral is re-expressible simply in terms of the two semi-in�nite lineintegrals just above and below the real axis.134



Figure 7: The deformation of the Hankel 
ontourFor the integral below the real axis, we have t = e2� i x, for x running from 0 to +1.Therefore (�t) = ei� x there. For the integral above the real axis, we have t = x, and hen
e(�t) = e�i� x, with x running from +1 to 0. Consequently, we getZC e�t (�t)z�1 dz = (ei� (z�1) � e�i� (z�1)) Z 10 e�t tz�1 dt ;= �2 i sin(�z) Z 10 e�t tz�1 dt ; (5.251)and hen
e we see that (5.250) has redu
ed to the original real integral expression (5.233)when Re(z) > 0. However, the integral in the expression (5.250) has a mu
h wider appli-
ability; it is a
tually single-valued and analyti
 for all z. (Re
all that we are integratingaround the Hankel 
ontour, whi
h does not pass through the point t = 0, and so there isno reason for any singularity to arise, for any value of z.)Combining (5.250) with (5.248), we 
an give another 
ontour integral expression for�(z), namely 1�(z) = � 12� i ZC e�t (�t)�z dt ; (5.252)135



where we again integrate around the Hankel 
ontour of Figure 6, in the 
omplex t plane.Again, this integral is valid for all z. Indeed with this expression we see again the resultthat we previously dedu
ed from (5.248), that �(z)�1 is an entire fun
tion, having nosingularities anywhere in the �nite 
omplex plane.A pause for re
e
tion is appropriate here. What we have shown is that �(z) de�ned by(5.250) or (5.252) gives the analyti
 
ontinuation of our original Gamma fun
tion (5.233) tothe entire 
omplex plane, where it is analyti
 ex
ept for simple poles at z = 0;�1;�2; : : :.How is it that these 
ontour integrals do better than the previous real integral (5.233),whi
h only 
onverged when the real part of z was greater than 0? The 
ru
ial point isthat in our derivation, when we related the real integral in (5.233) to the 
ontour integral(5.250), we noted that the 
ontribution from the little 
ir
le as the 
ontour swung aroundthe origin would go to zero provided that the real part of z was greater than 0.So what has happened is that we have re-expressed the real integral in (5.233) in termsof a 
ontour integral of the form (5.250), whi
h gives the same answer when the real partof z is greater than 0, but it disagrees when the real part of z is � 0. In fa
t it disagreesby the having the rather ni
e feature of being 
onvergent and analyti
 when Re(z) � 0,unlike the real integral that diverges. So as we wander o� westwards in the 
omplex z planewe wave a fond farewell to the real integral, with its divergent result, and adopt insteadthe result from the 
ontour integral, whi
h happily provides us with analyti
 answers evenwhen Re(z) � 0. We should not be worried by the fa
t that the integrals are disagreeingthere; quite the 
ontrary, in fa
t. The whole point of the exer
ise was to �nd a better wayof representing the fun
tion, to 
over a wider region in the 
omplex plane. If we had merelyreprodu
ed the bad behaviour of the original integral in (5.233), we would have a
hievednothing by introdu
ing the 
ontour integrals (5.250) and (5.252).Now we turn to the Riemman Zeta fun
tion, as a slightly more intri
ate example of theanalyti
 
ontinuation of a fun
tion of a 
omplex variable.5.10 The Riemann Zeta Fun
tionConsider the Riemman Zeta Fun
tion, �(s). This is originally de�ned by�(s) � 1Xn=1 1ns : (5.253)This sum 
onverges whenever the real part of s is greater than 1. (For example, �(2) =Pn�1 n�2 
an be shown to equal �2=6, whereas �(1) = Pn�1 n�1 is logarithmi
ally diver-gent. The sum is more and more divergent as Re(s) be
omes less than 1.)136



Sin
e the series (5.253) de�ning �(s) is 
onvergent everywhere to the right of the lineRe(s) = 1 in the 
omplex plane, it follows that �(s) is analyti
 in that region. It is reasonableto ask what is its analyti
 
ontinuation over to the left of Re(s) = 1. As we have alreadyseen from the simple example of f(z) = 1=(1 � z), the mere fa
t that our original powerseries diverges in the region with Re(s) � 0 does not in any way imply that the \a
tual"fun
tion �(s) will behave badly there. It is just our power series that is inadequate.How do we do better? To begin, re
all that we de�ne the Gamma fun
tion �(s) by�(s) = Z 10 e�u us�1 du (5.254)We saw in the previous se
tion that if s = k, where k is an integer, then �(k) is nothingbut the fa
torial fun
tion (k � 1)!. If we now let u = n t, then we see that�(s) = ns Z 10 e�n t ts�1 dt : (5.255)We 
an turn this around, to get an expression for n�s.Plugging into the de�nition (5.253) of the Zeta fun
tion, we therefore have�(s) = 1�(s) 1Xn=1 Z 10 e�n t ts�1 dt : (5.256)Taking the summation through the integral, we see that we have a simple geometri
 series,whi
h 
an be summed expli
itly:1Xn=1 e�n t = 11� e�t � 1 = 1et � 1 ; (5.257)and hen
e we arrive at the following integral representation for the Zeta fun
tion:�(s) = 1�(s) Z 10 ts�1 dtet � 1 : (5.258)So far so good, but a
tually we haven't yet managed to 
ross the barrier of the Re(s) = 1line in the 
omplex plane. The denominator in the integrand goes to zero like t as t tendsto zero, so to avoid a divergen
e from the integration at the lower limit t = 0, we mustinsist that the real part of s should be greater than 1. This is the same restri
tion thatwe en
ountered for the original power series (5.253). What we do now is to turn our realintegral (5.258) into a 
omplex 
ontour integral, using the same sort of ideas that we usedin the previous se
tion.To do this, 
onsider the integral ZC (�z)s�1 dzez � 1 ; (5.259)137



where C is the same Hankel 
ontour, depi
ted in Figure 6, that we used in the dis
ussion ofthe Gamma fun
tion in the previous se
tion. Sin
e the integrand we are 
onsidering here
learly has poles at z = 2� in for all the integers n, we must make sure that as it 
ir
lesround the origin, the Hankel 
ontour keeps 
lose enough to the origin (with passing throughit) so that it does not en
ompass any of the poles at z = �2� i;�4� i; : : :.By methods analogous to those we used previously, we see that we 
an again deformthis into the 
ontour depi
ted in Figure 7, where the small 
ir
le around the origin will besent to zero radius. It is 
lear that there is no 
ontribution from the little 
ir
le, providedthat the real part of s is greater than 1. Hen
e the 
ontour integral is re-expressible simplyin terms of the two semi-in�nite line integrals just above and below the real axis.For the integral below the real axis, we have z = e2� i t, for t running from 0 to +1.Therefore (�z) = ei� t there. For the integral above the real axis, we have z = t, and hen
e(�z) = e�i� t, with t running from +1 to 0. Consequently, we getZC (�z)s�1 dzez � 1 = (ei� (s�1) � e�i� (s�1)) Z 10 ts�1 dtet � 1 ; (5.260)From (5.258), this means that we have a new expression for the Zeta fun
tion, as�(s) = � 12i �(s) sin�s ZC (�z)s�1 dzez � 1 : (5.261)We 
an neaten this result up a bit more, if we make use of the identity (5.248) satis�edby the Gamma fun
tion, whi
h we proved in the previous se
tion:�(s) �(1� s) = �sin�s : (5.262)Using this in (5.261), we arrive at the �nal result�(s) = ��(1� s)2� i ZC (�z)s�1 dzez � 1 : (5.263)Now 
omes the pun
h-line. The integral in (5.263) is a single-valued and analyti
 fun
-tion of s for all values of s. (Re
all that it is evaluated using the Hankel 
ontour in Figure 6,whi
h does not pass through t = 0, so there is no reason for any singular behaviour.) Con-sequently, the only possible non-analyti
ity of the Zeta fun
tion 
an 
ome from the �(1�s)prefa
tor. Now, we studied the singularities of the Gamma fun
tion in the previous se
tion.The answer is that �(1 � s) has simple poles at s = 1; 2; 3; : : :, and no other singularities.So these are the only possible points where �(s) might have poles. But we already knowthat �(s) is analyti
 whenever the real part of s is greater than 1. So it must in fa
t be the
ase that the poles of �(1 � s) at s = 2; 3; : : : are exa
tly 
an
elled by zeros 
oming from138



the integral in (5.263). Only the pole at s = 1 might survive, sin
e we have no independentargument that tells us that �(s) is analyti
 there. And in fa
t there is a pole in �(s) there.To see this, we need only to evaluate the integral in (5.263) at s = 1. This is an easytask. It is 12� i ZC dzez � 1 ; (5.264)whi
h is just given by the residue of the integrand at z = 0. Doing the series expansion,one �nds 1ez � 1 = 1z � 12 + 112z � 1720 z3 + � � � (5.265)so the residue is 1. From (5.263), this means that near to s = 1 we shall have�(s) � ��(1� s) : (5.266)In fa
t �(1� s) has a simple pole of residue �1 at s = 1, as we saw in the previous se
tion,and so the upshot is that �(s) has a simple pole of residue +1 at s = 1, but it is otherwiseanalyti
 everywhere.It is interesting to try working out �(s) for some values of s that were ina

essible inthe original series de�nition (5.253). For example, let us 
onsider �(0). From (5.263) wetherefore have �(0) = 12� i ZC dzz (ez � 1) ; (5.267)where we have used that �(1) = 1. Now, it is 
lear that we 
an 
lose o� the Hankel 
ontourof Figure 6 out at +1 near the real axis, sin
e we will just be adding a small line integralat jzj � R, in the limit where R �! 1. The 1=z fa
tor in the integrand therefore ensuresthat we have a �nite 
ontribution there of the form12� Z �0��0 d� ei � (5.268)whi
h be
omes arbitrarily small as we take the angular ar
 width �0 to zero. We thereforejust need to use the 
al
ulus of residues to evaluate (5.267), for a 
losed 
ontour en
ir
lingthe se
ond-order pole at z = 0. For this, we have1z (ez � 1) = 1z2 � 12z + 112 + � � � ; (5.269)showing that the residue is �12 . Thus we obtain the result�(0) = �12 : (5.270)139



One 
an view this result rather whimsi
ally as a \regularisation" of the divergent ex-pression that one would obtain from the original series de�nition of �(s) in (5.253):�(0) = Xn�1n0 = Xn�1 1 = 1 + 1 + 1 + 1 + � � � = �12 : (5.271)A
tually, this strange-looking formula is not entirely whimsi
al. It is pre
isely the sortof divergent sum that arises in a typi
al Feynman diagram loop 
al
ulation in quantum�eld theory (
orresponding, for example, to summing the zero-point energies of an in�nitenumber of harmoni
 os
illators). The whole subtlety of handling the in�nities in quantum�eld theory is 
on
erned with how to re
ognise and subtra
t out unphysi
al divergen
esasso
iated, for example, with the in�nite zero-point energy of the va
uum. This pro
essof renormalisation and regularisation 
an a
tually, remarkably, be made respe
table, andin parti
ular, it 
an be shown that the �nal results are independent of the regularisations
heme that one uses. One s
heme that has been developed is known as \Zeta Fun
tionRegularisation," and it 
onsists pre
isely of introdu
ing regularisation parameters that 
ausea divergent sum su
h as (5.271) to be repla
ed by Pn�1 n�s. The regularisation s
heme(whose rigour 
an be proved up to the \industry standards" of the subje
t) then 
onsists ofrepla
ing the in�nite result forPn�1 1 by the expression �(0), where �(s) is the analyti
ally-
ontinued fun
tion de�ned in (5.263).The Riemann Zeta fun
tion is very important also in number theory. This goes beyondthe s
ope of this 
ourse, but a 
ouple of remarks on the subje
t are maybe of interest. First,we may make the following manipulation, valid for Re(s) > 1:�(s) = Xn�1n�s = 1�s + 2�s + 3�s + 4�s + 5�s + 6�s + 7�s + � � �= 1�s + 3�s + 5�s + � � �+ 2�s (1�s + 2�s + 3�s + � � �) ; (5.272)when
e (1� 2�s) �(s) = 1�s + 3�s + 5�s + � � � : (5.273)So all the terms where n is a multiple of 2 are now omitted in the sum. Now, repeat thisex
er
ise but pulling out a fa
tor of 3�s:(1� 2�s) �(s) = 1�s + 5�s + 7�s + 11�s + � � �+ 3�s (1�s + 3�s + 5�s + 7�s + � � �) ;= 1�s + 5�s + 7�s + 11�s + � � �+ 3�s (1� 2�s) �(s) ; (5.274)when
e (1� 2�s) (1 � 3�s) �(s) = 1�s + 5�s + 7�s + 11�s + � � � : (5.275)140



We have now have a sum where all the terms where n is a multiple of 2 or 3 are omitted.Next, we do the same for fa
tors of 5, then 7, then 11, and so on. If 2; 3; 5; 7; : : : ; p denoteall the prime numbers up to p, we shall have(1� 2�s) (1� 3�s) � � � (1� p�s) �(s) = 1 +X0n�s ; (5.276)where P0 indi
ates that only those values of n that are prime to 2; 3; 5; 7; : : : ; p o

ur inthe summation. It is now straightforward to show that if we p to in�nity, this summationgoes to zero, sin
e the \�rst" term in the sum is the lowest integer that is prime to all theprimes, i.e. n = 1. Sin
e Re(s) > 1, the \sum" is therefore zero. Hen
e we arrive at theresult, known as Euler's produ
t for the Zeta fun
tion:1�(s) =Yp �1� 1ps� ; Re(s) > 1 ; (5.277)where the produ
t is over all the prime numbers. Thus we see that the Riemann Zetafun
tion 
an play an important rôle in the study of prime numbers.As a �nal remark, there is a very important, and still unproven 
onje
ture, known asRiemann's Hypothesis. This 
on
erns the lo
ation of the zeros of the Zeta fun
tion. One
an easily see from Euler's produ
t (5.277), or from the original series de�nition (5.253),that �(s) has no zeros for Re(s) > 1. One 
an also rather easily show that when Re(s) < 0,the only zeros lie at the negative even integers, s = �2;�4; : : :. (We shall prove this inthe next se
tion, in fa
t.) This leaves the strip 0 � Re(s) � 1 una

ounted for. Riemann'sHypothesis, whose proof would have far-rea
hing 
onsequen
es in number theory, is that inthis strip, all the zeros of �(s) lie on the line Re(s) = 12 .5.11 Summation of SeriesAnother appli
ation of the 
al
ulus of residues is for evaluating 
ertain types of in�niteseries. The idea is the following. We have seen that the fun
tions 
ose
 �z and 
ot �z havethe property of having simple poles at all the integers, whilst otherwise being analyti
 inthe whole �nite 
omplex plane. In fa
t, they are bounded everywhere as one takes jzj toin�nity, ex
ept along the real axis where the poles lie. Using these fun
tions, we 
an writedown 
ontour integrals that are related to in�nite sums.First, let us note that the residues of the two trigonometri
 fun
tions are as follows:� � 
ot �z has residue 1 at z = n� � 
ose
 �z has residue (�1)n at z = n 141



Consider the following integral:Ip � ICp f(z)� 
ot �z ; (5.278)where Cp is a 
losed 
ontour that en
loses the poles of 
ot �z at z = 0;�1;�2; : : : ;�p, butdoes not en
lose any that lie at any larger value of jzj. A typi
al 
hoi
e for the 
ontourCp is a square, 
entred on the origin, with side 2p+ 1. (See Figure 8 below.) Then by thetheorem of residues we shall haveIp = 2� i pXn=�p f(n) + 2� i Xa Ra ; (5.279)where Ra denotes the residue of f(z)� 
ot �z at pole number a of the fun
tion f(z), andthe summation is over all su
h poles that lie within the 
ontour Cp. In other words, we havesimply split the total sum over residues into the �rst term, whi
h sums over the residues atthe known simple poles of 
ot �z, and the se
ond term, whi
h sums over the poles asso
iatedwith the fun
tion f(z) itself. Of 
ourse, in the �rst summation, the residue of f(z)� 
ot �zat z = n is simply f(n), sin
e the pole in � 
ot �z is simple, and itself has residue 1. (Weare assuming here that f(z) doesn't itself have poles at the integers.)Now, it is 
lear that if we send p to in�nity, so that the 
orresponding 
ontour Cp growsto in�nite size and en
ompasses the whole 
omplex plane, we shall haveIC1 f(z)� 
ot �z = 2� i 1Xn=�1 f(n) + 2� i Xa Ra ; (5.280)where the se
ond sum now ranges over the residues Ra of f(z)� 
ot �z at all the poles off(z). Furthermore, let us suppose that the fun
tion f(z) is su
h thatjz f(z)j �! 0 as jzj �! 1 : (5.281)It follows that the integral around the 
ontour C1 out at in�nity will be zero. Consequently,we obtain the result that 1Xn=�1 f(n) = �Xa Ra ; (5.282)where the right-hand sum is over the residues Ra of f(z)� 
ot �z at all the poles of f(z).In a similar fashion, using 
ose
 �z in pla
e of 
ot �z, we have that1Xn=�1(�1)n f(n) = �Xa eRa ; (5.283)where the right-hand sum is over the residues of f(z)� 
ose
 �z at all the poles of f(z).142
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Figure 8: The square 
ontours en
lose the poles of f(z) (square dots) and the poles of 
ot �zor 
ose
 �z (round dots)Consider an example. Suppose we takef(z) = 1(z + a)2 : (5.284)This has a double pole at z = �a. Using (5.191), we therefore �nd that the residue off(z)� 
ot �z at z = �a is R = ��2 
ose
 2(�a) ; (5.285)and hen
e from (5.282) we 
on
lude that1Xn=�1 1(n+ a)2 = �2sin2 �a : (5.286)We 
an also evaluate the analgous sum with alternating signs, by using (5.283) instead.Now, we 
aluate the residue of (z + a)�2 � 
ose
 �z at the double pole at z = �a, and
on
lude that 1Xn=�1 (�1)n(n+ a)2 = �2 
os �asin2 �a : (5.287)143



Clearly there are wide 
lasses of in�nite series that 
an be summed by this method. We
on
lude this se
tion with an example whi
h is relevant to our previous dis
ussion of thezeros of the Riemann Zeta fun
tion. Re
all that we showed in the previous se
tion that theZeta fun
tion 
ould be represented by the integral (5.263), whi
h we repeat here:�(s) = ��(1� s)2� i ZC (�z)s�1 dzez � 1 ; (5.288)where C is the Hankel 
ontour. Now, imagine making a 
losed 
ontour C 0, 
onsisting ofa large outer 
ir
le, 
entred on the origin, and with radius (2N + 1)�, whi
h joins ontothe Hankel 
ontour way out to the east in the 
omplex plane. See Figure 9 below. As weobserved previously, the integrand in (5.288) has poles at z = 2� in for all the integersn. In fa
t, of 
ourse, it is very similar to the 
ose
 and 
ot fun
tions that we have been
onsidering in our dis
ussion in this se
tion, sin
e1ez � 1 = e� 12 ze 12 z � e� 12 z = 12e� 12 z 
ose
h (12z) : (5.289)The only di�eren
e is that be
ause we now have the hyperboli
 fun
tion 
ose
h rather thanthe trigonometri
 fun
tion 
ose
 , the poles lie along the imaginary axis rather than the realaxis.Sin
e the Hankel 
ontour itself was arranged so as to sneak around the origin withouten
ompassing the poles at z = �2� i;�4� i; : : :, it follows that the 
losed 
ontour C 0 willpre
isely en
lose the poles at z = 2� in, for all non-vanishing positive and negative integersn. For some given positive integer m, 
onsider the pole atz = 2� im = 2� e 12� im: (5.290)When we evaluate the residue Rm here, we therefore haveRm = (2� e� 12� im)s�1 ; (5.291)sin
e (ez � 1)�1 itself 
learly has a simple pole with residue 1 there. (We have used thefa
t that (5.290) implies �z = 2�me� 12� i, sin
e we have to be 
areful when dealing withthe multiply-valued fun
tion (�z)s�1.) There is also a pole at z = �2� e 12� im, whi
h bysimilar reasoning will have the residue R�m given byR�m = (2� e 12� im)s�1 ; (5.292)Putting the two together, we therefore getRm +R�m = 2 (2� m)s�1 sin(12� s) : (5.293)144



Figure 9: The 
ontour C 0 
omposed of the Hankel 
ontour plus a large 
ir
leBy the theorem of residues, it follows that if we evaluateZC0 (�z)s�1 dzez � 1 ; (5.294)where C 0 is the 
losed 
ontour de�ned above, and then we send the radius (2N +1)� of theouter 
ir
le to in�nity, we shall getZC0 (�z)s�1 dzez � 1 = �2� i Xm�1(Rm +R�m) ;= �4� i Xm�1(2�m)s�1 sin(12� s)= �2 (2�)s i sin(12� s) Xm�1ms�1 ;= �2 (2�)s i sin(12� s) �(1� s) : (5.295)It is 
lear from the �nal step that we should require Re(s) < 0 here. (Note that the dire
tionof the integration around large 
ir
le is 
lo
kwise, whi
h is the dire
tion of de
reasing phase,so we pi
k up the extra �1 fa
tor when using the theorem of residues.)Now, if we 
onsider the 
losed 
ontour C 0 in detail, we �nd the following. It is 
omprisedof the sum of the Hankel 
ontour, plus the 
ir
le at large radius R = (2N + 1)�, with N145



sent to in�nity. On the large 
ir
le we shall havej(�z)s�1j = Rs�1 ; (5.296)whi
h falls o� faster than 1=R sin
e we are requiring Re(s) < 0. This is enough to outweighthe fa
tor of R that 
omes from writing z = Rei � on the large 
ir
le. Sin
e the (ez � 1)�1fa
tor 
annot introdu
e any divergen
e (the radii R = (2N + 1)� are 
leverly designedto avoid passing through the poles of (ez � 1)�1), it follows that the 
ontribution fromintegrating around the large 
ir
le goes to zero as N is sent to in�nity. Therefore whenevaluating the 
ontour integral on the left-hand side of (5.295), we are left only with the
ontribution from the Hankel 
ontour C. But from (5.288), this means that we haveZC0 (�z)s�1 dzez � 1 = ZC (�z)s�1 dzez � 1 = � 2� i�(1� s) �(s) : (5.297)Comparing with (5.295), we therefore 
on
lude that if Re(s) < 0,�(s) = 2 (2�)s�1 �(1� s) sin(12�s) �(1� s) : (5.298)This 
an be neatened up using (5.248) to write �(1 � s) = �=(�(s) sin(�s)), and thenusing the fa
t that sin(�s) = 2 sin(12�s) 
os(12�s). This gives us the �nal result2s�1 �(s) �(s) 
os(12�s) = �s �(1� s) ; (5.299)Both sides are analyti
 fun
tions, ex
ept at isolated poles, and so even though we derivedthe result under the restri
tion Re(s) < 0, it immediately follows by analyti
 
ontinuationthat it is valid in the whole 
omplex plane.This beautiful formula was dis
overed by Riemann. What wonderful days they musthave been, when su
h a result was waiting to be dis
overed!We 
an use Riemann's formula to prove the result stated in the previous se
tion, thatfor Re(s) < 0, the only zeros of �(s) lie at the negative even integers, s = �2;�4 : : :. To dothis, we need only observe that taking Re(s) > 1 in (5.299), the fun
tions making up theleft-hand side are non-singular. Furthermore, in this region the left-hand side is non-zeroex
ept at the zeros of 
os(12� s). (Sin
e �(s) and �(s) are both, from their de�nitions, 
learlynon-vanishing in this region.) In this region, the zeros of 
os(12� s) o

ur at s = 2n + 1,where n is an integer with n � 1. They are simple zeros. Thus in this region the right-handside of (5.299) has simple zeros at s = 2n + 1. In other words, �(s) has simple zeros ats = �2;�4;�6; : : :, and no other zeros when Re(s) < 0.Combined with the observation that the original series de�nition (5.253) makes 
lear that�(s) 
annot vanish for Re(s) > 1, we arrive at the 
on
lusion that any possible additional146



zeros of �(s) must lie in the strip with 0 � Re(s) � 1. Riemann's formula does not helpus in this strip, sin
e it re
e
ts it ba
k onto itself. It is known that there are in�nitelymany zeros along the line Re(s) = 12 . As we mentioned before, the still-unproven RiemannHypothesis asserts that there are no zeros in this strip ex
ept along Re(s) = 12 .5.12 Asymptoti
 ExpansionsUntil now, whenever we have made use of a series expansion for a fun
tion it has been takenas axiomati
 that the series should be 
onvergent in order to be usable, sin
e a divergingseries obviously, by de�nition, is giving an in�nite or ill-de�ned result. Surprisingly, perhaps,there are 
ir
umstan
es where a diverging series is nevertheless useful. The basi
 idea isthat even if the series has a divergent sum, it might be that by stopping the summation atsome appropriate point, the partial summation 
an give a reasonable approximation to therequired fun
tion. An series of this sort is known as an Asymptoti
 Expanson.First, let us look at an illustrative example. Consider the fun
tion f(x) de�ned byf(x) = ex Z 1x t�1 e�t dt : (5.300)Integrating by parts we getf(x) = ex h� t�1 e�ti1x � ex Z 1x t�2 e�t dt ;= 1x � ex Z 1x t�2 e�t dt : (5.301)Integrating by parts n times givesf(x) = 1x � 1x2 + 2!x3 � 3!x4 + � � �+ (�1)n+1 (n� 1)!xn + (�1)n n! ex Z 1x t�n�1 e�t dt : (5.302)This seems to be giving us a ni
e series expansion for f(x). The only trouble is that is isdivergent.If we de�ne un�1 � (�1)n (n� 1)!xn ; (5.303)then we would have f(x) = 1Xn=0un (5.304)if the series expansion made sense. If we apply the ratio test for 
onvergen
e, we �nd��� umum�1 ��� = mx ; (5.305)147



whi
h goes to in�nity as m goes to in�nity, at �xed x. Thus the radius of 
onvergen
e iszero.Rather than abandoning the attempt, 
onsider the partial sumSn(x) � nXm=0um = 1x � 1x2 + 2!x3 � � � �+ (�1)n n!xn+1 : (5.306)Now let us 
ompare Sn(x) with f(x). From (5.302), we havef(x)� Sn(x) = (�1)n+1 (n+ 1)! ex Z 1x t�n�2 e�t dt : (5.307)Using the fa
t that ex�t � 1 for x � t � 1, we therefore havejf(x)� Sn(x)j = (n+ 1)! ex Z 1x t�n�2 e�t dt < (n+ 1)! Z 1x t�n�2 dt = n!xn+1 : (5.308)We see that if we take x to be suÆ
iently large, whilst holding n �xed, then (5.308)be
omes very small. This means that the partial sum Sn(x) will be a good approximationto f(x) if we take x suÆ
iently large. If we take x � 2n, then we shall havejf(x)� Sn(x)j = n!2n+1 nn+1 = n(n� 1) � � � 2 � 12n+1 nn � � �nn < 12n+1 n2 : (5.309)So by taking n to be large (implying that x will be large), we see that we 
an makejf(x)�Sn(x)j to be very small indeed. The fun
tion f(x) 
an be 
al
ulated to high a

ura
yfor large x by taking the sum of a suitable number of terms in the series Pm um. This isknown as an asymptoti
 expansion of f(x). It is usually denoted by the symbol � ratherthan an equals sign, namely f(x) � 1Xm=1 (�1)m (m� 1)!xm : (5.310)A pre
ise de�nition of an asymptoti
 expansion is the following. A divergent seriesa0 + a1z + a2z2 + � � � + anzn + � � � (5.311)in whi
h the sum of the �rst (n+ 1) terms is Sn(z) is said to be an asymptoti
 expansionof a fun
tion f(z) (for some spe
i�ed range of values for arg (z)) if the quantity Rn(z) �zn (f(z)� Sn(z)) satis�es limjzj �! 1 Rn(z) = 0 (n �xed) ; (5.312)even though limn �!1 jRn(z)j =1 (z �xed) ; (5.313)148



This last equation is the statement that the series is divergent, whilst (5.312) is the statementthat the series is usable in the asymptoti
 sense. In other words, we 
an ensure thatjzn (f(z)� Sn(z))j < � (5.314)for any arbitrarily small �, by taking jzj to be suÆ
iently large.It is easy to see that our original example (5.310) satis�es the 
ondition (5.312), sin
efrom (5.308) we havejxn (f(x)� Sn(x))j < n!x �! 0 as x �! 1 : (5.315)Noti
e that unlike ordinary 
onvergent series expansions, an asymptoti
 expansion is notunique; it is possible for two di�erent fun
tions to have an identi
al asymptoti
 expansion.An equivalent statement is that there exist fun
tions whose asymptoti
 expansion is simply0. An example of su
h a fun
tion is f(x) = e�x ; (5.316)when x is positive. It is 
lear that this fun
tion itself satis�es the 
ondition (5.312), for anyn: xn e�x �! 0 as x �!1 ; (5.317)and so the appropriate asymptoti
 expansion for e�x is simplye�x � 0 : (5.318)Of 
ourse, having established that there exist fun
tions whose asymptoti
 expansion is 0, itis an immediate 
onsequen
e that adding su
h a fun
tion to any fun
tion f(x) gives anotherwith the same asymptoti
 expansion as f(x).It is important to know the rules about what is allowable, and what is not allowable,when performing manipulations with asymptoti
 expansions. Firstly, if two asymptoti
expansions that are valid in an overlapping range of values of arg (z) are multiplied to-gether, then the result is an asymptoti
 expansion for the produ
t of the two fun
tions theyrepresented. Thus if f(z) � 1Xn=0 an z�n and g(z) � 1Xn=0 bn z�n ; (5.319)then f(z) g(z) � 1Xn=0 
n z�n ; (5.320)149



where 
n = nXp=0 ap bn�p : (5.321)In other words, one just multiplies the expansions in the ordinary way, and, qua asymptoti
expansions, the results behave as one would hope. One proves this by dire
tly verifyingthat the 
ondition (5.312) is satis�ed by (5.320).Another allowed manipulation is the integration of an asymptoti
 expansion. For ex-ample, if we have an asymptoti
 expansionf(x) � 1Xn=2 an x�n ; (5.322)then integrating this term by term gives an asymptoti
 expansion for the integral of f(x):Z 1x f(y) dy � 1Xn=0 an Z 1x y�n dy� 1Xn=2 1n� 1 an x�n+1 : (5.323)(We 
onsidered an example where a0 = a1 = 0, for the sake of minor simpli�
ation of thedis
ussion.) Again, the proof of this statement is a simple matter of verifying that the
ondition (5.312) for an asymptoti
 expansion is satis�ed.The situation for di�erentiation of an asymptoti
 expansion is a little more 
ompli
ated.It is not in general permissable to di�erentiate an asymptoti
 expansion for f(x), unless itis already known by some other means that f 0(x) itself has an asymptoti
 expansion. Anexample that illustrates this is f(x) = e�x sin(ex). This fun
tion is similar to e�x, in thatits asymptoti
 expansion for positive x is simply 0:f(x) = e�x sin(ex) � 0 : (5.324)(It is easy to see that xn e�x sin(ex) goes to zero as x goes to +1, for any n. This is be
ausethe e�x goes to zero faster than any power of x as x goes to infnity, while j sin(ex)j � 1.)However, the derivative of f(x) isf 0(x) = �e�x sin(ex) + 
os(ex) ; (5.325)and the se
ond term does not admit an asymptoti
 expansion.Noti
e that in our dis
ussion of asymptoti
 expansions, the phase of z, i.e. arg(z), playsan important rôle. A fun
tion f(z) may have a totally di�erent asymptoti
 expansionfor some range of arg(z) as 
ompared with some other range. For example, we saw that150



the fun
tion e�x has the asymptoti
 expansion e�x � 0 when x is real and positive. Onthe other hand, if x is real and negative, it is easily veri�ed that it does not admit anyasymptoti
 expansion at all. In less extreme examples, one 
an en
ounter fun
tions thathave \interesting" but di�erent asymptoti
 expansions for di�erent ranges of arg(z).A 
ommon situation where asymptoti
 expansions arise o

urs in a parti
ular kindof approximation s
heme for evaluating 
ertain 
lasses of 
ontour integral, known as the\Method of Steepest Des
ent." It is to this subje
t that we now turn.5.13 Method of Steepest Des
entThis approximation s
heme is appli
able to a 
ertain rather spe
ial 
lass of 
ontour integral,of the following form: J(s) = ZC g(z) es f(z) dz : (5.326)The idea is that one wants to get an approximate asymptoti
 form for J(s), valid for largevalues of s. For now, we shall have in mind that s is real. The method assumes that thefun
tion f(z) is su
h that its real part goes to �1 at both ends of the 
ontour C. Itis furthermore assumed that the prefa
tor fun
tion g(z) is a slowly-varying one, so thatthe behaviour of the integrand is dominated by the exponential fa
tor. In parti
ular, theintegrand will be assumed to vanish (for positive real s), at both endpoints.If the parameter s is large and positive, the integrand will be
ome large when the realpart of f(z) is large and positive, and on the other hand the integrand will be
ome relativelysmall when the real part of f(z) is small or negative. If we are seeking to approximateJ(s) by an asymptoti
 expansion, then we are interested in the situation when s be
omesarbitrarily large and positive. It is 
lear then that the asymptoti
 behaviour of J(s) willbe dominated from the 
ontribution (or 
ontributions) to the integral from the region or(regions) where the real part of f(z) rea
hes a maximum value.Within reason, we are allowed to deform the integration path C as we wish, withouta�e
ting the �nal result for J(s). Spe
i�
ally, provided the deformation does not 
ause thepath to 
ross over a pole or other singularity of the integrand, then we 
an distort the pathin any desired way. As we have observed above, the most important 
ontributions to J(s)will 
ome from the pla
e or pla
es along the path where the real part of the fun
tion f(z)has a maximum. Let us assume for now, to simplify the dis
ussion, that there is just onesu
h maximum, at z = z0. Thus at this point we shall have �u=�x = 0 = �u=�y, and hen
ef 0(z0) = 0 : (5.327)151



If we 
onsider integrating along the segment of the 
ontour in the vi
inity of the max-imum at z = z0, it is 
lear that life would be made a lot simpler if it were the 
ase thatthe imaginary part of f(z) were 
onstant there. To see this, write f(z) = u(x; y) + i v(x; y).If the imaginary part v(x; y) were varying along the path near z = z0, then when s is verylarge it is 
lear that there will be a fa
tor ei s v (5.328)in the integrand that is making the phase spin round and round like a propeller blade.Evaluating the integral along this dominant segment of the whole path C would then bevery tri
ky.To avoid this diÆ
ulty, we 
an exploit our freedom to deform the integration path, sothat we angle it around in the neighbourhood of z = z0 su
h that v(x; y) is nearly 
onstantthere. So we want our path near z = z0 to be su
h that both of the following 
onditionshold: f 0(z0) = 0 ; Im(f(z)) = Im(f(z0)) : (5.329)Now early on in our dis
ussion of analyti
 fun
tions, we saw that the real and imaginaryparts satisfy the following equations:r2 u = 0 = r2v ; ru � rv = 0 : (5.330)The �rst of these two 
onditions tells us that u and v 
annot have maxima or minima.Thus, to take u for example, it tells us that�2u�x2 + �2u�y2 = 0 : (5.331)So if the se
ond derivative with respe
t to x is positive at some point, then the se
ondderivative with respe
t to y must be negative there. So the stationary point z = z0 that wede�ned by our requirement f 0(z0) = 0 must a
tually be a saddle point. When we speak ofz = z0 
orresponding to the maximum of u(x; y) on our path, we should therefore have inmind the image of a hiker slogging up to a mountain pass, or saddle, and heading on downthe other side. As he rea
hes the top of the saddle, he a
tually sees the ground rising bothto his left and to his right, but he, having attained the saddle, heads on downwards intothe valley on the other side.Now 
onsider the se
ond equation in (5.330). This says that the lines of u=
onstant areorthogonal to the lines of v =
onstant. Therefore, if you try to imagine the topography inthe vi
inity of the saddle, this means that the way to keep v =
onstant as you walk up and152



over the saddle is to make sure that you 
hoose your path su
h that u falls o� as rapidlyas possible, on either side of the saddle peak. Thus, viewing your path from the top ofthe saddle, it should des
end as rapidly as possible into the valley on either side. In otherwords, the 
ontour should follow the path of Steepest Des
ent.We shall therefore now assume that we have adjusted the 
ontour so that either side ofthe point z0, it follows the steepest possible path of de
reasing u(x; y). Near z = z0, wene
essarily have that f(z) = f(z0) + 12(z � z0)2 f 00(z0) + � � � ; (5.332)sin
e we de�ned z0 by f 0(z0) = 0. Sin
e the 
ontour has the property that v =
onstant,it follows that 12(z � z0)2 f 00(z0) must be real. Furthermore, it must be negative along the
ontour, sin
e by 
onstru
tion the 
ontour is su
h that u de
reases in ea
h dire
tion as onemoves away from z = z0. Then, assuming f 00(z0) 6= 0, we havef(z)� f(z0) � 12(z � z0)2 f 00(z0) = � 12s t2 ; (5.333)where this equation is de�ning the new (real) variable t.As we have already observed, sin
e we are assuming that s is large and positive, theintegral will be dominated by the 
ontribution from the region near to z = z0. We areassuming also that g(z) is slowly varying, so to a good approximation we may take it outsidethe integration, setting its argument equal to z0, and hen
e we shall have the approximateresult that J(s) � g(z0) es f(z0) Z 1�1 e� 12 t2 dzdt dt : (5.334)Note that we have taken the range of the integration to run from �1 to 1. Again, thisis an approximation that is well justi�ed when s is large and positive. This 
an be seenby looking at (5.333): When s is very large, t 
an be
ome very large before the magnitudeof f(z) � f(z0) be
omes appre
iable. In other words, by the time the approximation ofexpanding (f(z)� f(z0) as in (5.333) has broken down the value of t is so large that e� 12 t2is negligable, and so the error introdu
ed by allowing t to run all the way out to �1 is verysmall.To 
omplete the evaluation of the integral, we just need to work out dz=dt. Near toz = z0, we may write z � z0 = q ei� ; (5.335)where q is real and the phase � is 
onstant. In fa
t � spe
i�es the angle in the 
omplexplane along whi
h the dire
tion of steepest des
ent lies. Thus from (5.333) we havet2 = �s f 00(z0) q2 e2i� ; (5.336)153



and therefore t = q js f 00(z0)j 12 : (5.337)This means that we 
an writedzdt = ei� dqdt = ei� js f 00(z0)j� 12 ; (5.338)implying from (5.334) thatJ(s) � g(z0) es f(z0) ei�js f 00(z0)j 12 Z 1�1 e� 12 t2 dt : (5.339)The remaining integral here is just a Gaussian, giving a fa
tor p2�, and so we arrive atthe �nal result J(s) � p2� g(z0) es f(z0) ei�js f 00(z0)j 12 : (5.340)Note that we have written this using the symbol �, denoting an asymptoti
 expansion. Thisis indeed appropriate; it is an approximation that gets better and better as s gets largerand larger.An it is instru
tive to look at an example at this point. Let us 
onsider the Gammafun
tion �(s+ 1), whi
h 
an be expressed in terms of the integral representation (5.233):�(s+ 1) = Z 10 xs e�x dx : (5.341)(We 
onsider �(s+1) here purely for later 
onvenien
e; blame Euler, as usual, for the shiftby 1!) First, we make the substitution x = s z, so that in terms of the new integrationvariable z we shall have�(s+ 1) = ss+1 Z 10 zs e�s z dz = ss+1 Z 10 es (log z�z) dz : (5.342)Writing it in this way, we see that it indeed has the general form o� (5.326), with g(z) = 1and f(z) = log z � z : (5.343)The 
ontour here is along the real axis, so z is in fa
t just a real variable here. It is 
learthat f(z) does indeed go to �1 at both endpoints of the integration, namely at z = 0 andz =1.To apply the method of steepest des
ent to this example, we �rst lo
ate the stationarypoint of f(z), by solving f 0(z) = 1=z � 1 = 0, giving z0 = 1. We also need to 
al
ulatef 00(z) = �1=z2 at z = z0 = 1, giving f 00(1) = �1. There is no need to perform anydeformation of the original 
ontour in this example, sin
e the imaginary part of f(z) is zero154



in the whole region (for real z) around z = z0 = 1. Furthermore, the phase � vanishes.Substituting into (5.340), we therefore obtain the result�(s+ 1) � p2� ss+12 e�s : (5.344)Re
alling that �(s + 1) is otherwise known as s!, we 
an re
ognise (5.344) as Stirling'sApproximation to the fa
torial fun
tion.How good an approximation is (5.344)? Well, we expe
t that it should get better andbetter as s gets larger and larger. A tabulation of the a
tual values and the results fromStirling's approximation, for a variety of values of s is instru
tive. This is given below inTable 1. We see that Stirling's approximation to the Gamma fun
tion rapidly be
omesquite a good one, even for quite modest values of s.We have seen that the methods of steepest des
ents has given a useful approximationto the Gamma fun
tion, and in a similar way it 
an be used in many other examples too.One might worry that, as presented above, it seems to be a method that produ
es a spe
i�
approximate expression, without any indi
ation of how to get a better one by pushing thingsto higher orders. In fa
t, the approximations we made in the derivation above are nothingbut the leading-order terms in a series expansion that 
an be developed and pushed, inprin
iple, to arbitrary order. Not surprisingly, the series expansion that one obtains by thismethod is an asymptoti
 expansion, and not a 
onvergent series.To see how we develop the full series, let us go ba
k to the Taylor expansion (5.332) forf(z), whi
h we approximated by just retaining the leading-order term, as in (5.333). Allthat we need do in order to get the full asymptoti
 series for J(s) is to work with the exa
texpression, rather than the approximation in (5.333). Thus we de�ne t not by (5.333), butinstead by f(z)� f(z0) = � 12s t2 : (5.345)We use this expession in order to substitute for dz=dt in (5.334). Of 
ourse this is generallyeasier to say than to do, sin
e one e�e
tively has to invert the expression (5.345) in orderto obtain z as a fun
tion of t. Usually, one has to do this at the level of a power-seriesexpansion.One 
an easily write (5.345) as a power series, giving t as an expansion in powers ofz. There is in fa
t a systemati
 way to invert su
h a series, so that one obtains instead zas a power series in t. It 
an be derived most elegantly using the 
al
ulus of residues. Weshall not interrupt the 
ow of this dis
ussion to des
ribe this here. Instead. let us take ourprevious dis
ussion of the Stirling approximation for the Gamma fun
tion, and push it to a155




ouple more orders by doing a somewhat brute-for
e inversion of the relevant power series.Re
all that for the Gamma fun
tion we had f(z) = log z � z, and hen
e the stationarypoint f 0(z0) = 0 determines that z0 = 1. Thus from (5.345) we have(z � 1)� log[1 + (z � 1)℄ = 12st2 : (5.346)The left-hand side here 
an be expanded in a power series in w � (z� 1), around the pointw = 0, giving 12w2 � 13w3 + 14w4 � 15w5 + � � � = 12s t2 : (5.347)We must now re
ast this as an expression for w as a power series in t. Thus we seek towrite it as w = Xn�0 an tn : (5.348)We 
an determine the 
oeÆ
ients an simply by inserting (5.348) into (5.346), expanding inpowers of t, and solving order by order for the an su
h that it equal t2=(2s), as demandedby (5.347). The result for the �rst few orders isz � 1 = w = ts 12 + t23s + t336s 32 � t4270s2 + t54320s 52 + � � � : (5.349)Thus we have dzdt = 1s 12 + 2t3s + t212s 32 � 2t3135s2 + t4864s 52 + � � � : (5.350)Substituting this into (5.334), it is 
lear by symmetry that only the terms in (5.350) thatinvolve even powers of t will give non-zero 
ontributions in the integral. The non-vanishingones 
an be evaluated by means of simple integrations by parts, to redu
e them to thestandard Gaussian inetgral. Thus we see from (5.342) that we obtain�(s+ 1) � p2� ss+12 e�s �1 + 112s + 1288s2 + � � � � : (5.351)This series, whi
h 
ould in prin
iple be developed to any arbitrary desired order, is theasymptoti
 expansion for the Gamma fun
tion.Finally, it is interesting to see how a numeri
al 
omparison with the true fun
tion looksnow.
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s s! Stirling Higher-order0.01 0.994325851191 0.236999259660 10.441134050580.1 0.951350769867 0.569718714898 1.2423033088741 1 0.922137008896 1.00218362425110 3.628800000000 106 3.598695618741 106 3.628809703606 106100 9.3326215443944 10157 9.324847625269 10157 9.3326215694180 101571000 4.023872600771 102567 4.023537292037 102567 4.023872600782 102567Table 1: Comparison of s!, Stirling's formula (5.344), and the higher-order expansion (5.351)Looking at the various entries in this Table, we see that for large s the asymptoti
expansion up to the order given in (5.351) is doing very well indeed. The Table also servesto illustrate the fa
t that at small values of s, the in
lusion of higher terms in the asymptoti
expansion in fa
t makes things worse, not better. This is exa
tly what we expe
ted; for anygiven value of the argument there is an optimum pla
e at whi
h to 
ut o� the series, andin
luding terms beyond that will give a worse approximation. For very small s, where theasymptoti
 series is in any 
ase expe
ted to be a disaster, we indeed see that we 
an makeit even worse by adding more terms.6 Non-linear Di�erential EquationsMost of our dis
ussion of di�erential equations in this 
ourse has been 
on
erned with linearse
ond-order ordinary di�erential equations, of the formy00(x) + p(x) y0(x) + q(x) y(x) = 0 : (6.1)It is not un
ommon to en
ounter ordinary di�erential equations that are non-linear in thedependent variable y. In su
h 
ases, one may be lu
ky and dis
over that the equation 
an besolved analyti
ally, possibly after spotting some 
lever 
hanges of dependent or independentvariable. More often than not, however, the equation may prove not to be sus
eptible toexa
t solution by analyti
 methods. If this is the 
ase then one has to �nd some other wayof studying the solutions. One approa
h is to use numeri
al methods, whi
h usually means\putting it on the 
omputer." This is very straightfoward these days, and many 
omputerlanguages 
ome equipped with pa
kages for solving di�erential equations numeri
ally. Forexample, the algebrai
 
omputing languageMathemati
a o�ers also fun
tions that will solveessentially any given di�erential equation, or set of di�erential equations, numeri
ally. Of157




ourse if the problem is of any 
omplexity or subtlety, it probably pays to have a deeperunderstanding of exa
tly how the numeri
al routines work. This is a major and importantsubje
t, whi
h lies outside the s
ope of this 
ourse.Another approa
h that 
an prove to be very useful is to make use of graphi
al methodsfor studying the behaviour of the solutions to the di�erential equation. Su
h te
hniques
an be very helpful for a variety of reasons. Firstly, they are rather simple and intuitive,allowing one to see the stru
ture of the solutions without the need for detailed 
omputation;the behaviour 
an often be established just with a few s
ribblings on the ba
k of an envelope.Se
ondly, the graphi
al te
hniques 
an be very helpful for revealing the way in whi
h thesolutions depend upon the 
hoi
e of initial 
onditions or boundary 
onditions.To begin our dis
ussion, let us 
onsider �rst the rather simple 
ase of �rst-order non-linear di�erential equations.6.1 Method of Iso
linalsLet us 
onsider the �rst-order di�erential equationdydx = f(x; y) : (6.2)Solveing the di�erential equation means �nding the integral 
urves in the (x; y) plane,namely the fun
tions y(x) that satisfy (6.2). For many 
hoi
es of the fun
tion f(x; y), it isimpossible to obtain an analyti
 solution to the equation.To analyse the solutions graphi
ally, we begin by 
onsidering the algebrai
 equationf(x; y) = � ; (6.3)where � is an arbitrary 
onstant. For ea
h 
hoi
e of �, this equation de�nes a 
urve in the(x; y) plane.Clearly, it must be that wherever a solution y = y(x) to (6.2) 
rosses the 
urve (6.3),the gradient of the integral 
urve is simply given by �, sin
e we shall havedydx = � (6.4)at that point. Sin
e ea
h point on a given 
urve implies that the integral 
urve interse
tingit has the same gradient �, the 
urve f(x; y) = � is 
alled an iso
line, or an iso
linal 
urve.If we plot the iso
linal 
urves f(x; y) = � for a range of values of �, and draw little linesegments on ea
h 
urve, with gradient equal to �, then if we simply \join the segments"with lines that interse
t the f(x; y) = � 
urves with gradient �, then the resulting lines158



will be the integral 
urves for (6.2). In other words, these lines will pre
isely des
ribe thesolutions to the di�erential equation. The various di�erent lines 
orrespond to the possible
hoi
es of initial 
ondition, asso
iated with the arbitrary 
onstant of integration for (6.2).Let us begin with a simple example, where we 
an a
tually solve the di�erential equationexpli
itly, so that we shall be able to see exa
tly what is going on. Consider the 
ase wheref(x; y) = x+ y, for whi
h we 
an easily solve (6.2), to givey = 
 ex � 1� x ; (6.5)where 
 is an arbitrary 
onstant. We shall keep this at the ba
k of our minds, but pro
eedfor now with the graphi
al approa
h and then make a 
omparison with the a
tual solutionsafterwards. The iso
linal 
urves are x+ y = �, or in other words,y = �x+ � : (6.6)These are straight lines, themselves all having slope �1, with the 
onstant � parameterisingthe point of interse
tion of the iso
line with the y axis. A few of them are plotted inFigure 10 below; for those with the bene�t of 
olour they are in blue, but in any 
ase theyare re
ognisable as the straight lines running between the north-west and the south-east.Imagine little line segments interse
ting with ea
h iso
linal, with slopes equal to the � valuespe
ifying the iso
linal. This � value is equal to the inter
ept of the iso
linal with the yaxis. Thus the iso
linal passing though (0; 0) would be de
orated with little line segmentsof slope 0; the iso
linal passing through (0; 1) would be de
orated with little line segmentsof slope 1, and so on.Also depi
ted in Figure 10 are some of the integral 
urves, i.e. the a
tual solutions of thedi�erential equation y0 = x+ y. Se
retly, we know they are given by (6.5) (and ideed, thatis how Figure 10 was a
tually 
onstru
ted!), but we are pretending that we have to drawthe integral 
urves by the method des
ribed above. Thus the strategy is to draw lines thatinterse
t the iso
linals with slopes equal to the slopes of the little line-segment de
orationsdes
ribed above. Looking at Figure 10, we see that indeed the integral 
urves all have thisproperty. For example, it 
an be seen that wherever an integral 
urve interse
ts the iso
linalthat passes through (0; 0), it has slope 0. And wherever an integral 
urve interse
ts theiso
linal passing through (0; 1), it has slope 1, and so on. (Observe that all the integral
urves indeed interse
t the (0; 1) iso
linal perpendi
ularly, as they shhould sin
e they haveslope +1 there, while the iso
linal itself has slope �1.)A 
onvenient way to 
hara
terise the integral 
urves in this example is by the value ofy0 where they interse
t the y axis. Looking at our \se
ret" formula (6.5), this is related to159



the integration 
onstant 
 by y0 = 
� 1. Of 
ourse we know from the general analysis thatif we also draw in the iso
linal passing through (0; y0), it will be de
orated by little linesegments of slope y0. So the integral 
urve that passes through (0; y0) has slope y0 at thatpoint. The 
omplete integral 
urve 
an then be built up by \joining the dots," so that itinterse
ts the iso
linals at the 
orre
t angles. Of 
ourse in pra
ti
e one may need to drawquite a lot of iso
linals, espe
ially in regions of the (x; y) plane where \interesting" thingsmay be happening.Note that in this toy example, on the left-hand side of the diagram all of the integral
urves be
ome asymptoti
 to the iso
linal passing through (0;�1), as x tends to �1. Thisis be
ause this iso
linal is de
orated by little line segments of slope �1, i.e. parallel to theiso
linal itself. Thus it a
ts as a sort of \attra
tor" line, with all the integral 
urves homingin towards it as x gets more and more negative. Of 
ourse we 
an see this expli
itly ifwe sneak another look at our \se
ret solution" (6.5); all the solutions at large negative xapproa
h y = �x� 1, regardless of the value of 
.
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Figure 10: The iso
linal 
urves y = �x + � (displayed in blue), and the integral 
urves(displayed in red) for the di�erential equation y0 = x+ y.160



For a se
ond example, 
onsider the equationdydx = x2 + y2 : (6.7)The iso
lines are given by the equation x2 + y2 = �, whi
h de�nes 
ir
les of radius p�
entred on the origin in the (x; y) plane. Ea
h 
ir
le should be de
orated with little linesegments whose gradient is �, so the larger the 
ir
le, the steeper the gradient. The 
ir
leof zero radius 
orresponds to gradient zero.The iso
linal lines and the integral 
urves for this example are depi
ted in Figure 11below.
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Figure 11: The iso
linal 
urves y2 = � � x2 (displayed in blue), and the integral 
urves(displayed in red) for the di�erential equation y0 = x2 + y2.Observe again that all the integral 
urves passing through a given iso
linal (the 
ir
les)do so with the same slope. And indeed, one 
an see that the as the 
ir
les get smaller, sothe slope gets smaller.The equation (6.7) in this example 
an in fa
t be solved expli
itly, although it takes a
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form that is perhaps not immediately illuminating:y = x (
J34 (12x2)� J�34 (12x2))
J�14 (12x2) + J14 (12x2) ; (6.8)where 
 is an arbitrary 
onstant and J�(x) denotes the Bessel fun
tion of the �rst kind,whi
h solves Bessel's equation x2 J 00� + xJ 0� + (x2 � �2)J� = 0. It is quite useful, therefore,even in a 
ase like this where there exists an expli
it but 
ompli
ated exa
t result, to beable to study the behaviour graphi
ally. It is perhaps helpful to observe, sin
e we do stillhave the luxury of having an analyti
 expression for the solution here, that the �rst 
oupleof terms in its Taylor expansion around x = 0 are given byy = �2�(34 )
�(14 ) + 4�(34 )2 x
2 �(14 )2 + � � � : (6.9)(This expansion is valid for x approa
hing zero from above. For negative x, the overall signshould be reversed. This follows from the fa
t, manifest in (6.8), that the solution is an oddfun
tion of x.)6.2 Phase-plane DiagramsThe method of iso
linals des
ribed above applies spe
i�
ally to �rst-order di�erential equa-tions. We 
an make use of this te
hnique in order to study graphi
ally the solutions ofa rather wide 
lass of se
ond-order ordinary di�erential equation. Spe
i�
ally, if t is theindependent variable and x the dependent variable, we 
an study any di�erential equationwhere all the terms are fun
tions of x, _x and �x only; in other words the independent vari-able t does not appear expli
itly anywhere. Su
h di�erential equations are sometimes 
alledautonomous. An example would be the van de Pol equation,�x� � (1� x2) _x+ x = 0 : (6.10)Any aoutonomous se
ond-order ODE 
an be redu
ed to a �rst-order ODE. The tri
k isto de�ne the quantity y = _x ; (6.11)from whi
h it follows that �x = dydt = dxdt dydx = y dydx : (6.12)Thus, in the example (6.10) above, the di�erential equation 
an be rewritten asy dydx � � (1� x2) y + x = 0 : (6.13)162



Any autonomous se
ond-order ordinary di�erential equation will be redu
ed to a �rst-orderordinary di�erential equation by this substitution. It 
an then be studied by the method ofiso
linals.The (x; y) plane is 
alled the phase plane. This is natural, sin
e x 
an be thought of asthe position, while y = _x 
an be thought of as the velo
ity, of a parti
le.Let us 
onsider, for a very simple example, the equation for a hramoni
 os
illator�x+ !2 x = 0 : (6.14)Using the rede�nitions (6.11) and (6.12), the equation be
omesy dydx + !2 x = 0 : (6.15)Pro
eeding now in the standard way, we see that the equation for the iso
linals isy = �!2 x� ; (6.16)and so they are straight lines of slope �!2=� passing through the origin.Of 
ourse in this toy example we 
an easily solve (6.15), givingy2 + !2 x2 = 
2 ; (6.17)where 
 is an arbitrary 
onstant. Thus the integral 
urves in the phase plane are ellipses,
entred on the origin. Pretending, though, that we did not know this, we 
ould dis
over theshape of these 
urves in the usual way by drawing 
urves in the phase plane whose slopesat the interse
tions with the iso
linals are given by �. The iso
linals and integral 
urvesare depi
ted in Figure 12 below.The integral 
urves in Figure 12 show the relationship between the position x and thevelo
ity y = _x for the parti
le. Note that when y = _x is positive, x must in
rease as tin
reases, and so it follows that the traje
tory of the parti
le must be 
lo
kwise aroundthe ellipse. The fa
t that the path 
loses on itself means that the motion of the parti
le isperiodi
. Of 
ourse in this toy example of the harmoni
 os
illator we already knew that,but in a more 
ompli
ated equation it is useful to bear this in mind, as a way of re
ognisingperiodi
 motion.Let us 
onsider now a more 
ompli
ated example, namely the van de Pol equation givenin (6.10). This equation arises in 
ertain physi
al situations where there is os
illatory motionthat is not simple harmoni
. After making the substitution y = _x, we obtain equation (6.13).163
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Figure 12: The iso
linal 
urves y = �!2 x=� (displayed in blue), and the integral 
urves(displayed in red) for the di�erential equation y y0 + !2 x = 0. (Plotted for ! = 2.)For 
on
reteness, let us take the 
onstant � to be � = 1. From (6.13), the equation for theiso
linals is y = x1� x2 � � : (6.18)The phase-plane diagram for the van de Pol equation is depi
ted in Figure 13. As 
an beseen, the integral 
urves des
ribe quite 
ompli
ated paths in the phase plane, but in fa
tthey all end up settling down to 
losed 
ontours that go around the same tra
k repeatedly,regardless of the initial 
onditions. Su
h 
losed tra
ks are 
alled limit 
y
les. Thus themotion eventually be
omes periodi
, but it is not simple harmoni
 motion, whi
h as we sawpreviously is 
hara
terised by ellipti
al 
ontours in the phase plane.
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Figure 13: The phase-plane diagram for the van de Pol equation with � = 1. The light linesare the iso
linals, and the heavy lines are integral 
urves.7 Cartesian Ve
tors and Tensors7.1 Rotations and re
e
tions of Cartesian 
oordinateIn Cartesian tensor analysis, one of the most fundamental notions is that of a ve
tor. In anelementary introdu
tion to ve
tors, the �rst example that one usually meets is the positionve
tor, typi
ally denoted by ~r, whi
h is thought of as the dire
ted line 
onne
ting a pointQ to another point P . In itself, this is a rather geometri
al 
on
ept, whi
h need not belinked to any spe
i�
 
hoi
e of how the Cartesian 
oordinate system is 
hosen. For example,one 
ould displa
e the origin of the 
oordinate system arbitrarily, and one 
ould rotate the
oordinate system arbitrarily. Of 
ourse often, one thinks of a position ve
tor as a dire
tedline from the origin O of the 
oordinate system to a given point P . In this 
ase, the originof the Cartesian 
oordinates would e�e
tively be \pinned down," but the 
hoi
e of how toorient the axes remains.We 
ommonly write the position ve
tor ~r of a point P as a triple of numbers,~r = (x; y; z) ; (7.1)165



where x, y and z are nothing but the proje
tions of the the line from O to P onto the x, yand z axes of the 
hosen system of Cartesian 
oordinates. The triple of numbers in (7.1) are
alled the 
omponents of the ve
tor ~r with respe
t to this system of Cartesian 
oordinates.Of 
ourse, if we rotate to a new Cartesian 
oordinate system, then these three numbers will
hange. However, they will 
hange in a spe
i�
 and 
al
ulable way.It is easier, for a simple illustration of what is going on, to think of the situation in 2,rather than 3, dimensions, so that a position ve
tor is just spe
i�ed by a pair of numbers,~r = (x; y) ; (7.2)these being the proje
tions of the line OP onto the x and y axes of the 
hosen Cartesian
oordinate system. Suppose now that we 
hoose another Cartesian 
oordinate system, withthe same originO, but where the axes (x0; y0) are rotated anti-
lo
kwise by an angle � relativeto the original axes (x; y). A simple appli
ation of trigononemtry shows that the 
omponents(x0; y0) of the position ve
tor OP with respe
t to the new (or primed) 
oordinate systemare related to its 
omponents (x; y) with respe
t to the original (or unprimed) 
oordinatesystem by x0 = x 
os � + y sin � ; y0 = �x sin � + y 
os � : (7.3)This 
an be written more elegantly as a matrix equation, x0y0 ! =  
os � sin �� sin � 
os �!  xy ! : (7.4)An essential property of the rotation des
ribed above is that the length of the ve
tor ~r,de�ned by r � j~rj = qx2 + y2 (7.5)is the same whether we use the unprimed or the primed 
oordinate system. Namely, therotation des
ribed by (7.3) or (7.4) has the property thatx02 + y02 = x2 + y2 : (7.6)More generally, we 
an des
ribe any rotation of the Cartesian 
oordinate system in a formanalogous to (7.4), as  x0y0 ! =M  xy ! : (7.7)where M is a 2� 2 matrix that leaves the length of the ve
tor ~r un
hanged. Sin
e we 
anwrite x2 + y2 = (x ; y )  xy ! ; (7.8)166



it follows that the requirement (7.6) of preserving the length of the ve
tor 
an be writtenas ( x ; y )  xy ! = ( x ; y ) M tM  xy ! ; (7.9)where M t is the transpose of M . Sin
e we want to require that the length of any ve
tor ~rshould be preserved, we 
an therefore strip o� the (x; y) ve
tors in (7.9), and 
on
lude thatwe must have M tM = 1l (7.10)for any rotation, where 1l denotes the identity matrix. It is easily veri�ed that for ourrotation des
ribed in (7.4), the 
orresponding matrixM =  
os � sin �� sin � 
os �! (7.11)indeed satis�es (7.10).A
tually, the 
ondition (7.10) allows for slightly more than just rotations of the Cartesianaxes. It also allows for the possibility of making a re
e
tion of the axes, su
h asx0 = x ; y0 = �y : (7.12)This would be des
ribed by the matrixM =  1 00 �1! : (7.13)One 
an easily see that there is no 
hoi
e of � in (7.11) su
h that it be
omes (7.13). Thusthe full set of allowed length-preserving transformations of the Cartesian axes is 
omposedof rotations together with re
e
tions. In fa
t it is not hard to see that any arbitrary
ombination of rotation and re
e
tion 
an be re-expressed as a rotation 
ombined witha 
hosen spe
i�
 re
e
tion, su
h as the re
e
tion about the x axis de�ned by (7.12). Inother words, the full set of symmetry transformations that we 
an allow for our Cartesian
oordinate systems 
omprises rotations about the origin, together with a possible re
e
tion.The set of pure rotations, and the set of rotations plus re
e
tions, are dis
retely di�erent.7.2 The orthogonal group O(n), and ve
tors in n dimensionsIn two dimensions it is easy enough to see all this expli
itly, by writing down 2�2 matri
es,but in higher dimensions it would be rather 
lumsy in general. It is therefore useful toabstra
t the essential features of the Cartesian 
oordinate rotations and re
e
tion, in afashion that 
an expressed su

in
tly in any dimension. First of all, in n dimensions it167



is 
onvenient to label our Cartesian axes by (x1; x2; : : : ; xn), so that we don't run out ofletters of the alphabet. We 
an then des
ribe the allowed transformations of the Cartesian
oordinates by 0BBBBB� x01x02...x0n
1CCCCCA =M 0BBBBB� x1x2...xn

1CCCCCA ; (7.14)where in order to preserve the length, the n� n matrix M must satisfyM tM = 1l : (7.15)Su
h n � n matri
es satisfying (7.15) are 
alled orthogonal matri
es, and this is denotedby O(n). This terminology is derived from group theory, and signi�es that the set of alln � n matri
es satisfying (7.15) form a group. For any pair of O(n) matri
es M1 and M2the matrix produ
t M3 �M1M2 (7.16)is another O(n) matrix. The full set of requirements for a group are:1 There must be an asso
iative law of 
ombination for all group elements a, b and 
,su
h that a � (b � 
) = (a � b) � 
.2 For any group elements a and b, the 
ombination a � b must be a group element too.3 There must exist an identity element e, su
h that a �e = e �a = a for any group elementa.4 Every group element a must have an inverse, a�1, su
h that a�1 � a = a � a�1 = e.For our 
ase, the law of 
ombination is simply the multipli
ation of matri
es. Obviouslythis is asso
iative, so requirement 1 is satis�ed. As already noted, requirement 2 is satis�edtoo, sin
e we shall haveM t3M3 = (M1M2)tM1M2 =M t2M t1M1M2 ;= M t2 1lM2 =M t2M2 = 1l : (7.17)Requirement 3 is 
learly satis�ed, and we simply have that e = 1l, the identity matrix.Finally, we 
an see straight away from (7.15) that in this 
ase the inverse of M is nothingbut M�1 =M t : (7.18)168



We 
an also see easily how to 
hara
terise the 
ases where the transformation in
ludesa re
e
tion as well as a rotation. From (7.15), we 
an take the determinant, and usingelementary properties we �nddet(M tM) = det(M t) det(M) = (detM)2 ;= det 1l = 1 : (7.19)Thus we dedu
e that O(n) matri
es satisfydetM = �1 : (7.20)We give the name SO(n) to O(n) matri
es whose determinant is +1, the \S" standing for\spe
ial." Clearly the produ
t of any two SO(n) matri
es is also in SO(n),det(M1M2) = (detM1) (detM2) = 1 ; (7.21)and so SO(n) is a subgroup of O(n). The group of SO(n) matri
es des
ribes the situationof pure rotations. If an O(n) matrix M is su
h that detM = �1, then it must be that Mdes
ribes a rotation plus a re
e
tion. Note that the set of all detM = �1 matri
es do notform a group, sin
e the produ
t of two su
h matri
es will have determinant +1.It is easy to see that a detM = �1 transformation ne
essarily in
ludes a re
e
tion,by looking at examples. It is also 
lear from the fa
t that detM = +1 matri
es 
anbe 
ontinuously 
onne
ted to the identity, whilst detM = �1 matri
es involve a dis
retetransition from the identity. For example, in (7.11) we 
an 
ontinuously in
rease � from 0to its �nal value. By 
ontrast, sin
e det 1l = +1 but the determinant of the matrix in (7.13)is �1, it is obvious that we 
annot perform a 
ontinuous sequen
e of deformations of 1l intothe matrix in (7.13).7.3 Cartesian ve
tors and tensorsNow let us 
ontinue with the main theme, of Cartesian ve
tor and tensor analysis. Wemay take the position ve
tor as the prototype of all ve
tors, and thus we may de�ne ave
tor V in n dimensions27 by saying that it has 
omponents (V1; V2; : : : Vn) that transformunder rotations of the Cartesian frame in a manner identi
al to that for the position ve
tor,27It is 
ustomary, at least in the USA, to use the arrow symbol to denote a ve
tor in three dimensions,thus ~V . In a general dimension n, it is more tradiational not to use an arrow, but simply to denote theve
tor by V . We shall follow the tradition. 169



namely 0BBBBB� V 01V 02...V 0n
1CCCCCA =M 0BBBBB� V1V2...Vn

1CCCCCA : (7.22)It is very 
onvenient at this stage to introdu
e an index notation, so that we don't haveto write out big n-
omponent 
olumn ve
tors. Thus we label the rows and 
olumns of then� n matrix M by indi
es i and j, so thatM = 0BBBBB�M11 M12 � � � M1nM21 M22 � � � M2n... ... . . . ...Mn1 Mn2 � � � Mnn
1CCCCCA : (7.23)The equation (7.22) 
an then be written asV 0i = nXj=1Mij Vj : (7.24)A further hugely simplifying re�nement, introdu
ed by Einstein, is to re
ognise that inany valid ve
tor or tensor expression, a summation symbol will always be needed when aparti
ular index o

urs exa
tly twi
e in an expression, su
h as the j index in (7.24). Furth-more, there will never be any 
ir
umstan
e in a valid expression when an index o

urs twi
ewithout the need for the summation. Therefore, in the Einstein Summation Convention,we may simply write (7.24) as V 0i =Mij Vj ; (7.25)with the repetition of the \dummy suÆx" j meaning that a summation over its index-range(1 to n) is understood.Noti
e that the orthogonality 
ondition (7.15) satis�ed by the matrix M 
an also bewritten simply in terms of the index notation. First, note that if A and B are matri
es,with 
omponents Aij and Bij respe
tively, then the matrix C � AB will have 
omponentsgiven by Cij = Aik Bkj : (7.26)The multipli
ation with the summation over k pre
isely 
orresponds to the matrix opera-tion of multiplying the rows of A into the 
olumns of B. Next, we note that the pro
essof transposing a matrix means pre
isely that we ex
hange the roles of the rows and the
olumns, whi
h means that the 
omponents of the transpose of M are given by(M t)ij =Mji : (7.27)170



Finally, we note that the 
omponents of the unit matrix are nothing but Æij , the Krone
kerdelta, whi
h is zero if i 6= j and 1 if i = j. Therefore (7.15) is written as(M t)ikMkj = Æij ; (7.28)and hen
e we have MkiMkj = Æij : (7.29)Suppose now that we have two ve
tors U and V . This means that we know that undera rotation28 of the Cartesian 
oordinates, their 
omponents Ui and Vi will transform asU 0i =Mij Uj ; V 0i =Mij Vj : (7.30)We may now de�ne the notion of the inner produ
t, or dot produ
t of U and V . Let us
all this quantity f . We 
an de�ne this in terms of the 
omponents, asf � Ui Vi : (7.31)We 
an now easily see that f is a s
alar, whi
h means that it is 
ompletely invariant underrotations of the 
oordinate system. We prove this by using the transformation rules for Uand V given in (7.30), whi
h allows us to 
al
ulate what the quantity f 0 de�ned by (7.31),but for the primed 
omponents, in terms of f itself:f 0 � U 0i V 0i= Mij UjMik Vk= Æjk Uj Vk= Uj Vj= f : (7.32)Thus f 0 = f , proving that f is a s
alar under 
oordinate rotations. Note that a spe
ial 
aseof an inner produ
t is when one takes the inner produ
t of a ve
tor with itself, asf = Vi Vi : (7.33)A moment's thought will 
onvin
e the reader that Vi Vi is nothing but the norm-squaredof the ve
tor V , and more generally Ui Vi is nothing but the usual dot produ
t or s
alarprodu
t of the ve
tors U and V .28We will sometimes loosely use the word \rotation," as a shorthand for \rotation or rotation and re-
e
tion." On o

asions when it is important to be pre
ise about whether re
e
tions are in
luded, we willemphasise the point spe
i�
ally. 171



We have now met s
alars, whi
h are invariant under 
oordinate rotations, and ve
tors,whose 
omponents rotate in the spe
i�
 way (7.25). It is not a big extension of thesenotions to enlarge the dis
ussion to quantities with more than one index. These are 
alledtensors. To be pre
ise, a p-index quantity Ti1���ip is a tensor under 
oordinate rotations if ittransforms in the following very spe
i�
 way:T 0i1���ip =Mi1j1 Mi2j2 � � �Mipjp Tj1���jp : (7.34)Thus ea
h index simultaneously transforms with a rotation matrix M . This tensor T is
alled a rank-p tensor.It is obvious from the (7.25) that if we de�ne the so-
alled outer produ
t of two ve
torsU and V , as the quantity T with 
omponentsTij = Ui Vj ; (7.35)then this transforms pre
isely as a rank-2 tensor:T 0ij =MikMj` Tk` : (7.36)Obviously one 
an make higher-rank tensors by taking outer produ
ts of larger numbers ofve
tors. Not all tensors, hwoever, are simply the outer produ
ts of ve
tors. More generally,a tensor 
an be expressed as the sum of a number of outer produ
ts of ve
tors. One 
analso, of 
ourse, take outer produ
ts of tensors to make bigger tensors of higher rank.It is very easy to see that if one 
ontra
ts a pair of indi
es on a tensor of rank p, thenone gets a tensor of rank p � 2. The pro
ess of 
onta
ting indi
es means setting two ofthem equal. Then, the Einstein summation 
onvention 
omes into play, meaning that wehave the understanding that the two indi
es are then summed over. For example, supposewe have a rank-3 tensor Tijk. We 
an make a rank-1 tensor (i.e. a ve
tor) by 
ontra
ting apair of indi
es, for example we 
an de�neVi � Tijj : (7.37)The proof that Vi really is a ve
tor is the usual one; namely, to show that it really doestransform like a ve
tor under 
oordinate rotations. We do this by starting from the knowntransformation rule of Tijk, whi
h by de�nition, sin
e we are told that it is a tensor, trans-forms as T 0ijk =Mi`MjmMkn T`mn : (7.38)Noti
e by the way, that we must always be very 
areful not to abuse the Einstein summation
onvention. If there are multiple dummy indi
es to be summed over, as with `, m and n172



here, then we must make sure that we have invented a new dummy suÆx name for ea
hseparate summation. Thus, for example, if we tried writing the right-hand side of (7.38) asMi`MjmMkm T`mm ; (7.39)then this would be 
omplete nonsense, sin
e we have the dummy suÆx m o

uring 4 times,and we wouldn't know whi
h pairs were supposed to be summed over. It would be likewriting a 
omputer program with multiple summation labels in a multiple sum, and theninadvertently using the same index label for two summations that were meant to be distin
t.Going ba
k to our example, we now 
he
k that Vi transforms properly as a ve
tor byits de�nition (7.37), but now expressed for the primed 
oordinate frame, and then applyingthe known transformation rule (7.38) for Tijk. Thus we getV 0i � T 0ijj= MikMj`Mjm Tk`m= Mik Æ`m Tk`m= Mik Tk``= Mik Vk ; (7.40)and so indeed it transforms in the way a ve
tor should.In general, any operation of taking outer produ
ts, inner produ
ts, or 
ontra
tions will
ause a tensorial expression to turn into another tensorial expression with more, or less,indi
es as the 
ase may be. A ni
e thing about it is that after getting a

ustomed to theformalism, one doesn't need to 
he
k every time whether an expression made from tensorsis itself a tensor. As long as only valid pro
edures are used, su
h as taking outer or innerprodu
ts or 
ontra
tions, the bottom line is that \if it looks like a tensor, it is a tensor."7.4 Invariant tensors, and the 
ross produ
tWe have seen that in general the 
omponents of a tensor transform in a non-trivial wayunder rotations of the Cartesian 
oordinate system. There are 
ertain ex
eptional tensors,however, whi
h have the property that their 
omponents do not transform at all underrotations. Su
h tensors are 
alled Invariant Tensors.7.4.1 The Krone
ker delta tensorWe have in fa
t already met one example, namely the Krone
ker delta symbol Æij . Re
allingthe de�ning property (7.15) for O(n) matri
es M , we may �rst note that M tM = 1l implies173



also MM t = 1l, for we have MM tM =M ; (7.41)and hen
e MM t =MM�1 = 1l : (7.42)Thus as well as (7.29), we also have that if M is an O(n) matrix then it satsi�esMikMjk = Æij : (7.43)This 
an be written as Æij =MikMj` Æk` : (7.44)Comparing with the general tensor transformation rule (7.34), we therefore see that theKrone
ker delta Æij is an invariant tensor, in the sense that if we de�ne it to have the samestru
ture in any Cartesian 
oordinate system, namely that it vanishes if i 6= j and equals 1if i = j, then it obeys the usual tensor transformation rule, but with the spe
ial propertythat its 
omponents are 
ompletely unaltered under arbitrary rotations:Æ0ij = Æij : (7.45)Note that immediate properties of the Krone
jker delta tensor areÆij Æjk = Æik ; Æii = n : (7.46)(The summation over repeated indi
es is understood, as usual. In the se
ond expression,Æii is therefore the tra
e of the identity matrix in n dimensions; hen
e the result n.)Note that the Krone
ker delta tensor 
an be viewed as the basi
 building blo
k of thes
alar produ
t of two ve
tors A and B:A �B = AiBj Æij = AiBi : (7.47)Of 
ourse, given Æij one 
an trivially 
onstru
t lots of other invariant tensors, by takingouter produ
ts of Krone
ker deltas. For exampleTijk` � Æij Æk` (7.48)is a rank-4 invariant tensor. There is, however, one further invariant tensor that 
an bewritten down, whi
h is not merely 
onstru
ted from produ
ts of Krone
ker deltas. Thistensor, denoted by "i1���in in n dimensions, is sometimes 
alled the Levi-Civita tensor.174



7.4.2 The Levi-Civita (pseudo) TensorIn n dimensions, the Levi-Civita tensor (or pseudo-tensor, as we should more properly
all it; see later) has n indi
es. It is de�ned by the following rules. Firstly, it is totallyantisymmetri
 in all n of its indi
es, whi
h means that if any pair of indi
es is ex
hanged,it 
hanges sign: "i1i2���in = �"i2i1���in ; (7.49)and similarly for any ex
hange of two indi
es. Finally, we spe
ify that"123���n = +1 : (7.50)This is enough to spe
ify it 
ompletely. By the antisymmetry rule, any even permutation ofthe indi
es 1; 2; : : : ; n will give +1, while any odd permutation of the indi
es 1; 2; : : : ; n willgive �1. If any two indi
es on "i1���in are equal, then the antisymmetry property impliesthat it will vanish. Thus all the 
ases have been 
overed.To see that "i1���in is an invariant tensor under rotations29, we need a result from matrixtheory. The relevant fa
t is that if A is any n� n matrix with 
omponents Aij, thenAi1j1 Ai2j2 � � �Ainjn "j1j2���jn = (detA) "i1i2���in : (7.51)After some thought it is not hard to see that this is true. It is helpful to play around witha simple example su
h as n = 2. In two dimensions, the statement is thatAik Aj` "k` = (detA) "k` : (7.52)Bearing in mind that we have "12 = �"21 = 1, "11 = "22 = 0, we 
an then 
onsider thepossible 
ases for the free indi
es i and j in (7.52). For example, with i = 1, j = 2 we �ndthat the left-hand side gives A11A22 �A12A21 ; (7.53)whi
h indeed agrees with the right-hand side, whi
h is detA times "12, or in other wordsdetA. With i = 1, j = 1, on the other hand, one gets 0 = 0. In a similar fashion, all theother 
omponents are 
onsistent with (7.52).In an arbitrary dimension, it is easy to see that unless the free indi
es i1 � � � in in (7.51)are taken to be 1 � � � n, or some permutation thereof, both sides of the equation will bezero. Sin
e there is manifest total antisymmetry on both sides of equation (7.51), it suÆ
es29Here, as we shall see below, we must be pre
ise, and emphasise that this statement is true only for purerotations, but not rotations with re
e
tions. 175



to 
he
k just one of the n! possible non-zero 
ases, whi
h for simpli
ity we 
an take to bei1 � 1, i2 = 2,: : :,in = n. It is rather straightforward to see that the left-hand side is in fa
t
onstru
ting the determinant for us. Let us agree to believe, then, that (7.51) is true inarbitrary dimensions.We now apply (7.51) to the 
ase of an SO(n) matrixM . It will be re
alled that this hasthe property detM = +1, and it des
ribes a pure rotation of Cartesian 
oordinates, withno re
e
tion. We therefore have"i1i2���in =Mi1j1 Mi2j2 � � �Minjn "j1j2���jn : (7.54)Comparing with (7.34), we see that "i1i2���in obeys the general rule for the transformationof a tensor under 
oordinate rotations, but with the spe
ial property that"0i1i2���in = "i1i2���in : (7.55)Just like Æij , therefore, "i1i2���in is an invariant tensor under rotations. However, thereis a subtlety here. The Krone
ker delta is also a tensor under re
e
tions as well as purerotations. By 
ontrast, "i1i2���in is not. As we see from (7.51), for an arbitrary rotationtogether, possibly, with rotations, we must write"i1i2���in =Mi1j1 Mi2j2 � � �Minjn (detM) "j1j2���jn (7.56)instead of (7.54). If we in
lude the re
e
tions, then the set of quantities "i1i2���in de�ned bytotal antisymmetry and "12���n = 1 in all frames does not transform like a normal tensor,but instead it pi
ks up a minus sign if a re
e
tion is involved. Quantities that transformlike tensors under pure rotations, but with an extra minus sign under re
e
tions, are 
alledpseudo-tensors. Often, if one is just speaking \
asually," one tends to refer to them simplyas tensors.The Levi-Civita pseudo-tensor plays an important role in ve
tor and tensor analysis.A very important property 
on
erns the produ
t of two Levi-Civita pseudo-tensors. Itis probably easiest to des
ribe this by starting with low-dimensional examples. In twodimensions, we have "ij , with "12 = �"21 = 1, "11 = "22 = 0. It is easy to see, simply by
he
king all the possible index assignments, that"ij "k` = Æik Æj` � Æi` Æjk : (7.57)(Try it for a few 
hoi
es, su
h as i = 1, j = 2, k = 1, ` = 2, et
.)176



In three dimensions, the analogous produ
t rule involves 6 terms rather than 2 on theright-hand-side:"ijk "`mn = Æi` Æjm Ækn+Æin Æj` Ækm+Æim Æjn Æk`�Æi` Æjn Ækm�Æim Æj` Ækn�Æin Æjm Æk` : (7.58)Looking at this, one 
an see the pattern. The �rst term on the right-hand side has theprodu
t of a Krone
ker delta linking the �rst indi
es on the two epsilon tensors, a Krone
kerdelta linking the se
ond indi
es on the two epsilon tensors, and a Krone
ker delta linkingthe last indi
es on the two epsilon tensors. Then, there are 5 more terms, whi
h 
orrespondto permuting around the `, m and n indi
es, with a plus sign for an even permutation, anda minus sign for an odd permutation. There are in total 3! possible permutations, hen
ethe six terms on the right-hand side. The need for this permutation antisymmetry in theexpression on the right-hand side is obvious, sin
e we know that it is an antisymmetryof the left-hand side. Note also that although as stated above, the implementation ofthe permutation antisymmetry of `, m and n might seem to have been favoured over thepermutation antisymmetry of i, j, k, in fa
t everything is perfe
tly demo
rati
. Havingenfor
ed the antisymmetry in `, m and n on the right-hand side, it implies (as 
an easilybe seen by inspe
tion) an antisymmetry in i, j and k as well.It is not hard to prove (7.58), again by looking at all the possible index assignmentsfor i, j, k, `, m and n. This is not as daunting a task as it might sound, be
ause of theantisymmetries dis
ussed above. In fa
t, if one thinks about it, there are very few 
ases thatneed to be 
he
ked expli
itly; the rest all follow by invoking the permutation symmetries.The general expression for the produ
t of two epsilon tensors in n dimensions will involven! sums of produ
ts of Krone
ker deltas on the right-hand side:"i1���in "j1���jn = Æi1j1 � � � Æinjn + even perms� odd perms : (7.59)7.4.3 Three-dimensional ve
tor identitiesA very useful 
onsequen
e of (7.58) in 3 dimensions arises if we set k = n (whi
h means,of 
ourse, that this repeated index is then summed over 1, 2 and 3.) Bearing in mindthe properties of the Krone
ker delta, given in (7.46), we therefore �nd (after a 
onvenientrelabelling of indi
es) "ijm "k`m = Æik Æj` � Æi` Æjk : (7.60)This identity allows us to derive very easily some of the basi
 Cartesian ve
tor identities inthree dimensions. 177



First, we note that the ve
tor produ
t ~A � ~B of ve
tors ~A and ~B gives a quantity~C � ~A� ~B whose 
omponents are given by~C = (C1; C2; C3) = (A2B3 �A3B2; A3B1 �A1B3; A1B2 �A2B1) ; (7.61)whi
h 
an be written very su

in
tly using the epsilon pseudo-tensor, asCi = ( ~A� ~B)i = "ijkAj Bk : (7.62)It is straightforward to show, by the standard pro
edure of 
al
ulating the 
omponents C 0iin a transformed Cartesian 
oordinate system, that ~C transforms like a ve
tor under purerotations, but it a
quires an extra (�1) fa
tor under rotations with a re
e
tion, owing tothe detM fa
tor in the transformation rule for "ijk. Therefore ~C is a pseudo-ve
tor. Oneimmediately sees the antisymmetry of the ve
tor produ
t, ~A � ~B = � ~B � ~A, from theantisymmetry of "ijk.Some ve
tor identities now follow very straightforwardly. First, we may note that forany set of three 3-ve
tors ~A, ~B and ~C, the s
alar quantity known as their s
alar tripleprodu
t, ~A � ( ~B � ~C), 
an be written using "ijk as~A � ( ~B � ~C) = "ijkAiBj Ck : (7.63)It is now immediately obvious, from the total antisymmetry of "ijk, that (7.63) is totallyantisymmetri
 under any ex
hange of the ve
tors. Thus, we have~A � ( ~B � ~C) = ~B � ( ~C � ~A) = ~C � ( ~A� ~B)= � ~A � ( ~C � ~B) = � ~B � ( ~A� ~C) = � ~C � ( ~B � ~A) : (7.64)A spe
ial 
ase following from the above is, of 
ourse, that ~A � ( ~A � ~B) = 0.Of 
ourse, stri
tly speaking ~A � ( ~B � ~C) is not an s
alar, but a pseudo-s
alar, sin
e itis 
onstru
ted using the epsilon pseudo-tensor. Thus unlike an ordinary s
alar, whi
h isinvariant both under rotations and re
e
tions, ~A � ( ~B� ~C) is invariant under pure rotations,but it 
hanges sign under re
e
tions.Now, let us 
onsider the ve
tor triple produ
t of any three 3-ve
tors ~A. ~B and ~C. Thisis de�ned as the ve
tor ~D, given by ~D = ~A� ( ~B � ~C) : (7.65)From (7.62), we see that we 
an write the 
omponents of ~D asDi = "ijm "mk`Aj Bk C` : (7.66)178



Note that ~D is an ordinary ve
tor, and not a pseudo-ve
tor. This is be
ause it involvestwo epsilon pseudo-tensors in its de�nition (7.66) in terms of the ve
tors ~A, ~B and ~C, andso the two detM fa
tors that will arise when 
he
king the transformation rule for ~D willmultiply and give (+1), even under re
e
tions.The fa
t that ~D is a true ve
tor is also evident from (7.60), whi
h shows that the produ
tof the two epsilon pseudo-tensors 
an be re-expressed in terms of produ
ts of Krone
ker deltatensors. In fa
t using (7.60), we 
an re-express (7.65) in terms of s
alar produ
ts. First,it is worth noting that be
ause "ijk has an odd number of indi
es, any rearrangement ofthe indi
es that is a
hieved by a 
y
li
 permutation implies an even number of index-pairex
hanges, and so it leaves the sign of the epsilon tensor un
hanged. In other words"ijk = "jki = "kij : (7.67)Therefore, it follows that we 
an 
y
le "mk` to "k`m in (7.66) with no sign 
hange, and then,using (7.60), we get Di = (Æik Æj` � Æi` Æjk)Aj Bk C` : (7.68)Using the index-repla
ement rules for the Krone
ker delta tensor, this impliesDi = BiAj Cj � CiAj Bj : (7.69)Thus, writing it ba
k in 3-ve
tor notation, we have~D � ~A� ( ~B � ~C) = ~B ( ~A � ~C)� ~C ( ~A � ~B) : (7.70)There are many other examples of ve
tor expressions that 
an be simpli�ed using thebasi
 identities (7.60), or (7.58) for the epsilon tensor. The rule is that whenever an ex-pression involves two or more ve
tor produ
t symbols \�", then they 
an be eliminatedpairwise, being repla
ed by s
alar produ
ts. On
e one is familiar with the basi
 stru
tureof (7.60), most expressions 
apable of su
h simpli�
ations 
an be handled. It is so simpleto derive the results \as needed" that it is no longer worth taking the trouble to remembera formula su
h as (7.70); it is easier to derive it as and when needed. Memorising (7.60) isitself very simple; with the 
ontra
ted index being \3'rd with 3'rd" on the epsilon tensors,the right-hand side is the produ
t of \1'st with 1'st" and \2'nd with 2'nd" Krone
ker deltas,minus \1'st with 2'nd" and \2'nd with 1'st."7.4.4 Hodge dualisationThe notation in three-dimensional Cartesian ve
tor analysis of 
onstru
ting a ve
tor ~Cfrom the ve
tor produ
t ~C � ~A � ~B of two ve
tors ~A and ~B is su
h a 
ommonpla
e that179



it sometimes surprises people to learn that it works only in three dimensions. The 
ru
ialquantity involved in the 
onstru
tion of the ve
tor produ
t is the 3-index epsilon tensor"ijk, and it has three indi
es pre
isely be
ause of being in three dimensions.The notation that does generalise to an arbitrary dimension is that from any pair ofve
tors A and B we 
an form an antisymmetri
 rank-2 tensor W whose 
omponents Wijare de�ned by Wij = AiBj �Aj Bi : (7.71)In three dimensions, we 
an map ba
k and forth between Wij and the ve
tor Ci de�nedabove, by making use of the 3-index epsilon tensor:Ci = 12"ijkWjk = "ijk Aj Bk ;Wij = "ijk Ck : (7.72)Note that this ability to map both ways 
an be seen using (7.60). Thus, given Ci = 12"ijkWjk,we 
al
ulate "ijk Ck = 12"ijk "k`mW`m = 12(Æi` Æjm � Æim Æj`)W`m =Wij : (7.73)So in three dimensions, having a 2-index antisymmetri
 tensor is essentially equivalent tohaving a ve
tor, sin
e we 
an map freely ba
kwards and forwards. (It is essential, of 
ourse,that Wij itself be antisymmetri
 in order for this invertible mapping to work.)In higher dimensions, the nature of the mapping is di�erent. For example, in fourdimensions we have a 4-index epsilon tensor, and so from Wij we 
an make another 2-indexantisymmetri
 tensor: Zij � "ijk`Wk` : (7.74)This is again invertible, and in fa
t from (7.59) one 
an prove thatWij = 14"ijk`Zk` : (7.75)It is not so immediately obvious in four dimensions what the point of mapping from one2-index antisymmetri
 tensor into the other would be, sin
e one has not a
hieved anyredu
tion of the number of indi
es. A
tually, it turns out that there are important uses forthis pro
edure, and in fa
t a spe
ial signi�
an
e is atta
hed to 2-index tensors that havethe property of mapping into themselves under this transformation.The mapping pro
ess is known as Hodge Dualisation. To make the 
ombinatori
s workni
ely, it is better to put in a fa
torial 
oeÆ
ient. The Hodge dual of a rank-2 antisymmetri
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tensor Wij in four dimensions is denoted by W �ij, and de�ned byW �ij = 12!"ijk`Wk` : (7.76)From this, one 
an show using (7.59) thatWij = 12!"ijk`W �k` : (7.77)If a tensor happens to satisfyWij = �W �ij, it is 
alled self-dual or anti-self-dual respe
tively.More generally, if we are in n dimensions and we have a rank-p antisymmetri
 tensorTi1���ip , then its Hodge dual is a rank-(n� p) tensor with 
omponents T �i1���in�p given byT �i1���in�p � 1p! "i1���in�pj1���jp Tj1���jp : (7.78)The pro
edure of making a ve
tor ~C = ~A � ~B out of two ve
tors ~A and ~B in threedimensions 
an now be understood as a spe
ial 
ase, in whi
h one takes the Hodge dual ofthe 2-index antisymmetri
 tensor with 
omponents AiBj �Aj Bi.Noti
e, by the way, that one of our familiar 
on
epts in three dimensions is that rotationso

ur around axes. This is a very spe
ial feature of three dimensions, for pre
isely thereasons we have been dis
ussing. Think of the angular momentum ve
tor,~L = ~r � ~p ; (7.79)for example, whi
h, in 
omponents, would be writtenLi = "ijk xj pk : (7.80)In a general dimension, we would instead simply view the angular momentum as a 2-indexantisymmetri
 tensor, Lij = xi pj � xj pi : (7.81)Thus in a general dimension, a rotation o

urs in a 2-plane, whi
h is spe
i�ed as the planein whi
h the position ve
tor ~r and the linear momentum ve
tor ~p lie. It is a \
oin
iden
e"of living in three spatial dimensions that instead of saying \a rotation in the (x; y) plane,"we 
an say \a rotation around the z axis."7.5 Cartesian Tensor Cal
ulusThe basi
 di�erential operator in ve
tor and tensor 
al
ulus is the gradient operator r.This is the ve
tor-valued operator whose \
omponents" are the set of partial derivativeswith respe
t to the Cartesian 
oordinates xi. For brevity, let us de�ne�i � ��xi : (7.82)181



Then we shall have ~r = (�1; �2; : : : ; �n) (7.83)in n dimensions.We 
an easily see that r is indeed a ve
tor; the proof is the usual one, of showing thatits 
omponents transform as a ve
tor under rotations of the Cartesian 
oordinates. Thus ina rotated 
oordinate system x0i, for whi
h, by de�nition, we have �0i = �=�x0i, we �nd, usingthe 
hain rule, �0i = �xj�x0i �j : (7.84)Now we have x0i = Mij xj under the 
oordinate rotations, and so, multiplying by Mik andusing (7.29), we have Mik x0i = xk. Di�erentiating (take 
are of the index 
hoi
es!) we �nd�xj�x0i =Mij , and so we 
on
lude that �0i =Mij �j : (7.85)This proves that �i transforms exa
tly as a ve
tor should, under rotations of the Cartesianaxes.It is now straightforward to see that if r a
ts on any s
alar �eld �, it will give a ve
tor,r�. In fa
t more generally, if r a
ts on any rank-p tensor T , it will give a rank-(p + 1)tensor S, with 
omponents given bySij1���jp = �i Tj1���jp : (7.86)The proof is the usual one, of showing that Sij1���jp transforms with the proper tensortransformation law (7.34) under rotations of the Cartesian 
oordinates. Of 
ourse, havingestablished that �i Tj1���jp is a tensor, all the usual rules follow. In parti
ular, for example,it follows that we 
an take a divergen
e of the tensor Tj1���jp , by 
ontra
ting the index i onthe derivative in (7.86) with one of the indi
es on Tj1���jp , and thereby get a rank-(p � 1)tensor. (In general, if Tj1���jp has no spe
ial symmetry properties on its indi
es, there willbe p di�erent divergen
es that we 
an make, depending on whi
h of the j indi
es we 
hooseto 
ontra
t with the i index.)A spe
ial 
ase of the above is to form the s
alar quantity �i Vi as the divergen
e of theve
tor Vi.Note that the Lapla
ian operatorr2 � �i �i = �2�x21 + � � � + �2�x2n (7.87)is manifestly a s
alar operator, and so if � is a s
alar, then so is r2�.182



There is a spe
ial signi�
an
e in tensor 
al
ulus to antisymmetrised derivatives of tensors.The most familiar example, in three dimensions, involves the antisymmetrised derivative ofa ve
tor, �iVj � �jVi. As in our dis
ussion of the ve
tor produ
t, it is then 
onvenient totake the Hodge dual of this, to obtain a ve
tor. Thus one de�nes the 
url operation, withthe 
url of a ve
tor ~V being another ve
tor (a
tually, of 
ourse, a pseudo-ve
tor) ~X, givenby ~X � ~r� ~V : (7.88)In 
omponents, this is just Xi = "ijk �j Vk : (7.89)In index notation one 
an easily prove various 3-dimensional identities, based on thefa
t that partial derivatives 
ommute, �i �j = �j �i, su
h as~r� ~r� = 0 ; ~r � (~r� ~V ) = 0 ; (7.90)for any s
alar � and any ve
tor ~V . One 
an also immediately see from (7.60) that~r� (~r� ~V ) = ~r (~r � ~V )�r2 ~V : (7.91)
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