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1 First and Seond-order Di�erential Equations1.1 The Di�erential Equations of PhysisIt is a phenomenologial fat that most of the fundamental equations that arise in physisare of seond order in derivatives. These may be spatial derivatives, or time derivatives invarious irumstanes. We all the spatial oordinates and time, the independent variablesof the di�erential equation, while the �elds whose behaviour is governed by the equationare alled the dependent variables. Examples of dependent variables are the eletromag-neti potentials in Maxwell's equations, or the wave funtion in quantum mehanis. It isfrequently the ase that the equations are linear in the dependent variables. Consider, forexample, the salar potential � in eletrostatis, whih satis�esr2� = �4� � (1.1)where � is the harge density. The potential � appears only linearly in this equation, whihis known as Poisson's equation. In the ase where there are no harges present, so that theright-hand side vanishes, we have the speial ase of Laplae's equation.Other linear equations are the Helmholtz equationr2 +k2  = 0, the di�usion equationr2 �� =�t = 0, the wave equation r2 � �2 �2 =�t2 = 0, and the Shr�odinger equation��h2=(2m)r2 + V  � i�h� =�t = 0.The reason for the linearity of most of the fundamental equations in physis an be traedbak to the fat that the �elds in the equations do not usually at as soures for themselves.Thus, for example, in eletromagnetism the eletri and magneti �elds respond to thesoures that reate them, but they do not themselves at as soures; the eletromagneti�elds themselves are unharged; it is the eletrons and other partiles that arry hargesthat at as the soures, while the photon itself is neutral. There are in fat generalisationsof Maxwell's theory, known as Yang-Mills theories, whih play a fundamental rôle in thedesription of the strong and weak nulear fores, whih are non-linear. This is preiselybeause the Yang-Mills �elds themselves arry the generalised type of eletri harge.Another fundamental theory that has non-linear equations of motion is gravity, desribedby Einstein's general theory of relativity. The reason here is very similar; all forms of energy(mass) at as soures for the gravitational �eld. In partiular, the energy in the gravitational�eld itself ats as a soure for gravity, hene the non-linearity. Of ourse in the Newtonianlimit the gravitational �eld is assumed to be very weak, and all the non-linearities disappear.In fat there is every reason to believe that if one looks in suÆient detail then eventhe linear Maxwell equations will reeive higher-order non-linear modi�ations. Our best3



andidate for a uni�ed theory of all the fundamental interations is string theory, and theway in whih Maxwell's equations emerge there is as a sort of \low-energy" e�etive theory,whih will reeive higher-order non-linear orretions. However, at low energy sales, theseterms will be insigni�antly small, and so we won't usually go wrong by assuming thatMaxwell's equations are good enough.The story with the order of the fundamental di�erential equations of physis is rathersimilar too. Maxwell's equations, the Shr�odinger equation, and Einstein's equations are allof seond order in derivatives with respet to (at least some of) the independent variables. Ifyou probe more losely in string theory, you �nd that Maxwell's equations and the Einsteinequations will also reeive higher-order orretions that involve larger numbers of time andspae derivatives, but again, these are insigni�ant at low energies. So in some sense oneshould probably ultimately take the view that the fundamental equations of physis tend tobe of seond order in derivatives beause those are the only important terms at the energysales that we normally probe.We should ertainly expet that at least seond derivatives will be observable, sinethese are needed in order to desribe wave-like motion. For Maxwell's theory the existeneof wave-like solutions (radio waves, light, et.) is a ommonplae observation, and probablyin the not too distant future gravitational waves will be observed too.1.2 First-order EquationsDi�erential equations involving only one independent variable are alled ordinary di�eren-tials equations, or ODE's, by ontrast with partial di�erential equations, or PDE's, whihhave more than one independent variable. Even �rst-order ODE's an be ompliated.One situation that is easily solvable is the following. Suppose we have the single �rst-order ODE dydx = F (x) : (1.2)The solution is, of ourse, simply given by y(x) = R x dx0F (x0) (note that x0 here is just aname for the \dummy" integration variable). This is known as \reduing the problem toquadratures," meaning that it now omes down to just performing an inde�nite integral.Of ourse it may or may not be be that the integral an be evaluated expliitly, but that isa di�erent issue; the equation an be regarded as having been solved.More generally, we ould onsider a �rst-order ODE of the formdydx = F (x; y) : (1.3)4



A speial lass of funtion F (x; y) for whih an an again easily solve the equation expliitlyis when F (x; y) = �P (x)Q(y) ; (1.4)sine then we an redue the solution to quadratures, withZ x dx0 P (x0) + Z y dy0Q(y0) = 0 : (1.5)Note that no assumption of linearity is needed here.A rather more general situation is whenF (x; y) = �P (x; y)Q(x; y) ; (1.6)and the di�erential P (x) dx + Q(y) dy is exat, whih means that we an �nd a funtion'(x; y) suh that d' = P (x; y) dx+Q(x; y) dy : (1.7)Of ourse there is no guarantee that suh a ' will exist. Clearly a neessary ondition isthat �P (x; y)�y = �Q(x; y)�x ; (1.8)sine we would want to make the identi�ations�'�x = P (x; y) ; �'�y = Q(x; y) ; (1.9)and seond partial derivatives of ' ommute:�2'�x�y = �2'�y�x : (1.10)In fat, one an also see that (1.8) is suÆient for the existene of the funtion '; theondition (1.8) is known as an integrability ondition for ' to exist. If ' exists, then solvingthe di�erential equation (1.3) redues to solving d' = 0, implying '(x; y) =  =onstant.One '(x; y) is known, this impliitly gives y as a funtion of x.If P (x; y) and Q(x; y) do not satisfy (1.8) then all is not lost, beause we an reall thatsolving the di�erential equation (1.3), where F (x; y) = �P (x; y)=Q(x; y) means solvingP (x; y) dx +Q(x; y) dy = 0, whih is equivalent to solving�(x; y)P (x; y) dx + �(x; y)Q(x; y) dy = 0 ; (1.11)where �(x; y) is some generially non-vanishing but as yet otherwise arbitrary funtion. Ifwe want the left-hand side of this equation to be an exat di�erential,d' = �(x; y)P (x; y) dx + �(x; y)Q(x; y) dy ; (1.12)5



then we have the less restritive integrability ondition�(�(x; y)P (x; y))�y = �(�(x; y) �Q(x; y))�x ; (1.13)where we an hoose �(x; y) to be more or less anything we like in order to try to ensurethat this equation is satis�ed. It turns out that some suh �(x; y), known as an integratingfator, always exists in this ase, and so in priniple the di�erential equation is solved. Theonly snag is that there is no ompletely systemati way for �nding �(x; y), and so one isnot neessarily guaranteed atually to be able to determine �(x; y).1.2.1 Linear �rst-order ODEConsider the ase where the funtion F (x; y) appearing in (1.3) is linear in y, of the formF (x; y) = �p(x) y + q(x). Then the di�erential equation beomesdydx + p(x) y = q(x) ; (1.14)whih is in fat the most general possible form for a �rst-order linear equation. The equationan straightforwardly be solved expliitly, sine now it is rather easy to �nd the requiredintegrating fator � that renders the left-hand side an exat di�erential. In partiular, � isjust a funtion of x here. Thus we multiply (1.14) by �(x),�(x) dydx + �(x) p(x) y = �(x) q(x) ; (1.15)and require �(x) to be suh that the left-hand side an be rewritten asd(�(x) y)dx = �(x) q(x) : (1.16)Comparing with (1.15), we see that �(x) must be hosen so thatd�(x)dx = �(x) p(x) ; (1.17)implying that we will have �(x) = exp � Z x dx0 p(x0)� : (1.18)(The arbitrary integration onstant just amounts to a onstant resaling of �(x), whihobviously is an arbitrariness in our freedom to hoose an integrating fator.)With �(x) in priniple determined by the integral (1.18), it is now straightforward tointegrate the di�erential equation written in the form (1.16), givingy(x) = 1�(x) Z x dx0 �(x0) q(x0) : (1.19)6



Note that the arbitrariness in the hoie of the lower limit of the integral implies that y(x)has an additive part y0(x) amounting to an arbitrary onstant multiple of 1=�(x),y0(x) = C exp �� Z x dx0 p(x0)� : (1.20)This is the general solution of the homogeneous di�erential equation where the \soureterm" q(x) is taken to be zero. The other part, y(x) � y0(x) in (1.19) is the partiularintegral, whih is a spei� solution of the inhomogeneous equation with the soure termq(x) inluded.2 Separation of Variables in Seond-order Linear PDE's2.1 Separation of variables in Cartesian oordinatesIf the equation of motion in a partiular problem has suÆient symmetries of the appropriatetype, we an sometimes redue the problem to one involving only ordinary di�erentialequations. A simple example of the type of symmetry that an allow this is the spatialtranslation symmetry of the Laplae equation r2 = 0 or Helmholtz equation r2 +k2  =0 written in Cartesian oordinates:�2 �x2 + �2 �y2 + �2 �z2 + k2  = 0 : (2.1)Clearly, this equation retains the same form if we shift x, y and z by onstants,x �! x+ 1 ; y �! y + 2 ; z �! z + 3 : (2.2)This is not to say that any spei� solution of the equation will be invariant under (2.2), butit does mean that the solutions must transform in a rather partiular way. To be preise, if (x; y; z) is one solution of the di�erential equation, then  (x + 1; y + 2; z + 3) must beanother.As is well known, we an solve (2.1) by looking for solutions of the form  (x; y; z) =X(x)Y (y)Z(z). Substituting into (2.1), and dividing by  , gives1X d2Xdx2 + 1Y d2Ydy2 + 1Z d2Zdz2 + k2 = 0 : (2.3)The �rst three terms on the left-hand side ould depend only on x, y and z respetively, andso the equation an only be onsistent for all (x; y; z) if eah term is separately onstant,d2Xdx2 + a21X = 0 ; d2Ydy2 + a22 Y = 0 ; d2Zdz2 + a23 Z = 0 ; (2.4)7



where the onstants satisfy a21 + a22 + a23 = k2 ; (2.5)and the solutions are of the formX � eia1 x ; Y � eia2 y ; Z � eia3 z : (2.6)The separation onstants an be either real, giving osillatory solutions in that oordinatediretion, or imaginary, giving exponentially growing and deaying solutions, provided that(2.5) is satis�ed. It will be the boundary onditions in the spei� problem being solvedthat determine whether a given onstant a should be real or imaginary. The general solutionwill be an in�nite sum over all the basi exponential solutions, (x; y; z) = Xa1;a2;a3 (a1; a2; a3) eia1 x eia2 y eia3 z : (2.7)where the separation onstants (a1; a2; a3) an be arbitrary, save only that they must satisfythe onstraint (2.5). At this stage the sums in (2.7) are really integrals over the ontinuousranges of (a1; a2; a3) that satisfy (2.5). Typially, the boundary onditions will ensure thatthere is only a disrete in�nity of allowed triplets of separation onstants, and so the integralsbeomes sums. In a well-posed problem, the boundary onditions will also determine thevalues of the onstant oeÆients (a1; a2; a3).Consider, for example, a potential-theory problem in whih a hollow ube of side 1 isomposed of onduting metal plates, where �ve of them are held at potential zero, while thesixth is held at a onstant potential V . The task is to alulate the eletrostati potential (x; y; z) everywhere inside the ube. Thus we must solve Laplae's equationr2  = 0 ; (2.8)subjet to the boundary onditions that (0; y; z) =  (1; y; z) =  (x; 0; z) =  (x; 1; z) =  (x; y; 0) = 0 ;  (x; y; 1) = V : (2.9)(we take the fae at z = 1 to be at potential V , with the other �ve faes at zero potential.)Sine we are solving Laplae's equation, the onstant k appearing in the Helmholtzexample above is zero, and so the onstraint (2.5) on the separation onstants is justa21 + a22 + a23 = 0 (2.10)here. Clearly to math the boundary ondition  (0; y; z) = 0 in (2.9) at x = 0 we must haveX(0) = 0, whih means that the ombination of solutions X(x) with positive and negative8



a1 must be of the form X(x) � ei a1 x � e�i a1 x : (2.11)This gives either the sine funtion, if a1 is real, or the hypeboli sinh funtion, if a1 isimaginary. But we also have the boundary ondtion that  (1; y; z) = 0, whih means thatX(1) = 0. This determines that a1 must be real, so that we get osillatory funtions forX(x) that an vanish at x = 1 as well as at x = 0. Thus we must haveX(x) � sin(a1 x) (2.12)with sin(a1) = 0, implying a1 = m� where m is an integer, whih without loss of generalityan be assumed to be greater than zero. Similar arguments apply in the y diretion. Witha1 and a2 determined to be real, (2.5) shows that a3 must be imaginary. The vanishing of (x; y; 0) imlies that our general solution is now established to be (x; y; z) = Xm>0Xn>0 bmn sin(m� x) sin(n� y) sinh(�� zpm2 + n2) : (2.13)Note that we now indeed have a sum over a disrete in�nity of separation onstants.Finally, the boundary ondition  (x; y; 1) = V on the remaining fae at z = 1 tells usthat V = Xm>0Xn>0 bmn sin(m� x) sin(n� y) sinh(��pm2 + n2) : (2.14)This allows us to determine the onstants bmn. We use the orthogonality of the sine fun-tions, whih in this ase is the statement that if m and p are integers we must haveZ 10 dx sin(m� x) sin(p � x) = 0 (2.15)if p and m are unequal, and Z 10 dx sin(m� x) sin(p � x) = 12 (2.16)if p and m are equal.1 This allows us to pik out the term m = p, n = q in the doublesummation (2.14), by multiplying by sin(p � x) sin(q � y) and integrating over x and y:V Z 10 dx Z 10 dy sin(p � x) sin(q � y) = 14bpq sinh(��qp2 + q2) : (2.17)1Just use the rules for multiplying produts of sine funtions to show this. What we are doing here isonstruting a Fourier series expansion for the funtion V , whih happens to be taken to be a onstant inour example. 9



Sine R 10 dx sin(p � x) = [1� (�1)p℄=(p �) we therefore �nd that bpq is nonzero only when pand q are odd, and thenb2r+1;2s+1 = 16V(2r + 1) (2s+ 1)�2 sinh(��p(2r + 1)2 + (2s+ 1)2) (2.18)All the onstants in the original general solution of Laplae's equation have now beendetermined, and the problem is solved.2.2 Separation of variables in spherial polar oordinatesAnother ommon example of separability arises when solving the Laplae or Helmholtz equa-tion in spherial polar oordinates (r; �; �). These are related to the Cartesian oorindates(x; y; z) in the standard way:x = r sin � os� ; y = r sin � sin� ; z = r os � : (2.19)In terms of these, (2.1) beomes1r2 ��r�r2 � �r �+ 1r2 r2(�;�)  + k2  = 0 ; (2.20)where r2(�;�) is the two-dimensional Laplae operator on the surfae of the unit-radiussphere, r2(�;�) � 1sin � ���� sin � ����+ 1sin2 � �2��2 : (2.21)The Helmholtz equation in spherial polar oordinates an be separated by �rst writing (r; �; �) in the form  (r; �; �) = 1r R(r)Y (�; �) : (2.22)Substituting into the Helmholtz equation (2.20), and dividing out by  in the usual way,we get r2R d2Rdr2 + 1Y r2(�;�)Y + r2 k2 = 0 : (2.23)(It is useful to note that r�2�(r2� =�r)=�r is the same thing as r�1�2(r  )=�r2 when doingthis alulation.)The middle term in (2.23) an depend only on � and �, while the �rst and third andepend only on r, and so onsisteny for all (r; �; �) therefore means that the middle termmust be onstant, and sor2(�;�) Y = ��Y ; d2Rdr2 = � �r2 � k2�R : (2.24)The key point now is that one an show that the harmonis Y (�; �) on the sphere arewell-behaved only if � takes a ertain disrete in�nity of non-negative values. The most10



elegant way to show this is by making use of the symmetry properties of the sphere, butsine this takes us away from the main goals of the ourse, we will not follow that approahhere.2 Instead, we shall follow the more \traditional," if more pedestrian, approah ofexamining the onditions under whih singular behaviour of the eigenfuntion solutions ofthe di�erential equation an be avoided.To study the eigenvalue problemr2(�;�) Y = ��Y in detail, we make a further separationof variables by taking Y (�; �) to be of the form Y (�; �) � �(�)�(�). Substituting this in,and multiplying by sin2 � Y �1, we get1� sin � dd�� sin � d�d� �+ 1� d2�d�2 + � sin2 � = 0 : (2.25)By now-familiar arguments the middle term an depend only on �, while the �rst and lastdepend only on �. Consisteny for all � and � therefore implies that the middle term mustbe a onstant, and so we have d2�d�2 +m2 � = 0 ; (2.26)sin � dd�� sin � d�d� �+ (� sin2 � �m2)� = 0 : (2.27)The solution to the � equation is � � e�im�. The onstant m2 ould, a priori, be positiveor negative, but we must reall that the oordinate � is periodi on the sphere, with period2�. The periodiity implies that the eigenfuntions � should be periodi too, and heneit must be that m2 is non-negative. In order that we have �(� + 2�) = �(�) it mustfurthermore be the ase that m is an integer.To analyse the eigenvalue equation (2.27) for �, it is advantageous to de�ne a newindependent variable x, related to � by x = os �. At the same time, let us now use y2The essential point is that the surfae of the unit sphere an be de�ned as x2 + y2 + z2 = 1, and this isinvariant under transformations of the form0�xyz1A �!M 0�xyz1A ;where M is any onstant 3 � 3 orthogonal matrix, satisfying MT M = 1l. This shows that the sphere isinvariant under the 3-parameter group O(3), and hene the eigenfuntions Y must fall into representationsunder O(3). The alulation of the allowed values for �, and the forms of the assoiated eigenfuntions Y ,then follow from group-theoreti onsiderations. Antiipating the result that we shall see by other means,the eigenvalues � take the form �` = `(` + 1), where ` is any non-negative integer. The eigenfuntionsare lassi�ed by ` and a seond integer m, with �` � m � `, and are the well-known spherial harmonisY`m(�; �). The fat that � depends on ` but not m means that the eigenvalue �` = `(`+1) has a degeneray(2`+ 1). 11



instead of � as our symbol for the dependent variable. Equation (2.27) therefor beomesddx�(1� x2) dydx�+ ��� m21� x2� y = 0 : (2.28)This equation is alled the Assoiated Legendre Equation, and it will beome neessary tostudy its properties, and solutions, in some detail in order to be able to onstrut solutionsof the Laplae or Helmholtz equation in spherial polar oordinates. We shall do this insetion 3 below. In fat, as we shall see, it is onvenient �rst to study the simpler equationwhen m = 0, whih orresponds to the ase where the harmonis Y (�; �) on the sphere areindependent of the azimuthal angle �. The equation (2.28) in the ase m = 0 is alled theLegendre Equation.2.3 Separation of variables in ylindrial polar oordinatesAnother important seond-order equation that an arise from the separation of variables isBessel's equation, Suppose we are solving Laplae's equation in ylindrial polar oordinates(�; �; z), so that we have 1� ������ �� �+ 1�2 �2 ��2 + �2 �z2 = 0 : (2.29)We an separate variables by writing  (�; �; z) = R(�)�(�)Z(z), whih leads, after dividingout by  , to 1�R dd���dRd� �+ 1�2 � d2�d�2 + 1Z d2Zdz2 = 0 : (2.30)We an therefore dedue thatd2Zdz2 � k2 Z = 0 ; d2�d�2 + �2 � = 0 ; (2.31)d2Rd�2 + 1� dRd� + �k2 � �2�2 �R = 0 ; (2.32)where k2 and �2 are separation onstants. Resaling the radial oordinate by de�ningx = k �, and renaming R as y, the last equation takes the formx2 d2ydx2 + x dydx + (x2 � �2) y = 0 : (2.33)This is Bessel's equation; we shall return later to a study of its solutions.3 Solutions of the Assoiated Legendre EquationWe shall now turn to a detailed study of the solutions of the assoiated Legendre equation,whih we obtained in our separation of variables in spherial polar oordinates in setion2.2. 12



3.1 Series solution of the Legendre equationWe begin by onsidering the simpler ase where the separation onstant m is zero, implyingthat the assoiated Legendre equation (2.28) redues to the Legendre equation[(1� x2) y0℄0 + � y = 0 : (3.1)Note that here we are denoting a derivative with respet to x by a prime, so that dy=dx iswritten as y0, and so on. We shall use (3.1) to introdue the method of solution of linearODE's by series solution, known sometimes as the Frobenius Method.The idea essentially is to develop a solution as a power series in the independent variablex, with expansion oeÆients determined by substituting the series into the di�erentialequation, and equating terms order by order in x. The method is of wide appliability; herewe shall take the Legendre equation as an example to illustrate the proedure.We begin by writing the series expansiony = Xn�0 an xn : (3.2)(In more general irumstanes, whih we shall study later, we shall need to onsider seriesexpansions of the form y(x) = P(n)�0 an xn+�, where � may not neessarily be an integer.But in the present ase, for reasons we shall see later, we do not need the x� fator at all.)Clearly we shall havey0 = Xn�0nan xn�1 ; y00 = Xn�0n (n� 1) an xn�2 : (3.3)Substituting into equation (3.1), we �ndXn�0n (n� 1) an xn�2 +Xn�0 (�� n (n+ 1)) an xn = 0 : (3.4)Sine we want to equate terms order by order in x, it is useful to shift the summationvariable by 2 in the �rst term, by writing n = m+ 2;Xn�0n (n�1) an xn�2 = Xm��2(m+2)(m+1) am+2 xm = Xm�0(m+2)(m+1) am+2 xm : (3.5)(The last step, where we have dropped the m = �2 and m = �1 terms in the summation,learly follows from the fat that the (m+ 2)(m + 1) fator gives zero for these two valuesof m.) Finally, relabelling m as n again, we get from (3.4)Xn�0�(n+ 2)(n+ 1) an+2 + (�� n (n+ 1)) an�xn = 0 : (3.6)13



Sine this must hold for all values of x, it follows that the oeÆient of eah power of xmust vanish separately, giving(n+ 2)(n+ 1) an+2 + (�� n (n+ 1)) an = 0 (3.7)for all n � 0. Thus we have the reursion relationan+2 = n (n+ 1)� �(n+ 1)(n+ 2) an : (3.8)We see from (3.8) that all the oeÆients an with n � 2 an be solved for, in terms ofa0 and a1. In fat all the an for even n an be solved for in terms of a0, while all the an forodd n an be solved for in terms of a1. Sine the equation is linear, we an take the even-nseries and the odd-n series as two the two independent solutions of the Legendre equation,whih we an all y1(x) and y2(x):y(1)(x) = a0 + a2 x2 + a4 x4 + � � � ;y(2)(x) = a1 + a3 x3 + a5 x5 + � � � : (3.9)The �rst solution involves only the even an, and thus has only even powers of x, whilstthe seond involves only the odd an, and has only odd powers of x. We an onvenientlyonsider the two solutions separately, by taking either a1 = 0, to disuss y(1), or else takinga0 = 0, to disuss y(2).Starting with y1, we therefore have from (3.8) that a2 = �12�a0, a3 = 0, a4 = 112(6 ��) a2, a5 = 0, et.. In the expression for a4, we an substitute the expression already foundfor a2, and so on. Thus we will geta2 = �12�a0 ; a4 = � 112� (6� �) a0 ; : : :a3 = a5 = a7 = � � � = 0 : (3.10)The series solution in this ase is therefore given byy(1) = a0 �1� 12�x2 � 112� (6� �)x4 + � � � � : (3.11)To disuss the solution y(2) instead, we an take a0 = 0 and a1 6= 0. The reursionrelation (3.8) now gives a2 = 0, a3 = 16(2 � �) a0, a4 = 0, a5 = 120(12 � �) a3, a5 = 0, et.,and so we �nd a3 = 16(2� �) a1 ; a5 = 1120 (2� �) (12 � �) a1 ; : : :a2 = a4 = a6 = � � � = 0 : (3.12)14



The series solution in this ase therefore has the formy(2) = a1 �x+ 16 (2� �)x3 + 1120(2� �) (12 � �)x5 + � � � � : (3.13)To summarise, we have produed two independent solutions to our di�erential equation(3.1), whih are given by (3.11) and (3.13). The fat that they are independent is obvious,sine the �rst is an even funtion of x whilst the seond is an odd funtion. To make thispreise, we should say that y(1)(x) and y(2)(x) are linearly-independent, meaning that theonly possible solution for onstants � and � in the equation� y(1)(x) + � y(2)(x) = 0 (3.14)is � = 0 and � = 0. In other words, y(1)(x) and y(2)(x) are not related by any onstantfator of proportionality. We shall show later that any seond-order ordinary di�erentialequation must have exatly two linearly-independent solutions, and so with our solutionsy(1)(x) and y(2)(x) established to be linearly-independent, this means that we have obtainedthe most general possible solution to (3.1).The next question is what an we do with our series solutions (3.11) and (3.13). Theyare, in general, in�nite series. Whenever one enounters an in�nite series, one needs toworry about whether the series onverges to a �nite result. For example, the seriesS1 �Xn�0 2�n = 1 + 12 + 14 + 18 + 116 + � � � (3.15)onverges, giving S1 = 2, whilst the seriesS2 �Xn�0 2n = 1 + 2 + 4 + 8 + 16 + � � � (3.16)diverges, giving S2 =1. Another series that diverges isS3 = Xn�0 1n+ 1 = 1 + 12 + 13 + 14 + 15 + � � � : (3.17)For our solutions (3.11) and (3.13), we must �nd out for what range of values of x do theseries onverge.One way to test the onverge of a series is by applying the ratio test. This test saysthat the series f = Pn�0wn onverges if the ratio Rn � wn+1=wn is less than 1 in thelimit n �! 1. The series onverges if R1 < 1, it diverges if R1 > 1, and one gains noinformation in the marginal ase where R1 = 1. We won't prove the ratio test here, butit is learly plausible. It essentially says that if eah suessive term in the series (at least15



when we go a long way down the series) is smaller than its predeessor by some frationless than 1, then the sum of all the terms is �nite. If on the other hand eah suessiveterm is bigger than its predeessor by some fator greater than 1, then the sum of all theterms will be in�nite. We an try out the ratio test on the three examples in (3.15), (3.16)and (3.17). Sure enough, for the onvergent series (3.15) we �nd the ratio of the (n+1)'thterm to the n'th term is Rn � 1=2n+11=2n = 12 (3.18)and so this has the limit R1 = 12 whih is less than 1. For the seond example (3.16) wehave Rn = 2, and so R1 = 2. The ratio test therefore predits that this series will diverge.For the third example, we see from (3.17) thatRn = n+ 1n+ 2 ; (3.19)and so R1 = 1. The ratio test doesn't give us any result in this ase therefore. However, amore involved alulation will show that the series (3.17) diverges.Going bak to our series solutions (3.2), we haveRn = an+2 xn+2an xn = an+2an x2 ; (3.20)From (3.8), this an be written asRn = n (n+ 1)� �(n+ 1) (n+ 2) x2 : (3.21)For suÆiently large n we an neglet the ontribution from the �xed given value of �, andso the terms proportional to n2 in the numerator and denominator dominate at large n.Thus we have R1 = x2 : (3.22)If jxj < 1, the ratio test tells us that the series onverges. However, we would also like toknow what happens at x = �1, sine these points orrespond to � = 0 and � = �, the northand south poles of the sphere (reall that we de�ned x = os �). Here, the ratio test failsto give us any information, although it does tell us that the series diverges for jxj > 1.A more sophistiated analysis shows that the series will in fat always diverge at x = �1,unless � takes a value suh that the series terminates. Obviously, if the series terminatesafter a �nite number of terms, then there an be no possibility of the sum diverging. Forthe termination to our, the numerator in (3.8) must vanish for some value of n. Clearly, aneessary ondition for this to our is that ` must be a positive integer of the form n (n+1).16



In fat the even series for y(1) terminates if � = `(` + 1), where ` is an even non-negativeinteger, whilst the odd series for y(2) terminates if ` is an odd positive integer. One anbeomes zero for some value of n, it is obvious from the reursion relation (3.8) that all thehigher oeÆients an+2; an+4; : : : will vanish too.As an example to illustrate the divergent behaviour if the series does not terminate,onsider the odd series y2(x), with � = 0. From (3.8) we then have an+2 = nan=(n + 2)(with n odd), whih has the solution an = a1=n. Thus the series (3.2) beomesy = a0 (x+ 13x3 + 15x5 + 17x7 + � � �) ; (3.23)whih an be reognised as the power-series expansion ofy = 12a1 log �1 + x1� x� ; (3.24)whih learly diverges at x = �1. For all other values of � that lead to non-terminatingseries, one similarly �nds a logarithmi divergene at x = �1.To reapitulate, we have seen that if we want the solutions of the Legendre equationto be well-behaved at x = �1, whih we usually do sine we wish to obtain solutions ofthe original Laplae or Helmholtz equation that are well-behaved on the sphere, then onlythose solutions for whih the series (3.2) terminates are aeptable. This ours when theeigenvalue � in (3.1) takes the form � = `(`+ 1) ; (3.25)where ` is a non-negative integer, with the orresponding eigenfuntions y being polynomialsin x of degree `. Note that if ` is even, the polynomial will involve only even powers of x,while if ` is odd, the polynomial will involve only odd powers of x. It is easy to work outthe �rst few examples, by using (3.8) to solve reursively for the expansion oeÆients in(3.2). By onvention the `'th Legendre polynomial is denoted by P`(x), and is normalisedso that P`(1) = 1. The �rst few are therefore given byP0(x) = 1 ; P1(x) = x ; P2(x) = 12(3x2 � 1) ;P3(x) = 12(5x3 � 3x) ; P4(x) = 18(35x4 � 30x2 + 3) : (3.26)A similar analysis for the ase where m is non-zero shows that the assoiated Legendreequation (2.28) has solutions regular at x = �1 only if ` is a non-negative integer, andm is an integer taking any of the values in the range �` � m � `. The orresponding17



eigenfuntions are the assoiated Legendre funtions P m̀(x). It an be shown that theseare related to the Legendre polynomials P`(x) by the formulaP m̀(x) = (�1)m (1� x2)m=2 dmP`(x)dxm : (3.27)3.2 Properties of the Legendre polynomialsThe Legendre polynomials P`(x) are the basi set of regular solutions of the Legendreequation, ddx�(1� x2) dP`(x)dx �+ ` (`+ 1)P`(x) = 0 ; (3.28)and this is the equation that arose (in the azimuthally-symmetri ase) when separatingvariables in spherial polar oordinates. It follows that in order to onstrut solutions ofthe Laplae equation by the method of separating the variables, we shall therefore need tohave a thorough understanding of the properties of the Legendre polynomials.The basi tehnique that one uses for solving an equation suh as the Laplae equationin spherial polar oordinates is parallel to that whih we used in setion (2.1) when wedisussed the analogous problem in Cartesian oordinates. Namely, we write down themost general possible solution (obtained by separation of variables), and then determinethe onstant oeÆients in the expansion by mathing to given boundary data, et.. As weshall see below, this means in partiular that we need to be able to determine the oeÆientsa` in the expansion of an arbitrary funtion f(x) in terms of Legendre polynomials;f(x) = X̀�0 a` P`(x) : (3.29)For now we shall just assume that suh an expansion is possible; the proof is a little involved,and we shall postpone this until a bit later in the ourse, where we shall prove it in a muhmore general ontext.3The essential requirement in order to be able to determine the onstants a` is to knowsome appropriate orthogonality relation among the Legendre polynomials. Spei�ally, wean show that Z 1�1 dxP`(x)Pn(x) = 0 ; ` 6= n ; (3.30)and Z 1�1 dxP`(x)Pn(x) = Cn ; ` = n : (3.31)3The series (3.29) is a generalisation of the familiar Fourier series.18



The onstants Cn are alulable (one one has de�ned a normalisation for the Legendrepolynomials), and we shall alulate them, and prove the orthogonality ondition (3.30)below. It is lear that with these results we an then alulate the oeÆients a` in theseries expansion (3.29). We just multiply (3.29) by (1 � x2)Pn(x) and integrate over x, toget Z 1�1 dxPn(x) f(x) = X̀�0 a` Z 1�1 dxP`(x)Pn(x) ;= anCn : (3.32)Hene we solve for the oeÆients an, givingan = 1Cn Z 1�1 dxPn(x) f(x) : (3.33)The proof of orthogonality of the Legendre polynomials, as in (3.30), is very simple. Wetake the Legendre equation (3.28) and multiply it by Pn(x), and then subtrat from thisthe same thing with the roles of ` and n exhanged:[(1 � x2)P 0̀℄0 Pn � [(1� x2)P 0n℄0 P` + [` (`+ 1)� n (n+ 1)℄P` Pn = 0 : (3.34)(It is understood that P` and Pn here are funtions of x, and that a prime means d=dx.)We now integrate over x, from x = �1 to x = +1, and note that using an integration byparts we shall haveZ 1�1 dx [(1 � x2)P 0̀℄0 Pn = � Z 1�1 dx [(1 � x2)P 0̀ P 0n + h(1� x2)P 0̀(x)Pn(x)i1�1 : (3.35)The boundary terms here at x = �1 vanish, beause of the (1 � x2) fator. Thus afterintegrating (3.34) and integrating by parts on the �rst two terms, we get simply[` (`+ 1)� n (n+ 1)℄ Z 1�1 dxP`(x)Pn(x) = 0 : (3.36)This means that either ` (`+ 1) equals n (n+ 1), or elseZ 1�1 dxP`(x)Pn(x) = 0 : (3.37)Sine it is always understood that ` and n are non-negative integers, we see that ` (` + 1)is equal to n (n+ 1) only if ` = n. Thus if have proved the orthogonality of the Legendrepolynomials; if ` and n are not equal, then (3.37) is satis�ed.The next step takes a little more work. We need to alulate the onstants Cn our-ring in the integral (3.31). Of ourse we an only do that one we have deided upon a19



normalisation for the Legendre polynomials P`(x). By onvention, they are de�ned to besuh that P`(1) = 1 : (3.38)In order to evaluate the integral in (3.31), we now need to have an expliit way of expressingthe Legendre polynomials. It turns out that a onvenient way to do this is in terms ofa representation alled Rodrigues' Formula. This formula asserts that P`(x), with thenormalisation (3.38), an be written asP`(x) = 12` `! d`dx` (x2 � 1)` : (3.39)We an prove Rodrigues' formula in two stages. First, we shall prove that it gives someonstant multiple of P`(x). Then, we shall prove that in fat from the de�nition (3.39), weshall have P`(1) = 1. To prove the �rst stage, let's get rid of the superuous baggage ofmessay onstant fators, and onsiderf`(x) � d`dx` (1� x2)` : (3.40)The tehnique now will be to show that f`(x) satis�es the Legendre equation (3.28), andhene, sine f`(x) is manifestly just a polynomial funtion of x, it must therefore be someonstant multiple of the Legendre polynomial P`(x).Using the binomial theorem,(1 + z)` = X̀k=0 k̀! zk ; where  k̀! � `!k! (`� k)! ; (3.41)where we shall take z = �x2, and using the fat thatd`dx` x2k = 2k (2k � 1) � � � (2k � `+ 1)x2k�` = (2k)!(2k � `)! x2k�` ; (3.42)we get that f`(x) = X̀k=0(�1)k  k̀! (2k)!(2k � `)! x2k�` : (3.43)What we have obtained here is a polynomial series in x. Now we have already studied theseries expansion for solutions of the Legendre equation; we wrote them as (3.2), and weshowed that the expansion oeÆients an must satisfy (3.8). All we have to do in order toprove that our funtion f`(x) satis�es the Legendre equation is to show that the oeÆientsof the powers of x in (3.43) satisfy the same reursion relation (3.8).20



We an express (3.43) as a series f` =Pǹ=0 an xn. Comparing oeÆients, we see thatk = (n+ `)=2, and hene an = (�1) 12 (n+`) `! (n+ `)!n!�12(`+ n)�!�12(`� n)�! : (3.44)Using (p + 1)! = (p + 1) p! in the various terms, it is now easy to see that if we use (3.44)to alulate an+2, we an write it asan+2 = (n� `)(n+ `+ 1)(n+ 1)(n+ 2) an : (3.45)This is exatly the same as the reursion relation (3.8), and so this proves that the funtionsf`(x) de�ned in (3.40) satisfy the Legendre equation with � = ` (`+1). (Chek for yourselfthat this is a orret statement both for ` even and ` odd.) Sine P`(x) given in Rodrigues'formula (3.39) is just a onstant multiple of f`(x), i.e.P`(x) = (�1)`2` `! f`(x) ; (3.46)it follows that we have established the �rst part of our proof; up to onstant normalisation,we have veri�ed that the Rodrigues' formula (3.39) does indeed give polynomial solutionsof the Legendre equation (3.28).To determine the normalisation, it is useful to begin with a digression, whih will never-theless be worthwhile in the end. There is yet another way to de�ne the Legendre polyno-mials, whih is very useful in its own right. This is via what is alled a Generating Funtion.The laim is that (1� 2x t+ t2)�1=2 = X̀�0 t` P`(x) ; (3.47)where, for onvergene of the series, we must have jtj < 1. How do we use this to read o�the Legendre polynomials? We perform a power series expansion of the left-hand side, ininreasing powers of t. Doing this, we �nd that the left-hand side gives1 + x t+ 12(3x2 � 1) t2 + 12(5x3 � 3x) t3 + 18(35x4 � 30x2 + 3) t4 + � � � : (3.48)Equating this with the right-hand side of (3.47), and omparing the oeÆients of eahpower of t, we read o�P0(x) = 1 ; P1(x) = x ; P2(x) = 12 (3x2 � 1) ; P3(x) = 12(5x3 � 3x) (3.49)and so on, whih is preisely what we were �nding in (3.26).21



This doesn't onstitute a proof yet, that all the oeÆient funtions P`(x) in (3.47)are the Legendre polynomials. To omplete the job, we an show that P`(x) de�ned bythe generating funtion (3.47) is exatly the same as P`(x) de�ned by Rodrigues' formula(3.39), for all `. To do this, �rst take the generating funtion in (3.47) and use the binomialtheorem (1 + z)� = 1 + �z + � (�� 1)2! z2 + � � � (3.50)to expand the left-hand side in powers of (�2x t+ t2). For � = �12 (3.50) an easily be seento be expressible as (1 + z)�1=2 = Xn�0 (�1)n (2n)!22n (n!)2 zn ; (3.51)and so we get (1� 2x t+ t2)�1=2 = Xn�0 (2n)!22n (n!)2 (2x t� t2)n : (3.52)Next we expand the fator (2x t� t2)n using the binomial theorem, for whih a onvenientformulation is (a+ b)n = nXk=0 nk ! an�k bk : (3.53)This now gives us a double series,(1� 2x t+ t2)�1=2 = Xn�0 (2n)!22n (n!)2 tn nXk=0(�1)k  nk ! (2x)n�k tk ;= Xn�0 nXk=0(�1)k (2n)!22n n! k! (n� k)! (2x)n�k tn+k : (3.54)We are almost there, but one further manipulation on the expression (3.54) is needed.There are many ways of reorganising the summation of terms in a double series, and forour present purposes the one we need is the following:Xn�0 nXk=0 a(k; n� k) =Xr�0 [r=2℄Xs=0 a(s; r � 2s) ; (3.55)where [r=2℄ means the integer part of r=2. (Exerise: Chek this!). The bottom line is that,after �nally relabelling the summation variables, the expression (3.54) an be turned intoanother expression, namely(1 � 2x t+ t2)�1=2 = Xn�0 [n=2℄Xk=0 (�1)k (2n� 2k)!22n�2k k! (n� k)! (n� 2k)! (2x)n�2k tn : (3.56)We appeared just to have exhanged one expression that resembles a dog's breakfast foranother, but the point now is that (3.56) brings us bak (�nally!) to our expression from22



Rodrigues' formula (3.39). From (3.43) and (3.46), we an see, after a simple rede�nitionof the k summation variable, that the thing that multiplies the oeÆient of tn in (3.56) isnothing but our old friend Pn(x), as de�ned by Rodrigues' formula (3.39). Thus the equiv-alene of the two de�nitions for P`(x), from Rodrigues' formula (3.39) and the generatingfuntion (3.47) is established.After all that, proving that the Legendre polynomials given by Rodrigues' formula satisfythe normalisation ondsition P`(1) = 1 is a piee of ake. We just use what we now knowto be the equivalent de�nition (3.47), and set x = 1, to get(1� 2t+ t2)�1=2 = X̀�0 t` P`(1) : (3.57)But the left-hand side is just (1� t)�1, whih has the binomial expansion11� t = 1 + t+ t2 + t3 + t4 + � � � = X̀�0 t` ; (3.58)and so by omparing with the right-hand side in (3.57) we immediately get P`(1) = 1.Lest our original task has been forgotten during the ourse of this disussion, let usremind ourselves that we wanted to determine the onstants Cn in (3.31). That is, we wantto alulate Cn = Z 1�1 dx [Pn(x)℄2 : (3.59)From Rodrigues' formula (3.39), we an write this asCn = 122n (n!)2 Z 1�1 dx �n(x2 � 1)n �n(x2 � 1)n ; (3.60)where we write �n instead of dn=dxn for brevity. Integrating by parts n times, and notingthat the powers of (x2 � 1) will kill o� the resulting boundary terms, we therefore haveCn = (�1)n22n (n!)2 Z 1�1 dx (x2 � 1)n �2n(x2 � 1)n : (3.61)Now (x2 � 1)(n) is a polynomial in x, whih looks like x2n + � � �, where the ellipses denoteterms of lower order in x. When we di�erentiate 2n times, only the �rst term gives aontribution, and so from �2n x2n = (2n)! we �nd thatCn = (2n)!22n (n!)2 Z 1�1 dx (1 � x2)n : (3.62)Unfortunately our troubles are not yet quite over, beause the integral is not going togive up without a bit of a �ght. The best way to evaluate it is by indution. We note thatwe an write the following:(1� x2)n = (1� x2)(1� x2)n�1 = (1� x2)n�1 + x2n ddx (1� x2)n : (3.63)23



Plugging this into (3.62), we see that it gives usCn = 2n� 12n Cn�1 + (2n� 1)!22n (n!)2 Z 1�1 x d[(1 � x2)n℄ : (3.64)Integrating the last term by parts gives usCn = 2n� 12n Cn�1 � 12n Cn ; (3.65)whih implies that (2n+ 1)Cn = (2n� 1)Cn�1 : (3.66)This means that (2n+ 1)Cn is independent of n, and so it must be that (2n+ 1)Cn = C0.At last we have something easy to evaluate, sine (3.62) implies thatC0 = Z 1�1 dx = 2 : (3.67)Thus, �nally, we arrive at Cn = 2=(2n + 1), and so the normalisation of the integral of[Pn(x)℄2 is established: Z 1�1 dx[Pn(x)℄2 = 22n+ 1 : (3.68)Let us review what we have ahieved. Starting from a proposed expansion of an arbitraryfuntion f(x) as a sum of Legendre polynomials as in (3.29);f(x) = X̀�0 a` P`(x) ; (3.69)we have now found that the expansion oeÆients a` are give bya` = 12(2`+ 1) Z 1�1 dx f(x)P`(x) : (3.70)It is time to look at a few examples. First, we may note that it is often very helpfulto use Rodrigues' formula in order to evaluate the integral (3.70). Substituting (3.39) into(3.70), and integrating by parts, we obtaina` = (2`+ 1)2`+1 `! h d`�1dx`�1 (x2 � 1)`i1�1 � (2`+ 1)2`+1 `! Z 1�1 dx f 0(x) d`�1dx`�1 (x2 � 1)` : (3.71)The boundary term gives zero, sine the (`� 1)'th derivative of (x2 � 1)` leaves one overallfator of (x2 � 1), and this vanishes at x = �1. Continuing this proedure, we an perform(`� 1) further integrations by parts, ending up witha` = (2`+ 1)2`+1 `! Z 1�1 dx d`f(x)dx` (1� x2)` : (3.72)24



Notie in partiular that if the given funtion f(x) is itself a polynomial of degree n,then all its derivatives d`f(x)=dx` for ` > n vanish. This means that the all the expansionoeÆients a` will vanish for ` > n. This should not be a surprise, sine we know that P`(x)is itself a polynomial of degree `. In fat the set of Legendre polynomials with 0 � ` � nreally form a basis for the set of all possible polynomials of degree � n. For example, wehave P0(x) = 1 ; P1(x) = x ; P2(x) = 12(3x2 � 1) ; (3.73)and we an see just by doing elementary algebra that we an re-express the general quadratipolynomial ax2 + b x+  asax2 + b x+  = (+ 13a)P0(x) + b P1(x) + 23aP2(x) : (3.74)It is lear that we an do a similar expansion for any polynomial of �nite degree n, and(3.72) gives us the expressions for the oeÆients a`, whih will be non-zero only for ` � n.3.3 Azimuthally-symmetri solutions of Laplae's equationHaving onstruted the Legendre polynomials, and determined their orthogonality and nor-malisation properties, we an now use them in order to onstrut azimuthally-symmetrisolutions of the Laplae or Helmholtz equations. (We shall move on to ase without az-imuthal symmetry later.)Reall, from setion 2.2, that if we onsider funtions that are independent of the az-imuthal angle �, then the solution  (r; �;  ) of the Laplae or Helmholtz equation waswritten as  (r; �) = 1r R(r)�(�) ; (3.75)with � and R satisfying 1sin � dd�� sin � d�d� �+ �� = 0 (3.76)and d2Rdr2 = � �r2 � k2�R : (3.77)We determined that the funtions �(�) will only be regular at the north and south polesof the sphere if � = ` (` + 1) where ` is an integer (whih an be assumed non-negative,without loss of generality). The funtions �(�) are then the Legendre polynomials, with�(�) � P`(os �).Let us speialise to the ase of the Laplae equation, whih means that k = 0 in theequation (3.77) for the radial funtion R(r). It is easy to see that with � = ` (` + 1), the25



two independent solutions of (3.77) areR � r`+1 ; and R � r�` : (3.78)It follows, therefore, that the most general azimuthal solution of the Laplae equationr2  = 0 in spherial polar oordinates an be written as (r; �) = X̀�0(A` r` +B` r�`�1)P`(os �) : (3.79)We established the orthogonality relations for the Legendre polynomials, given in (3.30)and (3.31) with C` eventually determined to be C` = 2=(2` + 1). In terms of �, related tox by x = os �, we therefore haveZ �0 sin � d� P`(os �)Pn(os �) = 22`+ 1 Æ`n ; (3.80)The Æ symbol on the right-hand side here is the Kroneker delta funtion. By de�nition,Æmn is zero if m 6= n, while it equals 1 if m = n. Thus (3.80) says that the integral on theleft-hand side vanishes unless ` = n, in whih ase it gives 2=(2` + 1).We an use these results in order to solve problems in potential theory. Suppose, forexample, the eletrostati potential is spei�ed everywhere on the surfae of a sphere ofradius a, as  (a; �) = V (�) for some given funtion V (�), and that we wish to alulatethe potential  (r; �) everywhere outside the sphere. Sine the potential must die o�, ratherthan diverge, as r tends to in�nity, it follows that the oeÆients A` in (3.79) must be zero,and so our solution is of the form (r; �) = X̀�0B` r�`�1 P`(os �) : (3.81)To determine the remaining oeÆients B`, we set r = a and use the given boundary data (a; �) = V (�):  (a; �) = V (�) = X̀�0B` a�`�1 P`(os �) : (3.82)Multiplying by Pn(os �) and integrating over R sin � d�, we getZ �0 sin � d� V (�)Pn(os �) = 22n+ 1 a�n�1Bn ; (3.83)whene Bn = 12(2n+ 1) an+1 Z �0 sin � d� V (�)Pn(os �) : (3.84)Given V (�), we an alulate the oeÆients Bn.26



Suppose, for example, we are given that V (�) is +V for 0 � 12�, and V (�) is �Vfor 12� < � � �, where V is a onstant. The integral in (3.84) an be evaluated fairlystrainghtforwardly using Rodrigues' formula (3.39), leading to the onlusion that B` iszero if ` is even, while B` = (�2)�(`�1)=2 (2`+ 1) (`� 2)!! a`+12�12(`+ 1)�! (3.85)when ` is odd. (Note that (2p + 1)!! means (2p + 1)(2p � 1)(2p � 3) � � � � 5 � 3 � 1.) The�rst few terms in the solution give (r; �) = V h3a22r2 P1(os �)� 7a48r4 P3(os �) + 11a616r6 P5(os �) + � � � i : (3.86)3.4 The assoiated Legendre funtionsIn our analysis in setion 3, we made the speialisation from the Assoiated LegendreEquation (2.28) to the ase of the Legendre Equation, where m = 0. Let us now return tothe full Assoiated Legendre Equation, whih we shall need for �nding general solutions ofLaplae's equation, in whih the potential funtion is allowed to depend on the azimuthalangle �. For onveniene, we present again the Assoiated Legendre Equation:ddx�(1� x2) dydx�+ ��� m21� x2� y = 0 : (3.87)As mentioned previously, it turns out that we an onstrut the relevant solutions of thisequation rather simply, in terms of the Legendre polynomials that we have already studied.To begin, we write y = (1 � x2)m=2 w, and substitute this into (3.87). After simplealgebra we �nd, after extrating an overall fator of (1� x2)m=2, that w must satisfy(1� x2)w00 � 2(m+ 1)xw0 + [��m (m+ 1)℄w = 0 : (3.88)(We are using a prime to denote di�erentiation d=dx here.) Now suppose that we have asolution u of the ordinary Legendre equation:(1� x)2 u00 � 2xu0 + �u = 0 : (3.89)Next, we di�erentiate this m times. Let us use the notation �m as a shorthand for dm=dxm.It is useful to note that we have the following lemma, whih is just a onsequee of Leibnitz'rule for the di�erentiation of a produt, iterated m times:�m(f g) = f (�mg) +m (�f) (�m�1g) + m(m� 1)2! (�2f) (�m�2g)+m(m� 1)(m� 2)3! (�3f) (�m�3g) + � � � : (3.90)27



We only need the �rst two or three terms in this expression if we apply it to the produtsin (3.89), and so we easily �nd that(1� x2) �m+2u� 2(m+ 1)x�m+1u+ [��m(m+ 1℄ �m u = 0 : (3.91)Thus we see that setting w = �mu, we have onstruted a solution of (3.88) in terms of asolution u of the Legendre equation (3.89). The upshot, therefore, is that if we de�neP m̀(x) � (�1)m (1� x2)m=2 dmdxm P`(x) ; (3.92)where P`(x) is a Legendre polynomial, then P m̀(x) will be a solution of the AssoiatedLegendre Equation with � = ` (`+ 1):ddx�(1� x2) dP m̀dx �+ �` (`+ 1)� m21� x2�P m̀ = 0 : (3.93)Sine P`(x) is regular everywhere inluding x = �1, it is lear that P m̀(x) will be too. Itis understood here that we are taking the integer m to be non-negative. It is lear that wemust have m � ` too, sine if m exeeds ` then the m-fold derivative of the `'th Legendrepolynomial (whih itself is of degree `) will give zero.Reall next that we have Rodrigues' formula (3.39), whih gives us an expression forP`(x). Substituting this into (3.92), we getP m̀(x) = (�1)m2` `! (1� x2)m=2 d`+mdx`+m (x2 � 1)` : (3.94)A nie little mirale now ours: this formula makes sense for negative values of m too,provided that m � �`. Thus we have a onstrution of Assoiated Legendre Funtions forall integers m in the interval �` � m � `.Looking at the Assoiated Legendre Equation (3.93), we note that the equation itself isinvariant under sending m �! �m; (3.95)sine m appears only as m2 in the equation. This means that if we take a solution with agiven m, then sending m to �m gives us another solution. What is more, only one solutionat �xed ` and m2 an be regular at x = �1, sine the seond solution will have logarithmisingularities there (just like we saw for the Legendre funtions). Sine P m̀(x) and P�m` (x)given by 3.94 are both regular at x = �1, it follows therefore that they must be linearlydependent; i.e. P�m` (x) must be some onstant multiple of P m̀(x):P�m` (x) = k P m̀(x) : (3.96)28



It is easy to determine what the onstant k is, by using (3.94). From (3.96) we get�`�m(x2 � 1)` = k (1� x2)m �`+m(x2 � 1)` : (3.97)It is good enough just to look at the highest power of x, sine all we need to do is toalulate what k is.4 Thus we get(2`)!(`+m)! x`+m = k (�1)m x2m (2`)!(`�m)! x`�m (3.98)at the leading order in x, whih �xes k and hene establishes thatP�m` (x) = (�1)m (`�m)!(`+m)! P m̀(x) : (3.99)Using this result we an now very easily work out the normalisation integral for theassoiated Legendre funtions P m̀(x). The relevant integral we shall need to evaluate isZ 1�1 dxP m̀(x)Pmn (x) : (3.100)(It will beome lear in setion 3.5 why we have set the upper indies m equal here.) Usingthe same method as we used for the Legendre polynomials, it is easy to show that (3.100)vanishes unless ` = n. For ` = m, we an make use of (3.99) to write the required integralas C`m � Z 1�1 dx [P m̀(x)℄2 = (�1)m (`+m)!(`�m)! Z 1�1 dxP m̀(x)P�m` (x) : (3.101)Our task is to alulate the onstants C`m. We an use the generalised Rodrigues formula(3.94), thus givingC`m = (�1)m (`+m)!22` (`!)2 (`�m)! Z 1�1 dx �`+m(x2 � 1)` �`�m(x2 � 1)` : (3.102)(Note that by making use of (3.99) we have managed to get the two powers of (1� x2)m=2that would otherwise have arisen from (P m̀)2 to anel instead of adding, whih simpli�eslife onsiderably.) Integrating by parts `+m times in (3.102), and noting that the boundaryterms all give zero, we therefore haveC`m = (`+m)!22` (`!)2 (`�m)! Z 1�1 dx (1� x2)` �2`(x2 � 1)` ;= (2`)! (` +m)!22` (`!)2 (`�m)! Z 1�1 dx (1� x2)` : (3.103)4One ould, more adventurously, give another proof that P�m` (x) and P m̀(x) are linearly dependent byheking all powers of x. We leave this as an exerise for the reader.29



The integral here is the same one we had to evaluate in the ase of the Legendre polynomialsin (3.62); the only di�erene now is the extra fatorial prefators. Thus from the previousresults in setion 3.2, we see thatC`m = 22`+ 1 (`+m)!(`�m)! : (3.104)In other words, we have shown thatZ 1�1 dxP m̀(x)P m̀0 (x) = 22`+ 1 (`+m)!(`�m)! Æ``0 : (3.105)3.5 The spherial harmonis and Laplae's equationIt may be realled that a while bak, we were solving equations suh as the Laplae equationor the Helmholtz equation in spherial polar oordinates, in setion 2.2. We had redued theproblem, by means of separating variables, to solving for the radial funtions R(r) and thefuntions Y (�; �) on the spherial onstant-radius surfaes. Thus the Helmholtz equationr2  + k2  = 0 implied that if we write (r; �; �) = 1r R(r)Y (�; �) ; (3.106)the R(r) and Y �; �) should satisfyr2(�;�) Y = ��Y ; d2Rdr2 = � �r2 � k2�R ; (3.107)where r2(�;�) � 1sin � ���� sin � ����+ 1sin2 � �2��2 (3.108)is the Laplae operator on the unit sphere. We then performed the further separation ofangular variables on the sphere, with Y (�; �) = �(�)�(�), showing that for regularity wemust have � = ` (`+ 1), and m is an integer with �` � m � `.Putting together what we found for the angular funtions, we see that the Y (�; �) areharaterised by the two integers ` and m, and we may de�neY`m(�; �) � s(2`+ 1)4� s(`�m)!(`+m)! P m̀(os �) eim� ; ` � 0 ; �` � m � ` : (3.109)The Spherial Harmonis Y`m(�; �) satisfy�r2(�;�) Y`m(�; �) = ` (`+ 1)Y`m(�; �) : (3.110)These spherial harmonis form the omplete set of regular solutions of r2(�;�) Y = ��Yon the unit sphere. Note from (3.99) that we haveY`;�m(�; �) = (�1)m �Y`m(�; �) ; (3.111)30



where the bar denotes omplex onjugation.From our results in the previous setions, we an easily see that the spherial harmonissatsify the orthogonality propertiesZ d
 �Y`0m0(� �)Y`m(�; �) = Æ``0 Æmm0 ; (3.112)where d
 � sin � d� d� (3.113)is the area element on the unit sphere, and R d
X meansZ 2�0 d� Z �0 sin � d� X : (3.114)Thus (3.112) just says that the integral on the left-hand side is zero unless `0 = ` andm0 = m.Note that it is the integration over � that is responsible for produing the Kroneker deltaÆmm0 , sine the � dependent fators in (3.112) areZ 2�0 d� ei (m�m0)� : (3.115)This integrates to zero if the integers m and m0 are unequal, whilst giving 2� if m = m0.The remaining integration over � in (3.112) then redues, with m and m0 equal, to theintegral in (3.105), whih then gives rise to the Kroneker delta funtion Æ``0 in (3.112).It is instrutive to look at the �rst few spherial harmonis expliitly. From (3.109), andusing (3.94) to give the expressions for the P m̀, we �ndY0;0(�; �) = 1p4� ;Y1;1(�; �) = �r 38� sin � ei� ;Y1;0(�; �) = r 34� os � ;Y1;�1(�; �) = r 38� sin � e�i� ;Y2;2(�; �) = r 1532� sin2 � e2i� ;Y2;1(�; �) = �r 158� sin � os � ei� ;Y2;0(�; �) = r 516� (3 os2 � � 1) ;Y2;�1(�; �) = r 158� sin � os � e�i� ;Y2;�2(�; �) = r 1532� sin2 � e�2i� : (3.116)31



Going bak to our general form of the separated solution (3.106), and noting that if weare solving Laplae's equation then the radial funtions still satisfy (2.24) with k = 0, justas they did in the azimuthally-symmetri ase m = 0, we now have that the most generalsolution of Laplae's equation in spherial polar oordinates5 is written as (r; �; �) = X̀�0 X̀m=�`(A`m r` +B`m r�`�1)Y`m(�; �) : (3.117)The onstants A`m and B`m, whih depend on both ` and m, are as yet arbitrary. Theirvalues are determined by boundary onditions, as in the previous potential-theory examplesthat we have looked at. Beause we are now allowing the azimuthal separation onstant mto be non-zero, the lass of solutions desribed by (3.117) inludes those that are dependenton the azimuthal angle �.Let us onlude this part of the disussion with a simple example. Suppose the eletro-stati potential is given on the the spherial surfae r = a, and that one is told that (a; �; �) = V (�; �) (3.118)on this surfae, for some given funtion V (�; �). Calulate the potential everywhere insidethe surfae.First, we note that sine the potential must remain �nite as r approahes zero, it must bethat all the oeÆients B`m in (3.117) vanish in this problem. The A`m an be alulated bysetting r = a in what remains in (3.117), and then multiplying by �Y`0;m0(�; �) and integratingover the sphere; Z d
 (a; �; �) �Y m0`0 (�; �) = a`0 A`0m0 : (3.119)Here, we have made use of the orthogonality relations (3.112). Thus we haveA`m = a�` Z d
V (�; �) �Y`m(�; �) (3.120)Suppose now that we are given thatV (�; �) = V0 sin � sin� ; (3.121)where V0 is a onstant. Beaiuse this potential has a partiularly simply form, we an spotthat it an be written in terms of the spherial harmonis asV0 sin � sin� = 12i V0 sin � (ei� � e�i�) = ir2�3 V0 (Y1;1(�; �) + Y1;�1(�; �)) ; (3.122)5That is, the most general solution that is regular on the spherial surfaes at onstant r.32



where we have used the ` = 0 expressions in (3.116). This, of ourse, is all one is reallydoing in any ase, when one uses the orthogonality relations to determine the expansionoeÆients; we just need to �gure out what linear ombination of the basis funtions on-struts for us the desired funtion. It just happens in this example that the answer is sosimple that we an spot it without doing all the work of evaluating the integrals in (3.122).Thus, we see by omparing with the general solution (3.117) that we must have (r; �; �) = ir2�3 V0 ra (Y1;1(�; �) + Y1;�1(�; �)) : (3.123)This is atually real (as it must be) despite the presene of the i, sine the Y`m funtionsthemselves are omplex. In fat in this example it is obviously muh simpler to write theanswer expliitly, using the expressions in (3.116); we just get (r; �; �) = ra V0 sin � sin� : (3.124)The example hosen here was so simple that it perhaps makes the use of the wholeedi�e of spherial harmoni expansions look a trie superuous. The priniples involvedin this example, though, are no di�erent from the ones that would be involved in a moreompliated example.4 General Properties of Seond-order ODE'sConsider the linear seond-order ODEy00 + p(x) y0 + q(x) y = 0 ; (4.1)where the prime denotes a derivative with respet to x:y0 � dydx ; y00 � d2ydx2 : (4.2)4.1 Singular points of the equationFirst, we introdue the notion of singular points of the equation. A point x = x0 is alledan ordinary point if p(x) and q(x) are �nite there.6 The point x = x0 is de�ned to be a6In this ourse we shall always use the word \�nite" in its proper sense, of meaning \not in�nite." Somephysiists have the tiresome habit of misusing the term to mean (sometimes, but not always!) \non-zero,"whih an ause unneessary onfusion. (As in, for example, The heat bath had a �nite temperature, orThere is a �nite probability of winning the lottery.) Presumably, however, these same people would notdisagree with the mathematial fat that if x and y are �nite numbers, then x+ y is a �nite number too.Their inonsisteny is then apparent if one onsiders the speial ase x = 1; y = �1. We shall have furtheromments on linguistis later... 33



singular point if either p(x) or q(x) diverges at x = x0. For reasons that will beome learlater, it is useful to re�ne this de�nition, and subdivide singular points into regular singularpoints, and irregular singular points. They are de�ned as follows:� If either p(x) or q(x) diverges at x = x0, but (x� x0) p(x) and (x� x0)2 q(x) remain�nite, then x = x0 is alled a regular singular point.� If (x� x0) p(x) or (x� x0)2 q(x) diverges at x = x0, then x = x0 is alled an irregularsingular point.In other words, if the singularities are not too severe, meaning that a simple pole in p(x)is allowed, and a double pole in q(x) is allowed, then the singularity is a \regular" one. Aswe shall see, equations whose only singular points are regular ones admit better-behavedseries solutions than those with irregular singular points.As stated above, these de�nitions apply only for �nite values of x0. To analyse the pointx = 1, we an �rst perform the hange of independent variable from x to z = 1=x, andstudy the behaviour of the transformed equation at z = 0. Using the hain rule to writeddx = z0 ddz = �z2 ddz ; d2dx2 = z02 d2dz2 + z00 ddz = z4 d2dz2 + 2z3 ddz ; (4.3)where z0 � dz=dx, we see that the equation (4.1) beomes, with y, p and q now viewed asy(1=z), p(1=z) and q(1=z), d2ydz2 + (2z � p)z2 dydz + qz4 y = 0 : (4.4)The point x =1 is therefore an ordinary point if ~p � (2z�p)z2 and ~q � qz4 are �nite at z = 0;it is a regular singular point if ~p or ~q diverges while z ~p and z2 ~q remain �nite at z = 0; andit is an irregular singular point if z ~p or z2 ~q diverges at z = 0.It is worthwhile pausing here to hek the singularity struture in a ouple of examples.Consider �rst the assoiated Legendre equation (2.28). Rewriting the equation in the form(4.1), we have y00 � 2x1� x2 y0 + � �1� x2 � m2(1� x2)2� y = 0 : (4.5)Thus we see that all �nite values of x exept x = �1 are ordinary points. There are regularsingular points at x = �1. De�ning x = 1=z, one �nds that (4.5) beomesd2ydz2 � 2z1� z2 dydz � � �z2(1� z2) + m2(1� z2)2� y = 0 : (4.6)This shows that z = 0 is a regular singular point too. Therefore the singularities of theassoiated Legendre equation omprise three regular singular points, at x = (�1; 1;1).34



These are also the singularities in the speial ase of the Legendre equation, where m =0. It is, by the way, no oinidene that the \trouble spots" that we enountered whenonstruting the series expansion of the Legendre equation were at x = �1, preisely at theloations of singular points of the equation.We also enountered Bessel's equation, given by (2.33). Dividing by x2, this beomesy00 + 1x y0 + �1� �2x2� y = 0 ; (4.7)showing that the only singular point within the range of �nite x is a regular singular pointat x = 0. Replaing x by z = 1=x to analyse the point at in�nity, we �nd that Bessel'sequation beomes d2ydz2 + 1z dydz + � 1z4 � �2z2 � y = 0 : (4.8)The 1=z4 pole in ~q at z = 0 shows that the Bessel equation (4.7) has an irregular singularpoint at x =1, together with its regular singular point at x = 0.It is worth remarking, for future referene, that although Bessel's equation has an irreg-ular singular point, it is one of a rather spei� kind, with a 1=z4 pole in the oeÆient ofy. This an atually be viewed as the superposition or onuene of two regular singularpoints. Consider the situation of an ODE with two regular singular points, at x = a andx = b, for example with y00 + p(x) y0 + 1(x� a)2 (x� b)2 y = 0 : (4.9)Let us, for simpliity, suppose that here p(x) has no poles at x = a or x = b. Clearly,if we now hoose the parameters a and b to be equal then instead of having two regularsingular points at x = a and x = b, we will have one irregular singular point at x = a = b,with a fourth-order pole. Thus we may onsider Bessel's equation to be a onuent limit ofan equation with three regular singular points. In fat most of the ommon seond-orderODE's that one enounters in physis either diretly have three regular singular points, orelse they are onuent limits of equations with three regular singular points. So importantare suh equations that the entire lass of seond-order ODE's with three regular singularpoints has been lassi�ed, and its solutions studied in great detail. It turns out that bymaking appropriate transformations of the independent and dependent variables, one anput any suh equation into a standard anonial form, whih is known as the HypergeometriEquation. In this form, the three regular singular points are loated at x = 0, x = 1 andx =1. The hypergeometri equation is the followingx(x� 1) y00 + [(a+ b+ 1)x � ℄ y0 + a b y = 0 ; (4.10)35



where a, b and  are onstants. The regular singular points at x = 0 and x = 1 are evidentby inspetion, and the regular singular point at x =1 an be seen easily after making thestandard x = 1=z transformation.4.2 The Wronskian, and Series SolutionsHere, we shall undertake a somewhat more systemati study of some of the properties ofseond-order ODE's, and their solutions. We shall, as usual, take the equation to beL(y) � y00(x) + p(x) y0(x) + q(x) y(x) = 0 : (4.11)To begin, let us onsider the question of how many independent solutions to this equationthere will be.4.2.1 The Wronskian, and linear independene of solutionsThe Wronskian is a funtion de�ned as follows. Suppose that y1 and y2 are two solutionsof (4.11). Then we de�ne the Wronskian �(y1; y2) of the two solutions by�(y1; y2) � y1 y02 � y2 y01 : (4.12)It is evident that if the Wronskian vanishes, then we will havey01y1 = y02y2 ; (4.13)whih integrates to give log y1 = log y2+ onstant, hene implying that y1 =  y2, where  issome onstant. Thus the solutions y1 and y2 are linearly dependent. Reall that in generala set of funtions ui are said to be linearly dependent if and only if there exists a set ofonstants ai suh that Xi ai ui = 0 : (4.14)Conversely, if y1 and y2 are linearly dependent, say y1 =  y2, then it follows that theWronskian vanishes, �(y1; y2) = y1(x) ( y01(x))� ( y1(x)) y01(x) = 0 : (4.15)Thus ombing this with the previous observation, we have the result that that the Wronskian�(y1; y2) vanishes if and only if the two solutions y1 and y2 are linearly dependent.In fat, if one is given a partiular solution y1 to the seond-order linear ODE, theWronskian an be used in order to onstrut a seond, linearly-independent solution y2, asfollows. 36



Let us suppose we are given a solution y1(x). We then pik a spei� point x = x0,whih we will view as our starting point. The point x0 will be assumed to be generi, in thesense that y1(x0) and y01(x0) are non-vanishing. We may then onsider a seond solutiony2(x), suh that at x = x0, whih we shall haraterise by speifying the values of y2(x)and y02(x) at x = x0. These two onstants an onveniently be written asy2(x0) = �y1(x0) ; y02(x0) = � y01(x0) ; (4.16)where � and � are onstants. (This is nothing but a spei�ation of the \initial onditions"for y2(x0) and y02(x0). It happens to be onvenient to express them as onstant multiples �and � of the non-vanishing onstants y1(x0) and y01(x0).) Thus at x = x0, we will have�(y1; y2)(x0) = (� � �) y1(x0) y01(x0) 6= 0 : (4.17)It is lear therefore that at x = x0, y2 is linearly independent of y1 provided that � 6= �.We now look at what happens to �(y1; y2) as we move away from x = x0. To do this,di�erentiate the de�nition (4.12) of the Wronskian, and then use the original di�erentialequation (4.11) to simply the result:d�dx = y1 y002 � y2 y001 ;= �y1 (p y02 + q y2) + y2 (p y01 + q y1) ;= �p� = �� d log fdx ; (4.18)where we have de�ned f , for onveniene, byf(x) � exp �Z xx0 p(t) dt� : (4.19)Thus we an integrate (4.18), to give�(x) = �(x0) exp �� Z xx0 p(t) dt� = �(x0)f(x) : (4.20)Thus we see that �(x), whih was already determined to be non-vanishing at x = x0, willbe non-vanishing for all x, at least within some neighbourhood of the point x0, and henethe solution y2 is independent of y1 for all x.We have established that if we have two solutions y1 and y2 for whih y02(x0)=y2(x0) 6=y01(x0)=y1(x0), then these two solutions are linearly independent. In fat we an do better,and atually onstrut suh a seond independent solution y2(x), from a given solutiony1(x).. To do this, we observe that from the de�nition of the Wronskian we may dedue�(x) = y1 y02 � y2 y01 = y21 ddx�y2y1� ; (4.21)37



whene y2(x) = y1(x) Z xx1 �(t)y21(t) dt = �(x0) y1(x) Z xx1 dtf(t) y21(t) ; (4.22)where x1 is an arbitrary onstant, and for the seond equality we have made use of theexpression (4.20). Di�erent hoies for x1 shift the value of the integral by a onstant, andtherefore shift the expression for for y2(x) by a onstant multiple of y1(x). This arbitrarinessis not of interest to us right now, sine we an always take linear superpositions of solutionsof a linear equation, and thereby get another solution. Sine we already know that y1(x)solves the equation, it is not interesting, for now, to add a onstant multiple of y1(x) toour onstrution of a linearly-independent solution y2. (If y2(x) is linearly independent ofy1(x), then so is y2(x) + k y1(x), for any onstant k.)We are also not interested, for now, in the freedom to resale our onstrution of theseond solution y2(x) by a onstant fator; obviously, sine the di�erential equation is linear,then if y2(x) is a solution then so is  y2(x), for any onstant . We may therefore omit theonstant prefator in (4.22), and work with a resaled y2. In summary, we may onludethat if y1 is a solution of the di�erential equation (4.11), then a seond, linearly independent,solution y2(x) is given by y2(x) = Z x dty21(t) f(t) ; (4.23)where f(t) is given by (4.19) and the hoie of lower limit of integration is not partiularlyimportant. Although it is merely a onsisteny hek that we made no mistakes, it is infat easy to verify by diret substitution that (4.23) satis�es the original equation (4.11),given that y1 does.The question now arises as to whether there ould be a third solution y3 of (4.11),independent both of y1 and y2. Our results above would already suggest not, sine wefollowed a rather general route by means of whih we were led to onstrut y2 in (4.22);the only arbitrariness was in the hoie of two onstants of integration, and hanging thesemerely resales our y2 by a onstant fator, and adds a onstant multiple of y1 to it. It isinstrutive, however, to onsider the following diret demonstration that there an be nothird independent solution:Suppose we do postulate a third solution y3. Our aim will be to show that it an in fatbe written as a linear ombination of y1 and y2. Begin by piking a generi point x = x0,at whih we shall speify the values of y3(x0) and y03(x0). Rather than sayingy3(x0) = a ; y03(x0) = b ; (4.24)it is onvenient instead to parameterise y3(x0) and y03(x0) in terms of onstants A and B38



suh that y3(x0) = Ay1(x0) +B y2(x0) ; y03(x0) = Ay01(x0) +B y02(x0) : (4.25)It is easy to see that this is an equally good parameterisation. Simple algebra shows thatthe onstants A and B are related to a and b byA = a y02(x0)� b y2(x0)�(y1; y2)0 ; B = b y1(x0)� a y01(x0)�(y1; y2)0 ; (4.26)where �(y1; y2)0 means the Wronskian evaluated at x = x0, namely�(y1; y2)0 = y1(x0) y02(x0)� y2(x0) y01(x0) : (4.27)The ruial point is that by our intial assumption of the linear independene of y1 and y2,we must have �(y1; y2)0 6= 0, and thus nothing prevents us solving (4.26) for A and B; wehave two independent equations determining the two onstants A and B. Now, we an usethe original di�erential equation (4.11) to dedue thaty003(x0) = �p(x0) y03(x0)� q(x0) y3(x0) ; (4.28)= �p(x0) [Ay01(x0) +B y02(x0)℄� q(x0) [Ay1(x0) +B y2(x0)℄ ; (4.29)= Ay001 (x0) +B y002(x0) :We an then repeat these steps for all the higher derivatives of y3 at x = x0, deduing thaty(n)3 (x0) = Ay(n)1 (x0) +B y(n)2 (x0) ; (4.30)where y(n) denotes the n'th derivative. But we know from Taylor's theorem that withinits radius of onvergene, we an write any funtion h(x) in terms of all its derivatives atx = x0: h(x) = Xn�0 1n! (x� x0)n h(n)(x0) : (4.31)Therefore it follows from (4.30) thaty3(x) = Ay1(x) +B y2(x) ; (4.32)and hene the solution y3 is linearly dependent on y1 and y2, at least within the radius ofonvergene of the power series expansion around x0.To reapitulate, what we did was to onsider a ompletely arbitrary solution y3 of theseond-order ODE (4.11). We showed that it an always be written as a linear ombinationof the two independent solutions y1 and y2, at least within the range of x for whih they haveonvergent power-series expansions. Therefore there are exatly two linearly independentsolutions. It is lear that very similar arguments ould be used for an N 'th-order ODE, andwould show that it has N linearly-independent solutions.39



4.3 Solution of the inhomogeneous equationWe have so far onsidered the solutions of the homogeneous equation (4.11), or L(y) =0, for whih eah term is of degree 1 in y or its derivatives. We may also onsider theinhomogeneous equation L(y) = r(x), i.e.L(y) � y00(x) + p(x) y0(x) + q(x) y(x) = r(x) : (4.33)One an think of the funtion r(x) as being like a \soure term" for the �eld y. Here,we shall show that we an obtain a formal solution for this equation, in terms of the twolinearly-independent solutions y1 and y2 of the homogeneous equation, L(y1) = 0, L(y2) = 0that we disussed previously. In other words, we suppose that we know how to solve thehomogeneous equation, and now we wish to use these known solutions y1 and y2 in orderto obtain the solution of the inhomogeneous equation.To do this, �rst onsider what happens if we write y = u v in (4.33). It follows thatL(u v) = v L(u) + u v00 + (u p+ 2u0) v0 = r : (4.34)Now hoose u = y1, where y1 is one of the solutions of the homogeneous equation, L(y1) = 0.Thus we get v00 + �p+ 2(y01=y1)� v0 = r=y1 ; (4.35)after dividing out by y1. We saw previously from the de�nition (4.12) of the Wronskianthat (y2=y1)0 = �=y21, and also �0 = �p(x)�, and hene we will have�y2y1�00 = ��y21 �0 = �0y21 � 2 y01�y31 = �p �y21 � 2 y01y1 �y21 = �(p+ 2(y01=y1)) �y21 : (4.36)This an therefore be written as(y2=y1)00 + [p+ 2(y01=y1)℄ (y2=y1)0 = 0 : (4.37)Next, multiply this equation by v0, multiply (4.35) by (y2=y1)0, and subtrat the formerfrom the latter. This givesv00 (y2=y1)0 � v0 (y2=y1)00 = (r=y1) (y2=y1)0 ; (4.38)whih an be rewritten as[(y2=y1)0℄2 ddx� v0(y2=y1)0� = (r=y1) (y2=y1)0 ; (4.39)and hene ddx� v0(y2=y1)0� = r y1� : (4.40)40



This equation an be integrated one to givev0 = (y2=y1)0 Z r y1� ; (4.41)or, in other words, v0 = �r y2� + ddxh(y2=y1) Z r y1� i : (4.42)Integrating again, we have v = � Z r y2� + y2y1 Z r y1� : (4.43)Now reall that we originally expressed our solution y of the inhomogeneous equation L(y) =r as y = y1 v. Therefore, we have the formal result that y is given byy = �y1 Z ry2� + y2 Z r y1� : (4.44)Making this more expliit, it readsy(x) = y2(x) Z x dt r(t) y1(t)y1(t) y02(t)� y2(t) y01(t)�y1(x) Z x dt r(t) y2(t)y1(t) y02(t)� y2(t) y01(t)� : (4.45)Thus we have the answer expressed purely in terms of the two independent solutions y1and y2 of the homogeneous equation (whih we suppose we know), and the soure term r in(4.33). Note that what we have written in (4.45) is a partiular solution, to whih arbitraryamounts of the two homogeneous solutions y1 and y2 an be added. In fat the freedom tohange the lower limits of integration in the two integrals in (4.45) preisely orresponds toadding multiples of the solutions y1(x) and y2(x) of the homogeneous equation.4.4 Series Solutions of the Homogeneous Equation4.4.1 Expansion around ordinary pointLet us now return to a more detailed study the onstrution of series solutions of seond-order linear ODE's. To begin, onsider the ase where we expand the solution of (4.11)around an ordinary point x = a, i.e. a point for whih p(a) and q(a) are �nite. In theviinity of x = a, we an therefore expand p(x) and q(x) in Taylor series,p(x) = p(a) + (x� a) p0(a) + 12 (x� a)2 p00(a) + � � � ;q(x) = q(a) + (x� a) q0(a) + 12(x� a)2 q00(a) + � � � : (4.46)Assuming that the solution y(x) is also analyti near x = a, we an also expand it in aTaylor series: y(x) = a0 + a1 (x� a) + a2 (x� a)2 + � � � : (4.47)41



Substituting these into (4.11), we get0 = [2a2 + a1 p(a) + a0 q(a)℄+[6a3 + 2a2 p(a) + a1 p0(a) + a0 q0(a) + a1 q(a)℄ (x � a) + � � � : (4.48)By equating the oeÆients of eah power of (x � a) to zero, we obtain a sequene ofequations that determine the oeÆients an with n � 2 in terms of a0 and a1. Thus fromthe �rst term, in (x� a)0, we solve for a2 in terms of a0 and a1,a2 = �12(a1 p(a) + a0 q(a)) : (4.49)From the term in (x � a)1, we then solve for a3 in terms of a0, a1 and a2. Sine we havealready solved for a2 in terms of a0 and a1, this then gives us a3 in terms of a0 and a1.Continuing to higher orders, we thus obtain all the an for n � 2 in terms of a0 and a1.Sine the two initial oeÆients a0 and a1 are arbitrary, these parameterise the two-dimensional spae of solutions of the seond-order ODE. Thus we may think of the generalsolution as being given by y = a0 y1 + a1 y2 ; (4.50)where y1 and y2 are the two independent solutions determined by our series expansions.(The solution y1 is the one obtained by taking a1 = 0, while the solution y2 is obtained bytaking a0 = 0.) Solving for the various higher oeÆients an as desribed above, one �ndsthat the two solutions are given byy1 = 1� 12q(a) (x� a)2 + 16 [(q(a)p(a) � q0(a)℄ (x � a)3 + � � � ;y2 = (x� a)� 12p(a) (x� a)2 + 16 [p2(a)� p0(a)� q(a)℄ (x � a)3 + � � � : (4.51)Note that the two basi solutions y1 and y2 have the onvenient properties thaty1(a) = 1 ; y01(a) = 0 ;y2(a) = 0 ; y02(a) = 1 : (4.52)Thus if one is looking for the solution that satis�es the boundary onditions y(a) = A,y0(a) = B, then the answer is y = Ay1 +B y2.We were able to obtain analyti solutions (i.e. solutions as Taylor series) in the neigh-bourhood of x = a beause this was an ordinary point, where p(x) and q(x) were �nite, andthemselves had Taylor-series expansions. The series solution will be valid within a radiusof onvergene determined by the losest singular point. Thus, for example, if there is a42



singular point of the ODE at x = b, where b > a, then the series solutions will onverge forall x suh that jx� aj < b� a : (4.53)In general, the series solutions will beome divergent when x approahes either of thevalues that saturates this inequality. We saw an example of this when we studied the seriessolution of the Legendre equation. We expanded around the ordinary point at x = 0,and sure enough, we found that the series solutions beame divergent at x = �1, whihorrespond to regular singular points of the Legendre equation. (Of ourse we also observedthat in that ase we ould arrange, by a judiious hoie of the parameters of the equation,to get a power-series solution that atually terminated, thereby avoiding the divergene ofthe generi solution.)4.4.2 Expansion around singular pointSo far, we onsidered the ase where we expand around an ordinary point x = a, for whihp(a) and q(a) are �nite. Suppose now that the funtion p(x) has a pole at x = a, while q(a)is still �nite. Let us assume that p(x) has a pole of degree N , meaning that we an write itas p(x) = F (x)(x� a)N ; (4.54)where F (x) is analyti at x = a, implying that it has a Taylor expansionF (x) = F (a) + F 0(a) (x � a) + 12! F 00(a) (x� a)2 + � � � ; (4.55)and hene p(x) = F (a)(x� a)N + F 0(a)(x� a)N�1 + F 00(a)2(x� a)N�3 + � � � : (4.56)Note that F (a) is nonzero, sine we are assuming that the oeÆient of the leading-order(x� a)�N pole is nonzero. As we shall illustrate below, we will now �nd that ertain of theoeÆients ai in the series expansion (4.47) are zero, namelya1 = a2 = � � � = aN = 0 : (4.57)However, the oeÆients aN+1, aN+2, aN+3; � � � an be solved for in terms of a0. This meansthat in this ase we have found just one of the two independent solutions of the ODE as aseries expansion of the form (4.47).Here's an example to show what is happening. Suppose that p(x) has a double pole atx = a (i.e. N = 2). Thus we have p(x) = F (x)(x� a)2 : (4.58)43



Plugging the series expansion (4.47) into the equation (4.11), with this assumed form forp(x), we will get0 = a1 F (a)(x� a)2 + 2a2 F (a) + a1 F 0(a)x� a+[2a2 + q(a) a0 + 3a3 F (a) + 2a2 F 0(a) + 12a1 F 00(a)℄ + � � � : (4.59)Thus the oeÆient of (x�a)�2 tells us that a1 = 0, whih in turn means that the oeÆientof (x � a)�1 implies that a2 = 0. The oeÆient of (x � a)0 then allows us to solve for a3in terms of a0. The higher powers of (x � a) will then allow us to solve for a4, a5, et., interms of a0. It is not hard to see that this gives the series solutiony1 = 1� q(a)3F (a) (x� a)3 + h q(a)2F 2(a) + q(a)F 0(a)4F 2(a) � q0(a)4F (a)i (x� a)4 + � � � ; (4.60)where we have, for simpliity, taken a0 = 1.We've found one solution in this example, as a power series in (x � a). But what ofthe other solution? We know from our previous general analysis that there should be twoindependent solutions. Evidently, the seond solution must not be expressible as a powerseries of the form (4.47); hene our failure to �nd it by this means. Reall, however, that wewere able earlier to give a general onstrution of the seond, linearly-independent, solutionof any seond-order ODE, if we were given one solution. The seond solution was given by(4.22), and thus is of the form y2(x) = y1(x) Z xx0 dtf(t) y21(t) ; (4.61)where p(x) = d log f=dx. Now, we are assuming that p(x) is given by (4.58), where F (x) isanalyti at x = a (i.e. it admits a Taylor expansion around the point x = a. Therefore wean expand F (x) in a power series, givingp(x) = F (a)(x� a)2 + F 0(a)x� a + 12F 00(a) + 16F 000(a) (x � a) + � � � : (4.62)Thus we havelog f = Z x p = � F (a)x� a + F 0(a) log(x� a) + 12F 00(a) (x � a) + � � � ; (4.63)and hene 1f(x) = exp� F (a)x� a� (x� a)�F 0(a) exp[12F 00(a) (x� a) + � � �℄ ;= exp� F (a)x� a� (x� a)�F 0(a)G(x) ; (4.64)44



where G(x) is an analyti funtion. Sine y1(x) is an analyti funtion (admiting a Talorexpansion around the point x = a), it follows that 1=y21(x) is analyti too, and so �nally weonlude from (4.61) thaty2(x) = y1(x) Z x eF (a)=(t�a) (t� a)�F 0(a)H(t) dt ; (4.65)where H(t) is some analyti funtion.The funtion (4.65) behaves badly at t = a, beause of the fator eF (a)=(t�a). Forexample, if F (a) is positive, this funtion blows up faster than any power of (t � a) ast approahes a from above. (Think of the power-series expansion for ez to see this; ez =Pn�0 zn=n!. If z is big enough, then the higher and higher powers of z beome the dominantones here.) Suh divergent behaviour whih is worse than any power law is known as anessential singularity. Funtions with this type of behaviour annot be expanded in a Taylorseries around the essential singularity. This explains why we were unable to �nd a power-series expansion for the seond solution in this ase.We ran into this problem with the onstrution of the seond solution beause we as-sumed that p(x) had a double pole at x = a, as in (4.58). Suppose instead p(x) had only asingle pole, so that p(x) = F (x)x� a ; (4.66)where F (x) is analyti at x = a. Thus we will now havep(x) = F (a)x� a + F 0(a) + 12F 00(a) (x � a) + � � � : (4.67)Integrating to get log f , we will now havelog f = F (a) log(x� a) + F 0(a) (x� a) + � � � ; (4.68)and so (4.61) will now givey2(x) = y1(x) Z x(x� a)�F (a)H(t) dt ; (4.69)where H(t) is some analyti funtion. This is a muh better situation than the previousone. Now, instead of an essential singularity, we instead merely fae a power-law singularbehaviour. In fat if we expand H(t) in a Taylor series around t = a, we an integrate termby term, leading to a result of the formy2(x) = y1(x) Xn�0 n (x� a)n+1�F (a) : (4.70)45



Generially, F (a) will not be an integer, and so the series involves frational powers of(x � a). This is a rather mild kind of singularity, alled a branh ut. We will study suhthings in more detail later in the ourse.Let us pause to summarise what we have disovered. If we look at an ordinary pointx = a, for whih p(a) and q(a) are �nite, then we an obtain the two independent solutionsof the seond-order ODE (4.11) as power-series expansions of the form (4.47). If, on theother hand, p(x) has a pole at x = a, while q(a) is still assumed to be �nite, then wean only obtain one solution of the ODE as a power series of the form (4.47). The seondsolution must instead now be obtained using the general onstrution (4.61). However, ifp(x) has a pole of degree N � 2, the behaviour of this seond solution will be very badaround x = a, with an essential singularity. By ontrast, if p(x) has only a simple pole, theseond solution will be muh better behaved. It will still, in general, not be a simple powerseries, but it will have nothing worse than a branh-ut singularity in its behaviour aroundx = a. In fat, it is evident from (4.70) that the seond solution, in the ase where p(x) hasa pole only of degree N = 1, has a series expansion of the formy2(x) = Xn�0 bn xn+s ; (4.71)for some oeÆients bn, where s is a onstant related to F (a).In general, we an de�ne a Regular Singular Point as one where the general solutionof the ODE has a pole or branh ut. On the other hand, an Irregular Singular Point isde�ned to be one where the general solution has an essential singularity.4.4.3 Indiial EquationWe analysed above what happens if q(x) is analyti at x = a, but p(x) is singular. Supposenow that we onsider the more general situation where both p(x) and q(x) are singular atx = a. Spei�ally, let us onsider the situation whenp(x) = F (x)(x� a)N ; q(x) = G(x)(x� a)M ; (4.72)where F (x) and G(x) are themselves analyti at x = a, and N and M are positive integers.To study the behaviour of the solutions, let us onsider a solution y of L(y) = 0, wherewe shall write y = u v. The idea is that we are going to fator o� all the singular behaviour ofy in the funtion v, while u will be taken to be analyti. (Clearly we an always make somesuh split; if all else failed, we ould take u = 1, after all! The key point is that we want to46



make a useful split of this sort). Now, it follows that our equation L(y) = y00+p y0+q y = 0beomes u00 +H u0 + J u = 0 ; (4.73)where the funtions H and J are given byH = p+ 2v0v ; J = q + v00v + p v0v : (4.74)Now, from what we saw in the previous setion, we know that provided the funtion Jin (4.73) is analyti, there will be at least one analyti solution u, even if H has a pole.Thus we will onsider ases where H has poles, but where we an hoose the funtion v insuh a way that J is analyti. We shall then hoose u to be the analyti solution of (4.73).Let us onsider �rst the irumstanes under whih x = a will be a regular singularpoint. By de�nition, this will mean that the funtion v, into whih we isolated all thesingular behaviour of the solution, will have behaviour of the formv = (z � a)s ; (4.75)for some onstant index s. For now, we shall take v to be preisely given by (4.75). Thisimplies that v0=v = s=(x� a) and v00=v = s(s� 1)=(x � a)2, and hene J de�ned in (4.74)is given by J = q(x) + s p(x)x� a + s(s� 1)(x� a)2 : (4.76)J an be made to be analyti if q(x) has a pole of order 2 or less, and if p(x) has a pole oforder 1 or less. Thus we have m = 1 and n = 2 in (4.72), namelyp(x) = F (x)x� a ; q(x) = G(x)(x� a)2 : (4.77)Let us assume �rst that F 0(a) = 0 and G0(a) = 0. This means thatp(x) = F (a)x� a +O((x� a)) ; q(x) = G(a)(x� a)2 +O(1) ; (4.78)and so J = G(a)(x� a)2 + sF (a)(x� a)2 + s(s� 1)(x� a)2 + regular terms : (4.79)Our assumption means that there is no �rst-order pole in J . We an then arrange for theseond-order pole to be removed, provided we hoose s suh thats2 + [F (a) � 1℄ s+G(a) = 0 : (4.80)47



This is alled the Indiial Equation for the solution.7 Its two roots, whih we may all s1and s2, orrespondingly give us two solutions of the original ODE,y1 = (x� a)s1 u1 ; y2 = (x� a)s2 u2 ; (4.81)where u1 and u2 are analyti at x = a. Without loss of generality, it is useful to assumethat we order the roots so that s1 � s2.In a generi ase where the two roots s1 and s2 satisfy s1 � s2 6= integer, we obtaintwo independent solutions by this method. If, on the other hand, s1 = s2, (and usually, ifs1 � s2 =integer), one �nds that u2 is related to u1 by u2 = (x � a)s1�s2 u1, and so from(4.81) we see that we will get only one solution by this method. The seond solution an,however, still be obtained using (4.22),y2(x) = y1(x) Z x dtf(t) y1(t)2 ; (4.82)where A is a onstant, and p(x) is written as p = d log f=dx. Let us look at this in moredetail.Sine p(x) is given by (4.77) it follows that1f(x) = exp�� Z x F (a)(t� a) dt+ � � � � = (x� a)�F (a) g(x) ; (4.83)where g(x) is the analyti funtion that omes from integrating the higher-order terms.Now, the indiial equation (4.80) an be written as (s � s1)(s � s2) = 0, where s1 and s2are its roots, and so we see that s1 + s2 = 1 � F (a), and hene 1=f(x) in (4.83) has theform (x�a)1�s1�s2 times the analyti funtion g(x). Plugging the form of the �rst solutiongiven in (4.81), for y1, into (4.82), we therefore �nd that the integrand is of the form(t� a)s1+s2�1 g(t)(t� a)2s1 u1(t)2 = h(t) (t � a)�s1+s2�1 ; (4.84)where h(t) = g(t)=u1(t)2 is again analyti. If we expand h(t) ash(t) = Xn�0 bn (t� a)n ; (4.85)7If F 0(a) or G0(a) were non-zero, we would also have a �rst-order pole in J , of the form [G0(a) +s F 0(a)℄=(x� a), as an be seen by Taylor expanding F (x) and G(x) around x = a. It is straightforward tosee that we an take are of this by modifying the hoie (4.75) for the funtion v(x) slightly, by multiplyingit by a suitable funtion w(x) hosen so that (v w)0=(v w) and (v w)00=(v w) now have extra terms whih,when substituted into (4.76), produe remove the �rst-order pole in J resulting from the non-vanishing ofF 0(a) and G0(a). 48



then inserting this into (4.84), and then (4.82), and integrating term by term, we obtainan expression for the seond solution y2(x). In general, i.e. when s1 � s2 is not equal to aninteger, this will give y2(x) = u1(x) Xn�0 bnn� s1 + s2 (x� a)n+s2 : (4.86)If s1 � s2 is not equal to an integer, we saw previously that we had already found thetwo linearly-independent solutions of the di�erential equation, given in (4.81). In theseirumstanes, the solution (4.86) must be just equivalent to the seond solution alreadyfound in (4.81).8If instead s1�s2 is an integer, it is lear from (4.86) that if the onstant bn with n = s1�s2is non-vanishing, then the expression (4.86) is invalid, beause of the vanishing denominatorn�s1+s2 for this term in the sum. What has happened, of ourse, is that this term in (4.86)ame from integrating 1=(t�a). In the usual way, R x dt (t�a)k = (x�a)k+1=(k+1) for allvalues of the onstant k exept for k = �1, when instead we get R x dt (t�a)�1 = log(x�a).Thus, when s1 � s2 is an integer we must omit the term with n = s1 � s2 from the sum in(4.86), and handle the integration separately. The net result is that we gety2(x) = bs1�s2 y1(x) log(x� a) + u1(x)Xn�00 bnn� s1 + s2 (x� a)n+s2 ; (4.87)where we use the notation P0n�0 to indiate that the term n = s1 � s2 is omitted in thesummation. Thus in general, to �nd the seond independent solution in a series expansionaround a regular singular point x = a, we should inlude a log(x�a) term in the postulatedform of the seond solution. In fat, from (4.87), we see that we should try a series expansiony2(x) = Ay1(x) log(x� a) +Xn n (x� a)n+s ; (4.88)where A is a onstant and y1(x) is the �rst solution.It is beoming lear by this stage that one ould spend a lifetime exploring all the speialases and abnormalities and perversities in the struture of the solutions of ODE's. Let ustherefore bring this disussion to a lose, with a summary of what we have found, and whatone �nds in a more exhaustive analysis of all the possibilities.8The expression for y2(x) in (4.81) and the expression for y2(x) in (4.86) may not be literally idential;the one may be related to the other by a onstant saling and the addition of some onstant multiple of y1(x).The essential point is that when s1 � s2 is not an integer, the expression for y2(x) in (4.81) is guaranteedto be linearly independent of y1(x). Likewise, our onstrution of a seond solution y2(x) in (4.86) is alsoguaranteed to be linearly independent of y1(x). It is to be hoped that no undue onfusion has been asuedby giving the results of these two onstrutions for the seond solution the same name y2(x).49



1. If we are seeking series solutions expanded around an ordinary point x = a of thedi�erential equation y00 + p(x) y0 + q(x) y = 0 (where, by de�nition, p(x) and q(x) areanalyti at x = a), then the solutions will both be analyti, and take the formy(x) = X(n)�0 an (x� a)n : (4.89)The oeÆients an satisfy a reursion relation whih determines all the an in terms ofa0 and a1. Thus we have two linearly-independent analyti solutions.2. If we are seeking series solutions expanded around a regular singular point x = a ofthe di�erential equation y00+ p(x) y0 + q(x) y = 0 (where, by de�nition, p(x) and q(x)are of the forms p(x) = F (x)=(x�a) and q(x) = G(x)=(g�a)2, where F (x) and G(x)are analyti at x = a), then we should try an expansion of the formy(x) = Xn�0 an (x� a)n+s : (4.90)The oeÆients an will satisfy a reursion relation, and in addition the quantity s willsatisfy an indiial equation, quadrati in s:(s� s1)(s� s2) = 0 : (4.91)If s1 � s2 6= integer, one will obtain the two independent solutions by this method,assoiated with the two values s = s1 and s = s2 for the index. If s1 = s2, and usually,if s1 � s2 = integer, only one linearly independent solution, say y1(x), will arise fromthis onstrution. The seond solution an be obtained by trying a series expansionof the form y2(x) = Ay1(x) log(x� a) +Xn�0 n (x� a)n : (4.92)3. If p(x) has a pole of order higher than 1 at x = a, or q(x) has a pole of order higherthan 2 at x = a, then at least one, and possibly both, of the solutions will have anessential singularity at x = a. Note, however, that if q(x) is analyti while p(x) has apole of arbitrary order n, then one of the solutions is analyti at x = a, as we saw insetion 4.4.2.4. If p(x) or q(x) themselves have worse singularities than poles, the solutions will beeven more pathologial.
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4.5 Sturm-Liouville Theory4.5.1 Self-adjoint operatorsIn the previous setions, we disussed ertain aspets of how to onstrut the solutionsof seond-order linear ODE's in onsiderable detail. Here, we shall take a look at somegeneral properties of the solutions of the ODE. To begin, let us onsider a general lass ofseond-order di�erential operator L, of the formL(u) = p0(x)u00 + p1(x)u0 + p2(x)u : (4.93)This is very muh of the kind we disussed previously, as in (4.1), exept that now we havea funtion of x multiplying the u00 term too. We shall assume that we are interested instudying this operator in some interval a � x � b, and that the funtions p0(x), p1(x) andp2(x) are all real in this region. Furthermore, we assume that p0(x) does not vanish withinthe interval, i.e. for a < x < b, and p1(x) and p2(x) remain �nite in the interval.9 In otherwords, the equation L(u) = 0 has no singular points within the interval, a < x < b. Thepoints x = a and x = b themselves may be singular points, and indeed they ommonly are.Now, we may de�ne the adjoint L of the operator L, as follows:L(u) � d2dx2 (p0 u)� ddx(p1 u) + p2 u= p0 u00 + (2p00 � p1)u0 + (p000 � p01 + p2)u : (4.94)The reason for introduing this operator an be seen from the following. Suppose we onsiderthe integral Z ba dx v Lu = Z ba dx v (p0 u00 + p1 u0 + p2 u) ; (4.95)and now integrate by parts to get the derivatives o� u. Suppose that, for whatever reason,the boundary terms in the integrations by parts vanish, so that we an simply use the ruleZ dxf(x) g0(x) �! � Z dxf 0(x) g(x) : (4.96)In other words, we assume that our lass of funtions is suh that[f(x) g(x)℄ba = 0 : (4.97)Then, after integrating by parts twie on the �rst term in (4.95), and one on the seondterm, we shall have Z ba dx((p0 v)00 � (p1 v)0 + p2 v)u ; (4.98)9To omplete all the tehnial spei�ation, we shall assume that the �rst 2 derivatives of p0 are ontin-uous, the �rst derivative of p1 is ontinuous, and that p2 is ontinuous, for a � x � b.51



and so Z ba dx v Lu = Z ba dx(Lv)u ; (4.99)where L is de�ned in equation (4.94). So the adjoint operator L is the one that arises whenwe throw the derivatives over from the original operand funtion u and onto the funtion vthat multiplies it in (4.95). We shall disuss later why we dropped the boundary terms.It is lear that if the funtions pi(x) are related to eah other in an appropriate way,then the adjoint operator L will in fat be idential to the original operator L. From theseond line in (4.94), we see that this will be true if it happens to be the ase that p0 andp1 are related by p00(x) = p1(x) : (4.100)Then, we shall have Lu = Lu = p0 u00 + p00 u0 + p2 u = (p0 u0)0 + p2 u : (4.101)Now that we are down to just two funtion p0 and p2, we may as well give them nameswithout indies, say P (x) and Q(x). Not surprisingly, an operator L that is equal to itsadjoint L is alled a self-adjoint operator.Note that any di�erential operator of the form (4.93), even if it is not itself self-adjoint,is related to a self-adjoint operator that is obtained by multiplying it by some appropriatefuntion h(x). To see, this, we note that the analogue of (4.100) for the operator multipliedby h will be (h p0)0 = h p1, or in other words,h0h = p1 � p00p0 : (4.102)This equation an then simply be integrated to determine the required multiplying funtionh that will make the operator beome self-adjoint. (Reall that we imposed the onditionp0 6= 0 at the outset, so there is no problem in priniple with performing the integration.)Thus we an proeed with our disussion by assuming that by this means, we have renderedour operator self-adjoint.4.5.2 The Sturm-Liouville eigenvalue problemAssuming now that we have a self-adjoint operator L, we may onsider the following eigen-value problem, Lu(x) + �w(x)u(x) = 0 ; (4.103)52



where w(x) is some given funtion, alled a weight funtion or density funtion, and � is aonstant. It is assumed that w(x) > 0 in the interval a � x � b, exept possibly for isolatedpoints where w(x) = 0.The idea is that we look for solutions u(x), subjet to ertain boundary onditionsimposed at x = a and x = b. By analogy with the eigenvalue problem for a matrix M witheigenvetors V and eigenvalues � M V = �V ; (4.104)the solutions u(x) to (4.103) are alled eigenfuntions, and the orresponding onstant � isalled the eigenvalue. The typial situation is that � is an as-yet undetermined onstant,and that one wants to �nd all the possible values � for whih the equation (4.103) admitssolutions u(x) that satisfy the spei�ed boundary onditions. Commonly, it turns out thatonly a disrete (usually in�nite) set of values of � an our.We have met an example of suh a Sturm-Liouville eigenvalue problem already in thisourse. Reall that we obtained the assoiated Legendre equation (2.28), by separating theHelmholtz equation in spherial polar oordinates. This equation is((1� x2)u0)0 � m21� x2 u+ �u = 0 ; (4.105)whih is learly of the form (4.103), withLu = ((1� x2)u0)0 � m21� x2 u ; w(x) = 1 : (4.106)It is lear by omparing the form of L here with the general form in (4.101) that it isself-adjoint. When we solved for the solutions of the equation (atually, we onsidered thespeial ase m = 0 for simpliity), we imposed the requirement that the funtions u(x)should be regular at x = �1. We were in fat solving the Sturm-Liouville problem for theLegendre equation, seeking all the solutions in the interval �1 � x � 1 that are regularat the endpoints. We found that suh eigenfuntions exist only if the eigenvalue � takesthe form � = `(`+ 1), where ` is a non-negative integer. The orresponding eigenfuntionsP`(x) are the Legendre polynomials.The example of the Legendre equation illustrates the typial way in whih a Sturm-Liouville problem arises in physis. One separates an equation suh as the Laplae equa-tion, Helmholtz equation or wave equation, and obtains ODE's for funtions in the variousindependent variables. The required solutions to these ODE's must satisfy ertain bound-ary onditions, and one then looks for the allowed values of the separation onstants for53



whih regular solutions arise. Thus the eigenvalue in a Sturm-Liouville problem is typiallya separation onstant.To proeed, let us return to the question of boundary onditions. Reall that we moti-vated the introdution of the adjoint operator L in (4.94) by onsidering the integral R vLu,and throwing the derivatives over from u and onto v, by integration by parts. In the proess,we ignored the possible ontributions from the boundary terms arising from the integrationsby parts, promising to return to disuss it later. This is what we shall now do. First ofall, we should atually be a little more general than in the previous disussion, and allowfor the possibility that the funtions on whih L ats might be omplex. For any pair offuntions u and v, we then de�ne the inner produt (v; u), as(v; u) � Z ba dx �v(x)u(x) ; (4.107)where the bar on v denotes the omplex onjugate.Let's see what happens if we go through the details of integrating by parts, for theself-adjoint operator L, de�ned byLu = (P (x)u0)0 +Q(x)u : (4.108)What we get is (v;Lu) = Z ba dx��v (P u0)0 + �v Qu�= Z ba dx�� �v0 (P u0) + �v Qu�+ hP �v u0iba= Z ba dx�(P �v0)0 u+ �v Qu�+ hP �v u0 � P �v0 uiba : (4.109)The integrand in the last line is just like the one in the �rst line, but with the roles of uand �v interhanged. Thus if the boundary terms in the last line were to vanish, we wouldhave established that (v;Lu) = (Lv; u) : (4.110)We make the boundary terms vanish by �at; i.e. we delare that the spae of funtions weshall onsider will be suh that the boundary terms vanish. One way to do this is to requirethat P (a) �u1(a)u02(a) = 0 ; P (b) �u1(b)u02(b) = 0 ; (4.111)for any pair of eigenfuntions (possibly the same one) u1 and u2. In pratie, we mightahieve this by requiring, for example, that eah eigenfuntion satisfyu(a) = u(b) = 0 : (4.112)54



Another possibility is to require insteadu0(a) = u0(b) = 0 (4.113)for eah eigenfuntion. Yet a third possibility is to impose a weaker ondition than (4.112),and require that eah eigenfuntion satisfyP (a)u(a) = 0 ; P (b)u(b) = 0 : (4.114)Any of these last three onditions will ensure that (4.111) is satis�ed, and hene that theboundary terms from the integrations by parts give no ontribution. Our Legendre equationanalysis was an example where we were e�etively imposing boundary onditions of the type(4.114). In that ase we had P (x) = (1 � x2), and we required our eigenfuntions to beregular at x = �1 and x = 1. Therefore the P (x) fator ensured that (4.111) was satis�edin that example.A slightly more general way to make the boundary terms in the last line of (4.109)vanish is simply to require P (a) �u1(a)u02(a) = P (b) �u1(b)u02(b) ; (4.115)for all possible pairs of eigenfuntions u1 and u2, without demanding that this quantityitself be zero. Suh a ondition might naturally arise if the independent variable x rep-resented a periodi oordinate, or else was e�etively desribing a periodi diretion, suhas a oordinate on an in�nite lattie. Having imposed boundary onditions suh that theboundary terms in the last line of (4.109) vanish, one says that the self-adjoint operator Lis Hermitean with respet to the funtions u and v that satisfy suh boundary onditions.One should therefore keep in mind this distintion between the meaning of self-adjoint andHermitean. Any operator L of the form (4.108) is self-adjoint. If in addition, one restritsattention to funtions that satisfy the boundary onditions (4.111) or (4.115), then theoperator L is Hermitean with respet to this lass of eigenfuntions.Note that we an atually extend the notion of Hermitean operators to inlude aseswhere operator itself is not built purely from real quantities. This situation arises, forexample, in quantum mehanis. Consider, for instane, the momentum operatorpx � �i ddx (4.116)(we hoose units where �h = 1 here, sine Plank's onstant plays an inessential rôle here).Let us assume that we impose boundary onditions on u and v (whih would be alled55



wave-funtions, in this quantum-mehanial ontext) suh that we an drop the boundaryterms after integration by parts. Then we see that(v; px u) = �i Z ba dx �v u0 = i Z ba dx �v0 u = (px v; u) : (4.117)Note that the sign worked out niely in the end beause (px v; u) means, by virtue of thede�nition (4.107), Z ba dx (px v) u ; (4.118)and so the omplex onjugation of the �i fator in (4.116) produes +i. Of ourse thisexample is a �rst-order operator, rather than being of the general lass of seond-orderoperators that we were previously disussing. The key point, though, is that we an extendthe notion of hermitiity to any di�erential operator A, through the requirement (v;Au) =(Av; u), where appropriate boundary onditions are imposed so that the boundary termsfrom the integrations by parts an be dropped.4.5.3 Eigenfuntions of Hermitean OperatorsWe already alluded to the fat that there is a lose analogy between the Sturm-Liouvilleeigenvalue problem for di�erential operators, and the eigenvalue problem in the theory ofmatries. Before proeeding with the Sturm-Liouville problem, let us �rst briey reallsome of the features of the matrix eigenvalue problem.Suppose that A is an Hermitean matrix, whih we write as A = Ay. By de�nition, Ay isthe matrix obtained by transposing A, and omplex onjugating its omponents. Supposewe are looking for eigenvetors V of the matrix A, namely vetors that satisfy the equationAV = �V ; (4.119)where � is some onstant, alled the eigenvalue. Let us suppose that A is an N �N matrix(it must, of ourse, be square, sine we are requiring that it equal the omplex onjugate ofits transpose). In terms of indies labelling the rows and olumns of A, we an represent itby Aij , where the indies range over the values 1 � i � N , 1 � j � N , labelling the rowsand the olumns respetively. Of ourse V will be an N -omponent vetor, with elementslabelled by Vi. Thus in terms of the index notation, (4.119) beomesAij Vj = �Vi ; (4.120)where summation over the repeated index j is understood.56



Rewriting (4.119) as (A� �1l)V = 0 ; (4.121)where 1l means the unit N �N matrix, we know from the theory of linear algebra that theondition for solutions of this equation to exist is thatdet(A� �1l) = 0 : (4.122)This gives an N 'th order polynomial equation for �, alled the harateristi equation, andthus we will have N roots, whih we may all �(n), for 1 � n � N , and assoiated with eahroot will be the orresponding eigenvetor V(n).10 In general, for an arbitrary square matrixA they ould be omplex. However here, sine we are requiring that A be Hermitean, wean show that the eigenvalues �(n) are real. We do this by taking the eigenvetor equation(4.119) for a partiular eigenvetor V(n) and assoiated eigenvalue �(n), and multiplying fromthe left by the Hermitean onjugate of V(n):V y(n)AV(n) = �(n) V y(n) V(n) : (4.123)Now, take the Hermitean onjugate of this expression, realling that for matries X and Ywe have (XY )y = Y yXy. Thus we getV y(n)Ay V(n) = ��(n) V y(n) V(n) : (4.124)Sine we are assuming A is Hermitean, this givesV y(n)AV(n) = ��(n) V y(n) V(n) : (4.125)Subtrating this from (4.123), we get(�(n) � ��(n))V y(n) V(n) = 0 : (4.126)Bearing in mind that V y(n) V(n) equals the sum of the modulus-squares of all the omponentsof V(n), i.e. V y V = Pi �Vi Vi, we see that for any non-zero vetor V(n) (whih we have),(4.126) implies that ��(n) = �(n) ; (4.127)and hene all the eigenvalues of an Hermitean matrix are real.10Take are not to onfuse the integer n whih labels the n'th eigenvetor V(n) with the index i thatdenotes the omponents Vi of a given eigenvetor V . It should always be lear from ontext whih we mean,and also we enlose the label n in parentheses. 57



By a small extension of the previous proedure, one an show also that if two eigenvetorsV(n) and V(m) have unequal eigenvalues, �(n) 6= �(m), then the eigenvetors are orthogonal toeah other, meaning V y(n) V(m) = 0. To show this, we take the eigenvetor equation (4.119)for V(m), i.e. AV(m) = �(m) V(m), and multiply on the left by V y(n). From this we subtrat theequation obtained by Hermitean onjugating AV(n) = �(n) V(n) and multiplying on the rightby V(m): V y(n)AV(m) � V y(n)AV(m) = 0 = (�(m) � �(n))V y(n) V(m) ; (4.128)where we have made use of Ay = A, the already-established fat that ��(n) = �(n). In the asewhere two di�erent eigenvetors V(1) and V(2) happen to have the same eigenvalue � (i.e. theyare degenerate), then it means that we have a two-dimensional spae of eigenvetors U �aV(1)+b V(2) whih satisfy AU = �U for arbitrary onstants a and b. Clearly, we an alwayshoose two members from this family, say U1 and U2, by judiious hoie of the onstantsa and b, suh that U y1 U2 = 0. This an easily be generalised to a sheme, known as Gram-Shmidt Orthogonalisation, for dealing with arbitrary numbers of degenerate eigenvalues.Thus either by neessity, in the ase of non-degenerate eigenvalues, supplemented byhoie, in the ase of degenerate eigenvalues, we an arrange always that the set of Neigenvetors are orthogonal, V y(n) V(m) = 0 ; m 6= n : (4.129)Of ourse we an easily arrange also to make eah eigenvetor have unit length, V y(n) V(n) = 1,by resaling it if neessary. Thus we an always hoose the eigenvetors to be orthonormal:V y(n) V(m) = Ænm ; (4.130)for all m and n.After this interlude on the eigenvalue problem for Hermitean matries, let us return nowto the Sturm-Liouville theory for Hermitean di�erential operators. As we already saw, theproblem here is to study the eigenvalues � and eigenfuntions u for the operator equationLu(x) + �w(x)u(x) = 0 ; (4.131)where L is an Hermitean operator and w(x) is alled the weight funtion. It will be assumedthat w(x) is non-negative in the interval a � x � b, and in fat that w(x) > 0 exept possiblyfor isolated points where w(x) = 0.We an now rerun the previous derivations for Hermitean matries in the ase of ourHermitean Sturm-Liouville operator L. To eonomise on the writing, reall that we are58



de�ning the inner produt (v; u) of any funtions u and v by(v; u) � Z ba dx �v(x)u(x) : (4.132)Note that it follows immediately from this de�nition that we shall have(v; u) = (u; v) ; (4.133)and that if f is any real funtion, (v; f u) = (f v; u) : (4.134)Of ourse it is also the ase that any onstant fator a an be pulled outside the integral,and so (v; a u) = a (v; u) ; (a v; u) = �a (v; u) : (4.135)Note that we are allowing for the possibility that a is omplex; the omplex onjugation ofa in the seond equation here is an immediate onsequene of the de�nition (4.132) of theinner produt.Further properties of the inner produt are that for any funtion u, we shall have(u; u) � 0 ; (4.136)sine we are integrating the quantity ju(x)j2, whih is pointwise non-negative, over theinterval a � x � b. In fat, the only way that (u; u) an equal zero is if u(x) = 0 for all xin the interval a � x � b. More generally, if f is a positive funtion in the interval [a; b℄, weshall have (u; f u) � 0 ; (4.137)with equality ahieved if and only if u = 0.Reall also that the Sturm-Liouville operator L, being Hermitean, satis�es(v;Lu) = (L v; u) : (4.138)Now, suppose that we have eigenfuntions un with eigenvalues �n for the Sturm-Liouvilleproblem (4.131): Lun + �nw un = 0 : (4.139)Consequently, we have (um;Lun) + �n (um; w un) : (4.140)59



Now we omplex onjugate this equation, getting0 = (um;Lun) + ��n (um; w un) == (Lun; um) + ��n (w un; um)= (un;Lum) + ��n (un; w um) ; (4.141)where we have made use of various of the properties of the inner produt detailed above,and the Hermitiity of L. By interhanging the indies m and n, this last line tells us that(um;Lun) + ��m (um; w un) = 0 : (4.142)Subtrating this from (4.140), we therefore �nd that(�n � ��m) (um; w un) = 0 : (4.143)(This treatment is preisely analogous to the one we followed for the ase of Hermiteanmatries. We have just shortened the argument a bit here, by handling the n = m andn 6= m ases all in one go. We ould have done the same for the matrix ase.)Consider �rst the ase where we take m = n, giving(�n � ��n) (un; w un) = 0 : (4.144)Now, our foresight in insisting that the weight funtion w(x) be non-negative in the interval[a; b℄ beomes apparent, sine it means that for a non-vanishing eigenfuntion un we shallhave (un; w un) > 0. Thus equation (4.144) implies that��n = �n ; (4.145)and so all the eigenvalues in the Sturm-Liouville problem are real.Using the reality of the �n, we an now rewrite (4.143) as(�n � �m) (um; w un) = 0 : (4.146)Thus if two eigenfuntions um and un have unequal eigenvalues, �m 6= �n, then we andedue that they are orthogonal, by whih we mean(um; w un) = 0 : (4.147)As in the analogous matrix ase, if there is a degeneray of eigenfuntions, for examplewith two eigenfuntions u1 and u2 having the same eigenvalue �, then it follows that any60



linear ombination U = �u1+� u2 will satisfy the equation (4.131), for arbitrary onstants� and �. We an learly always hoose two pairs of onstants �1, �1 and �2, �2, de�ningtwo ombinations U1 = �1 u1 + �1 u2 and U2 = �2 u1 + �2 u2, suh that we arrange that(U1; w U2) = 0. This proess an be extended to deal with arbitrary numbers of degenerateeigenfuntions, in the operator version of the Gram-Shmidt orthogonalisation proedure.In order not to beome too abstrat, let us pause at this point to onsider a simpleexample. It will also serve to illustrate an important feature of a typial Sturm-Liouvilleproblem, whih we have been taitly assuming so far without omment. Namely, we havebeen labelling our eigenfuntions by an subsript n, with the impliation that n is someinteger that enumerates the set of eigenfuntions. In other words, we seem to have beenassuming that there is a disrete set of eigenfuntions, although we have not yet addressedthe question of how many there are. In fat, for the kind of situation we are onsidering,with boundary onditions of the form (4.111) or (4.115), the set of eigenfuntions un willindeed be disrete, so that we an sensibly label them by an integer n. The number ofeigenfuntions is in�nite, so we an think of the label n as running from 1 to 1.Let's see how this works in an example. Take the operator L and the weight funtionw(x) to be L = d2dx2 ; w(x) = 1 : (4.148)It is lear that this operator L is indeed self-adjoint. The Sturm-Liouville problem in thisexample is therefore to study the eigenvalues and eigenfuntions of the equationu00 + �u = 0 : (4.149)Of ourse this equation is so easy that we an solve it in our sleep:u(x) = A os � 12 x+B sin� 12 x : (4.150)Now, we have to onsider boundary onditions. Suppose for example, that we hoose ourinterval to be 0 � x � �, so a = 0, b = �. One hoie for the boundary onditions wouldbe to require u(0) = 0 ; u(�) = 0 ; (4.151)in whih ase we would dedue that the eigenvalues � must take the form�n = n2 ; (4.152)where n is an integer, and the allowed eigenfuntions would beUn = sinnx : (4.153)61



We see here a disrete in�nity of eigenfuntions and eigenvalues.Of ourse these boundary onditions are a bit of an overkill, sine we really need onlydemand that the boundary terms from the integrations by parts vanish, and their vanishingwill be ensured if the periodi boundary onditions (4.115) are satis�ed, whih amounts to�v(a)u0(a) = �v(b)u0(b) (4.154)for any pair of eigenfuntions u and v (inluding, possibly, the same eigenfuntion for uand v), sine the funtion P (x) = 1. Now, we an see that the set of funtions sin 2nx andos 2nx will all be satisfatory eigenfuntions. Let us give these names,Un = sin 2nx ; Vn = os 2nx : (4.155)Thus for any hoie of any two funtions u and v taken from this total set, it will alwaysbe the ase that v(0)u0(0) = v(�)u0(�) : (4.156)(A non-trivial ase to hek here is when u = Vn and v = Um.) Note that now the twoeigenfuntions Un and Vn have the same eigenvalue �n = 4n2.4.5.4 Eigenfuntion expansionsThe example we have just looked at, where L = d2dx2 , and indeed the example of the Legendreequation that we onsidered earlier, illustrate some general features of the eigenfuntionsand eigenvalues of any Sturm-Liouville operator of the kind we are onsidering. Thesefeatures an be shown to be true in general, but sine the proofs are slightly intriate andlong-winded, we shall not present them here, but merely state them. The statements areas follows, for any Sturm-Liouville operator with a � x � b, where b � a is �nite, andappropriate boundary onditions imposed at x = a and x = b (we shall speify what isappropriate below):1. There is always a lowest eigenvalue, whih we shall all �1.2. There is a non-zero gap between eah eigenvalue and the next largest one. Thus wemay order them �1 < �2 < �3 < � � � : (4.157)The gap an never beome in�nitesimal, for any �n+1��n, no matter how large n is.(Assuming, as we are, that b� a is �nite.)62



3. Consequently, the eigenvalues inrease without bound; there is no \largest" eigenvalue,and eigenvalues our that are larger than any given �nite value.4. The number of nodes in the eigenfuntion un inreases with inreasing n. In otherwords, the funtion un osillates more and more rapidly with inreasing n.Let us deal straight away with the issue of what is meant by \appropriate boundaryonditions." In partiular, notie that Property 2 here is not satis�ed by the L = d2dx2example with the periodi boundary onditions (4.156), although it is satis�ed in the aseof the more stringent boundary ondition (4.151) we onsidered previously. The point isthat the slightly less restritive boundary onditions of the periodi type tend to allow bothindependent solutions of the seond-order ODE at a �xed value of �, whereas the moreforeful onditions like (4.151) tend to allow only one of the two solutions. So there isommonly a two-fold degeneray of eigenvalues when the weaker kinds of boundary ondi-tion are imposed. It is perfetly straightforward to aommodate this in some appropriategeneralisations of the properties listed above, but it is one again one of those exampleswhere one an spend time endlessly dotting all the i's and rossing all the t's, and at theend of the day one has not really added hugely to the understanding of the key points.Let us assume for now that we hoose suÆiently powerful boundary onditions that thedegeneraies are avoided.Now, to proeed, let us onsider the following problem. It is familiar from the theory ofFourier series that if we have an arbitrary funtion f(x) de�ned in the interval 0 � x � �,suh that f(0) = 0 and f(�) = 0, we an expand it in terms of the funtions sinnx, asf(x) = Xn�1 n sinnx ; (4.158)where n = 2� Z �0 dx f(x) sinnx : (4.159)Sine we have seen that the funtions sinnx arise as the eigenfuntions of the Sturm-Liouville problem with L = d2dx2 , with the boundary onditions u(0) = u(�) = 0, it isnatural to suppose that we should be able to arry out analogous series expansions in termsof the eigenfuntions for other Sturm-Liouville operators. This is the subjet we shall nowpursue.Let us begin by supposing that we an indeed expand an arbitrary funtion f(x), sat-isfying our hosen Sturm-Liouville boundary onditions, in terms of the eigenfuntions un:f(x) = Xn�1 n un(x) : (4.160)63



Using the orthonormality of the eigenfuntions un, i.e. (um; w un) = Æmn, it follows that(um; w f) = Xn�0 n (um; w un) ;= Xn�1 n Æmn ; (4.161)= m :Thus we have solved for the oeÆients n in the expansion (4.160),n = (un; w f) � Z ba dxw(x) f(x) �un(x) : (4.162)Is this the end of the story? Well, not quite. We have taitly assumed in the abovedisussion that it is possible to make an expansion of the form (4.160). The question ofwhether or not it is atually possible is the question of whether or not the eigenfuntions unform a omplete set. Think of the analogous question for �nite-dimensional vetors. Whatonstitutes a omplete set of basis vetors in an N -dimensional vetor spae? The answer isyou need N independent basis vetors, whih an span the entire spae. In terms of these,you an expand any vetor in the spae. For example, in three-dimensional Cartesian spaewe an use the three unit vetors lying along the x, y and z axes as basis vetors; they forma omplete set.The problem in our present ase is that we e�etively have an in�nite-dimensionalvetor spae; there are in�nitely many independent eigenfuntions. Certainly, we knowthat a omplete set of basis funtions must be in�nite in number. We indeed have in�nitelymany funtions un, the eigenfuntions of the Sturm-Liouville problem. But is it a \bigenough" in�nity? This is the question we need to look at in a little bit of detail. It is worthdoing beause it lies at the heart of so many tehniques that one uses in physis. Think ofquantum mehanis, for example, where one expands an arbitrary wave funtion in termsof the eigenfuntions of the Shr�odinger equation. To do this, one needs to be sure one hasa omplete set of basis funtions. It is the same basi question as the one we shall look athere for the Sturm-Liouville problem. To do so, we �rst need to study a another aspet ofSturm-Liouville theory:A Variational Priniple for the Sturm-Liouville Equation:To begin, we note that the Sturm-Liouville equation Lu + �w u = 0, with Lu �(P (x)u0)0 + Q(x)u, an be derived rather elegantly from a variational priniple. De�ne64



the funtional11 
(f) for any funtion f(x), by
(f) � (f 0; P f 0)� (f;Q f) = Z ba dx (P f 02 �Qf2) : (4.163)(We shall, for simpliity, assume for now that we deal with real funtions. There is no greatsubtlety involved in treating omplex funtions; essentially we would just write jf j2 in plaeof f2, et.. It is just a bit simpler to let them be real, and no great point of priniplewill be lost. Redo all the steps for omplex funtions if you wish.) Let us also de�ne thenorm-squared of the funtion f :N (f) � (f;w f) = Z ba dxw(x) (f(x))2 ; (4.164)It is useful also to de�ne more general bilinear funtionals 
(f; g) and N (f; g), by
(f; g) � (f 0; P g0)� (f;Q g) ;N (f; g) = � (f;w g) : (4.165)Comparing with (4.163) and (4.164), we see that 
(f) = 
(f; f), and N (f) = N (f; f).Note that other properties of these funtionals areN (f; g) = N (g; f) ;N (f + g) = N (f) +N (g) + 2N (f; g) ;
(f; g) = 
(g; f) ; (4.166)
(f + g) = 
(f) + 
(g) + 2
(f; g) ;
(f; g) = �(f;Lg) = �(Lf; g) ;where as usual L is the Sturm-Liouville operator, Lu = (P u0)0 + Qu. Note that in deriv-ing the last line, we must assume that the funtions f and g satisfy our Sturm-Liouvilleboundary onditions, so the boundary terms from integrations by parts an be dropped.All funtions that we shall onsider from now on will be assumed to satisfy these boundaryonditions. We shall sometimes refer to them as admissible funtions.We shall now show how the eigenfuntions and eigenvalues of the Sturm-Liouville prob-lem an be built up, one by one, by onsidering the following minimisation problem. Westart by looking for the funtion f that minimises the ratioR � 
(f)N (f) : (4.167)11\Funtional" is just a fany name for an operator that takes a funtion as its argument, and produesa number from it. 65



(Of ourse f an be determined only up to a onstant saling, sine the ratio in is invariantunder f(x) �! k f(x), where k is any onstant. Thus it will always be understood thatwhen we speak of \the minimising funtion," we mean modulo this saling arbitrariness.)Suppose that the minimising funtion is  1, and that the minimum value for R in 4.167is �1, so 
( 1) = �1N ( 1) : (4.168)Then by de�nition it must be that
( 1 + � �) � �1N ( 1 + � �) : (4.169)Here, � is an arbitrary onstant, and � is any funtion that satis�es the Sturm-Liouvilleboundary onditions. Thus from the various properties of N and 
 given above, we seethat 
( 1) + 2�
( 1; �) + �2
(�) � �1N ( ) + 2� �1N ( 1; �) + �2 �1N (�) : (4.170)Now, by de�nition we have 
( 1) = �1N ( 1), and so the terms independent of � in thisinequality anel. We are left with2� [
( 1; �)� �1N ( 1; �)℄ + �2 [
(�)� �1N (�)℄ � 0 : (4.171)Now, by taking � suÆiently small (so that the �2 terms beome unimportant) and of theproper sign, we ould learly violate this inequality unless the oeÆient of the � termvanishes. Thus we dedue that 
( 1; �)� �1N ( 1; �) = 0 ; (4.172)where � is an arbitrary funtion satisfying the boundary onditions. This equation is nothingbut Z ba dx�(P  01)0 +Q 1 + �1 w 1� � = 0 ; (4.173)and if this is to hold for all �, it must be that the integrand vanishes, implying(P  01)0 +Q 1 + �1 !  1 = 0 : (4.174)In other words, we have learned that the funtion  1 that minimises the ratio R in (4.167)is preisely an eigenfuntion of the Sturm-Liouville equation, L 1 + �1 !  1 = 0. Sine �1is as small as possible, it follows that  1 is the lowest eigenfuntion, and �1 is the lowest66



eigenvalue. Let us emphasise also that we now know that for any funtion f that satis�esthe boundary onditions, we must have
(f) � �1N (f) ; (4.175)with equality ahieved if and only if f is the lowest eigenfuntion.We now proeed to build the next eigenfuntion. We onsider the same minimisationproblem, but now with the additional onstraint that our funtion f should be orthogonalto  1, i.e. N ( 1; f) = 0. In other words, we want to �nd the next-to-smallest minimumof the ratio R in (4.167), for funtions orthogonal to  1. Let us all the solution to thisonstrained minimisation  2. Thus it will satisfy
( 2) = �2N( 2) ; N ( 1;  2) = 0 : (4.176)Let us emphasise again that we are not yet assuming that  2 is the seond eigenfuntion,nor that �2 is the orresponding eigenvalue. We only assume that  2 is the funtion thatminimises 
(f)=N (f), subjet to the onstraint N ( 1; f) = 0.Now by de�nition, if we look at 
( 2+ � �), where � is a onstant, and � is an arbitraryfuntion satisfying the boundary onditions, and in addition the onstraintN( 1; �) = 0 ; (4.177)then by de�nition we must have
( 2 + � �) � �2N( 2 + � �) : (4.178)This is beause � is orthogonal to  1, and so adding � � to  2 gives preisely a funtionf =  2 + � � that satis�es the onstraint N ( 1; f) = 0. We agreed that  2 was the solutionto this onstrained minimisation problem, and so therefore (4.178) must be true.Now, we an onstrut � satisfying (4.177) from an arbitrary unonstrained funtion �,by writing � = � �   1 ; (4.179)where  = N ( 1; �)N ( 1) : (4.180)(Of ourse �, like every funtion we ever talk about, will still be assumed to satisfy ourSturm-Liouville boundary onditions.) Thus from (4.178) we will have
( 2 + � � � �   1) � �2N ( 2 + � � � �   1) : (4.181)67



Expanding everything out, we have for 
( 2 + � � � �   1):
( 2 + � � � �   1) = �2N ( 2) + 2�
( 2; �)� 2� 
( 2;  1)+�2
(�) + �2 2 
( 1)� 2�2 
( 1; �) ; (4.182)= �2N ( 2) + 2�
( 2; �) + �2 
(�)� �2 2 �1N ( 1) :For N ( 2 + � � � �   1) we haveN ( 2 + � � � �   1) = N ( 2) + 2�N ( 2; �)� 2� N ( 2;  1)+�2N (�) + �2 2N ( 1)� 2�2 N ( 1; �) ;= N ( 2) + 2�N ( 2; �) + �2N (�)� �2 2N ( 1) : (4.183)In eah ase, we have made use of previously-derived results in arriving at the seond lines.Plugging into (4.181), we thus �nd that the O(�0) terms anel out, and we are left with2� [
( 2; �)� �2N ( 2; �)℄ + �2 [
(�)� �2N (�) + (�2 � �1)N ( 1)℄ � 0 : (4.184)By the same argument as we used in the original  1 minimisation, this equality an onlybe true for arbitrary small � if the oeÆient of � vanishes:
( 2; �)� �2N ( 2; �) = 0 : (4.185)Sine this must hold for all � that satisfy the boundary onditions, it follows that like inthe previous  1 disussion, here we shall haveL 2 + �2 w 2 = 0 : (4.186)So the funtion that minimises 
(f)=N (f) subjet to the onstraint that it be orthogonalto  1 is an eigenfuntion of the Sturm-Liouville equation. By de�nition, �2 is the smallestvalue we an ahieve for R in (4.167), for funtions f orthogonal to  1. Therefore �2 is thenext-to-smallest eigenvalue.It should now be evident that we an proeed iteratively in the same manner, to on-strut all the eigenfuntions and eigenvalues in sequene. At the next step, we onsiderthe onstrained minimisation problem where we require that the funtions f in 
(f)=N (f)must be orthogonal both to  1 and  2. Following preisely analogous steps to those de-sribed above, we then �nd that the funtion  3 that ahieves the minimum value �3 forthis ratio is again an eigenfuntion of the Sturm-Liouville equation. This will therefore bethe third eigenfuntion, in the sense �1 < �2 < �3.68



At the (N +1)'th stage in in the proess, we look for the funtion  N+1 that minimisesR = 
(f)=N (f), subjet to the requirements thatN ( n; f) = 0 ; 1 � n � N : (4.187)The resulting minimum value for R will be the (N + 1)'th eigenvalue �N+1, and  N+1 willbe the (N + 1)'th eigenfuntion.Let us onlude this part of the disussion by emphasising one important point, whihwe shall need later. If f(x) is any admissible funtion that is orthogonal to the �rst Neigenfuntions, as in (4.187), then it satis�es the inequality
(f) � �N+1N (f) : (4.188)Completeness of the Sturm-Liouville Eigenfuntions:One way to formulate the question of ompleteness is the following. Suppose we makea partial expansion of the form (4.160), with onstant oeÆients n hosen as in (4.162),but where we run the summation not up to in�nity, but instead up to some number N .Obviously we will not in general \hit the target" and get a perfet expansion of the funtionf(x) like this; at best, we will have some sort of approximation to f(x), whih we hope willget better and better as higher and higher modes are inluded in the sum. In fat we ande�ne fN(x) � f(x)� NXn=1 n un(x) ; (4.189)where the oeÆients n are de�ned in (4.162). What we would like to be able to show isthat as we send N to in�nity, the funtions fN(x), whih measure the disrepany betweenthe true funtion f(x) and our attempted series expansion, should in some sense tend tozero. The best way to measure this is to de�nea2N � Z ba dxw(x) (fN (x))2 = (fN ; w fN) = N (fN ) : (4.190)Now, if we an show that a2N goes to zero as N goes to in�nity, we will be ahieving a goodleast-squares �t.To show this, we now use the funtional 
(f) that was de�ned in (4.163), and theproperties that we derived. Before we begin, let us observe that we an, without loss ofgenerality, make the simplifying assumption that �1 = 0. We an do this for the followingreason. We know that the eigenvalue spetrum is bounded below, meaning that �1, the69



smallest eigenvalue, must satisfy �1 > �1. We an then shift the Sturm-Liouville operatorL, de�ned by Lu = (P u0)0 + Qu, to eL = L + �1 w, whih is ahieved by taking eLu �(P u0)0+ eQu, where eQ = Q+�1 w. Thus we an just as well work with the rede�ned operatoreL, whih will therefore have eigenvalues ~�n = �n � �1 � 0. The set of eigenfuntions willbe idential to before, and we have simply arranged to shift the eigenvalues. Let us assumefrom now on that we have done this, so we drop the tildes, and simply assume that �1 = 0,and in general �n � 0.Now, we de�ne FN (x) � fN(x)aN : (4.191)From (4.190), it is lear that N (FN ) = 1 : (4.192)Now onsider N (un; FN ). Using (4.189), we haveN (un; FN ) = 1aN N (un; f)� 1aN NXm=1 mN (un; um) ;= 1aN �n � NXm=1 m Æmn� : (4.193)The delta funtion in the seond term \liks" only if n lies within the range of the sum-mation index, and so we get:1 � n � N : (un; w FN ) = 0 ;n � N + 1 : (un; w FN ) = naN : (4.194)This means that FN (x) is preisely one of those funtions that we examined earlier, whihis orthogonal to all of the �rst N eigenfuntions, and thus satis�es (4.187). Sine FN isnormalised, satisfying N (FN ) = 1, it then follows from (4.188) and (4.192) that
(FN ) � �N+1 : (4.195)Now, let us alulate 
(FN ) diretly. From (4.189) and (4.191), we will geta2N 
(FN ) = 
(f) + 2 NXm=1 m (f;Lum)� NXm=1 NXn=0 m n (un;Lum) : (4.196)In the last two terms, where we have already integrated by parts, we now use the fatthat the um are Sturm-Liouville eigenfuntions, and so Lum an be replaed by ��m wum.70



Now, from the de�nition (4.162) of the oeÆients n, we see that we eventually geta2N 
(FN ) = 
(f)� NXn=1 2n �n : (4.197)Sine we arranged that the eigenvalues satisfy �n � 0, it follows from this equation thata2N � 
(f)
(FN ) : (4.198)But we saw earlier in (4.195), that 
(FN ) � �N+1, so we dedue thata2N � 
(f)�N+1 : (4.199)Now, 
(f) is just a funtional of the original funtion f(x) that we are trying to expand inan eigenfuntion series, so it ertainly doesn't depend on N . Furthermore, 
(f) is de�nitelypositive, 
(f) > 0 (exept in the speial ase where f =  u1). The upshot of all this, then,is that (4.199) is telling us that as we send N to in�nity, implying that �N+1 goes to in�nity,we will have aN �! 0 : (4.200)This is what we wanted to show. It means that if we take N = 1 in (4.189), we get anaurate least-squares �t, and we may say thatf(x) = 1Xn=1 n un(x) ; (4.201)where n is given by (4.162). Thus the set of eigenfuntions un(x) is omplete.Let us take stok of what has been ahieved. We started by supposing that we ouldexpand any admissible funtion f(x) as an in�nite sum over the Sturm-Liouville eigenfun-tions un(x), f(x) = Xn�1 n un(x) : (4.202)Immediately, by alulating N (um; f), and using the orthonormality N (um; un) = Æmn ofthe un, one sees that if suh an expansion is valid, then the oeÆients n will be given byn = N (un; f) = Z ba dxw(x)un(x) f(x) : (4.203)The thing that has taken us so long to show is that an expansion of the assumed kind (4.202)really does work. That is to say, we showed, after quite a long hain of arguments, thatthe set of eigenfuntions un really is omplete. This is the sort of exerise that one usuallytends not to go through, but sine eigenfuntion expansions play suh an important rôle in71



all kinds of branhes of physis (for example, they are heavily used in quantum mehanis),it is worthwhile just for one to see how the ompleteness is established.Now that we have established the validity of the expansion (4.202), we an restate thenotion of ompleteness as follows. Take the expression (4.203), and substitute it into (4.202):f(x) = Xn�1N (un; f)un(x) : (4.204)Making this expliit, we havef(x) = Z ba dy w(y) f(y) Xn�1un(x)un(y) ; (4.205)where, being physiists, we are allowed to sneak the summation through the integral withouttoo muh onern. (It is one of those �ne points that stritly speaking ought to be examinedarefully, but in the end it turns out to be justi�ed.) What we are seeing in (4.205) is thatPn un(x)un(y) is behaving exatly like the Dira delta funtion Æ(x � y), whih has thede�ning property that f(x) = Z ba dy f(y) Æ(x� y) ; (4.206)for all reasonable funtions f . So we haveXn�1w(x)un(x)un(y) = Æ(x� y) : (4.207)The point about the ompleteness of the eigenfuntions is that the left-hand side of thisexpression does indeed share with the Dira delta funtion the property that it is ableto take any admissible funtion f and regenerate it as in (4.206); it doesn't \miss" anyfuntions.12 Thus it is often onvenient to take (4.207) as the de�nition of ompleteness.Note that it is often more onvenient to think of the weight funtion w(x) as part of theintegration measure, in whih ase we ould de�ne a slightly di�erent delta-funtion, let usall it Æ(x; y), as Æ(x; y) = Xn�1un(x)un(y) (4.208)We would then have f(x) = Z ba dy w(y) f(y) Æ(x; y) : (4.209)Put another way, we would have Æ(x� y) = w(x) Æ(x; y) : (4.210)12We an put either w(x) or w(y) in this expression, sine the right-hand side tells us that the funtion isnon-zero only when x = y. 72



The Dira delta funtion is an example of what are alled generalised funtions. WhenDira �rst introdued the delta funtion, the mathematiians were a bit sni�y about it,sine they hadn't thought of them �rst, omplaining that they weren't well-de�ned, thatderivatives of delta funtions were even less well-de�ned, and so on.13 These were in fatperfetly valid objetions to raise, and sorting out the new mathematis involved in makingthem \respetable" led to the whole subjet of generalised funtions. However, it is perhapsworth noting that unlike Dira, who simply went ahead with using them regardless, themathematiians who sorted out the details never won the Nobel Prize.4.5.5 Eigenfuntion expansions for Green funtionsSuppose now that we want to solve the inhomogeneous equationLu(x) + �w(x)u(x) = f(x) ; (4.211)where as usual Lu = (P u0)0+Qu is a Sturm-Liouville operator, w(x) is the weight funtion,and now we have the inhomogeneous soure term f(x). Let us assume that for some suitableadmissible boundary onditions at a and b, we have eigenfuntions un(x) with eigenvalues�n for the usual Sturm-Liouville problem:Lun + �nw un = 0 : (4.212)Now, let us look for a solution u(x) to the inhomogeneous problem (4.211), wherewe shall assume that u(x) satis�es the same boundary onditions as the eigenfuntionsun(x). Sine u(x) is thus assumed to be an admissible funtion, it follows from our previousdisussion of ompleteness that we an expand it asu(x) = Xn�1 bn un(x) ; (4.213)for onstant oeÆients bn that we shall determine. Plugging this into (4.211), and makinguse of (4.212) to work out Lun, we therefore obtainXn�1 bn (�� �n)w(x)un(x) = f(x) : (4.214)Now multiply this um(x) and integrate from a to b. Using the orthogonality of eigenfuntionsum, we therefore get bm (�� �m) = Z ba dxum(x) f(x) : (4.215)13It is surprisingly ommon in researh to enounter one or more of the following reations: (1) \It'swrong;" (2) \It's trivial;" (3) \I did it �rst." Interestingly, it is not unknown to get all three reationssimultaneously from the same person. 73



Plugging this bak into (4.213), we see that we haveu(x) = Z ba dx0 f(x0) Xn�1 un(x)un(x0)�� �n ; (4.216)where as usual we exerise our physiist's prerogative of taking summations freely throughintegrations. Note that we have been areful to distinguish the integration variable x0 fromthe free variable x in u(x).Equation (4.216) is of the formu(x) = Z ba dx0G(x; x0) f(x0) ; (4.217)with G(x; x0) given here by G(x; x0) = Xn�1 un(x)un(x0)�� �n : (4.218)The quantity G(x; x0) is known as the Green Funtion for the problem; it is preisely thekernel whih allows one to solve the inhomogeneous equation by integrating it times thesoure term, as in (4.217).14We may note the following properties of the Green funtion. First of all, from (4.218),we see that it is symmetri in its two arguments,G(x; x0) = G(x0; x) : (4.219)Seondly, sine by onstrution the funtion u(x) in (4.217) must satisfy (4.211), we maysubstitute in to �nd what equation G(x; x0) must satisfy. Doing this, we getLu+ �w u = Z ba dx0 (L+ �w)G(x; x0) f(x0) = f(x) ; (4.220)where it is understood that the funtions P , Q and w depend on x, not x0, and that thederivatives in L are with respet to x. Sine the seond equality here must hold for any14A little digression on English usage is unavoidable here. Contrary to what one might think from the waymany physiists and mathematiians write (inluding, regrettably, in the A&M Graduate Course Catalogue),these funtions are named after George Green, who was an English mathematiian (1793-1841); he was notalled George Greens, nor indeed George Green's. Consequently, they should be alled Green Funtions,and not Green's Funtions. It would be no more proper to speak of \a Green's funtion" than it would tospeak of \a Legendre's polynomial," or \a Fermi's surfae" or \a Lorentz's transformation" or \a Taylor'sseries" or \the Dira's equation" or \the quantum Hall's e�et." By ontrast, another ommon error (alsoto be seen in the Graduate Course Catalogue) is to speak of \the Peierl's Instability" in ondensed matterphysis. The relevant person here is Rudolf Peierls, not Rudolf Peierl's or Rudolf Peierl.74



f(x), it follows that the quantity multiplying f(x0) in the integral must be preisely theDira delta funtion, and so it must be thatLG(x; x0) + �wG(x; x0) = Æ(x� x0) ; (4.221)again with the understanding that L and w depend on x.We an test diretly that our expression (4.218) for G(x; x0) indeed satis�es (4.221).Substituting it in, and making use of the fat that the eigenfuntions un satisfy (4.212), wesee that we get LG(x; x0) + �wG(x; x0) = Xn�1w(x)un(x)un(x0) : (4.222)But this is preisely the expression for Æ(x � x0) that we obtained in (4.207).There are interesting, and sometimes useful, onsequenes of the fat that we an expressthe Green funtion in the form (4.218). Reall that the onstant � in (4.218) is just aparameter that appeared in the original inhomogeneous equation (4.211) that we are solving.It has nothing diretly to do with the eigenvalues �n arising in the Sturm-Liouville problem(4.212). However, it is lear from the expression (4.218) that there will be a divergene, i.e.pole, in the expression for G(x; x0) whenever � is hosen to be equal to any of the Sturm-Liouville eigenvalues �n. It is a bit like a \resonane" phenomenon, where the solution of afored harmoni osillator equation goes berserk if the soure term (the foring funtion) ishosen to be osillatory with the natural period of osillation of the homogeneous (unfored)equation.Here, what is happening is that if the onstant � is hosen to be equal to one of theSturm-Liouville eigenvalues, say � = �N , then we suddenly �nd that we are free to add ina onstant multiple of the orresponding eigenfuntion uN (x) to our inhomogeneous solu-tion, sine uN (x) now happens to be preisely the solution of the homogeneous equationLu + �w u = 0. (For generi �, none of the eigenfuntions un(x) solves the homogeneousequation.) The divergene in the Green funtion is arising beause suddenly that partiu-lar eigenfuntion uN (x) is playing a dominant rôle in the eigenfuntion expansion for thesolution.Reall now that some letures ago we atually enountered another way of onstrutingthe Green funtion for this problem, although we didn't all it that at the time. In (4.45)we obtained a solution to the inhomogeneous seond-order ODE, in a form that translates,in our present ase, to u(x) = Z x dt f(t)�y1(t) y2(x)� y2(t) y1(x)�(y1; y2) � ; (4.223)75



where y1 and y2 are the two solutions of the homogeneous equation, whih for us will beLy+�w y = 0, and �(y1; y2) = y1(t) y02(t)�y2(t) y01(t) is the Wronskian of the two solutions.Reall that we we an add arbitrary onstant multiples of the homogeneous solutions tothe partiular integral given in (4.223). This freedom is used in order to �t the boundaryonditions we wish to impose on u(x).Suppose, for simpliity, that we require u(a) = 0 = u(b). A moment's thought will showthat by the time we have added the right amounts of y1 and y2, the result will beu(x) = Z xa dt f(t)y1(t) y2(x)�(y1; y2) + Z bx dt f(t) y2(t) y1(x)�(y1; y2) ; (4.224)where we hoose the homogeneous solutions y1 and y2 to satisfyy1(a) = 0 ; y2(b) = 0 (4.225)respetively. (The full spei�ation of y1 and y2 would require one more ondition for eahof them. This ould onsist of speifying the value of y01 at x = a, and the value of y02 atx = b. for example. But this is not important, sine we an still resale y1 and y2 by anyonstant fators we like, without upsetting the already-imposed onditions (4.225). Suhsalings will anel out in (4.224), and so therefore it is unimportant to impose any spei�sale onditions on y1 and y2.)Note that (4.224) an be interpreted as the equationu(x) = Z ba dtG(x; t) f(t) ; (4.226)where the Green funtion G(x; t) is given byG(x; t) = y1(x) y2(t)�(y1; y2) if x � t ;= y2(x) y1(t)�(y1; y2) if x � t : (4.227)Here �(y1; y2) is a funtion of the integration variable, t.We an now try omparing this result with our previous eigenfuntion expansion (4.218)for the Green funtion, sine the two should in priniple agree. Doing this in general wouldbe diÆult, sine one is an in�nite sum and the other is not. Let us onsider a simpleexample, and just ompare some of the key features. Take the ase that we looked atearlier, where L = d2dx2 ; w(x) = 1 : (4.228)76



Let us hoose our boundaries to be at a = 0 and b = �, at whih points we require oureigenfuntions to vanish. We also seek a solution of the inhomogeneous equationd2u(x)dx2 + �u(x) = f(x) (4.229)for whih u(0) = u(�) = 0. We saw before that the eigenfuntions and eigenvalues for theSturm-Liouville problem u00n + �n un = 0 (4.230)will be un(x) = r 2� sinnx ; �n = n2 ; (4.231)for the positive integers n. (We didn't give the normalisation before.) Thus from (4.218)the Green funtion for the inhomogeneous problem isG(x; t) = 2� Xn�1 sinnx sinnt�� n2 : (4.232)On the other hand, for the losed-form expression (4.227), the required solutions of thehomogeneous equation y00 + � y = 0, suh that y1(0) = 0 and y2(�) = 0 are (hoosing thesale fators to be 1 for simpliity)y1(x) = sin (� 12 x) ; y2(x) = sin (� 12 (x� �)) : (4.233)From these, the Wronskian is easily found:�(y1; y2) = � 12 h sin (� 12 x) os (� 12 (x� �))� os (� 12 x) sin (� 12 (x� �))i ;= � 12 sin(� 12 �) : (4.234)We should be able to see the same resonane phenomenon of whih we spoke earlier,in both of the (equivalent) expressions for the Green funtion. In (4.232), we learly seea resonane whenever � is equal to the square of an integer, � = N2. On the other hand,in the losed-form expression (4.227), we an see in this ase that the only divergenes anpossibly ome from the Wronskian in the denominator, sine y1 and y2 themselves are justsine funtions. Sure enough, we see from (4.234) that the Wronskian vanishes if � 12 � = N �,or, in other words, at � = N2. So indeed the pole struture of the Green funtion is thesame in the two expressions.
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5 Funtions of a Complex Variable5.1 Complex Numbers, Quaternions and OtonionsThe extension from the real number system to omplex numbers is an important one bothwithin mathematis itself, and also in physis. The most obvious area of physis wherethey are indispensable is quantum mehanis, where the wave funtion is an intrinsiallyomplex objet. In mathematis their use is very widespread. One very important point isthat by generalising from the real to the omplex numbers, it beomes possible to treat thesolution of polynomial equations in a uniform manner, sine now not only equations likex2 � 1 = 0 but also x2 + 1 = 0 an be solved.The omplex numbers an be de�ned in terms of ordered pairs of real numbers. Thuswe may de�ne the omplex number z to be the ordered pair z = (x; y), where x and y arereal. Of ourse this doesn't tell us muh until we give some rules for how these quantitiesbehave. First, we may de�ne (x; 0) to be an ordinary real number, so that we may take(x; 0) � x : (5.1)If z = (x; y), and z0 = (x0; y0) are two omplex numbers, and a is any real number, then therules an be stated as z + z0 = (x+ x0; y + y0) ;a z = (ax; a y) ; (5.2)z z0 = (xx0 � y y0; x y0 + x0 y) :We also de�ne the omplex onjugate of z = (x; y), denoted by �z, as�z = (x;�y) : (5.3)and the modulus of z, denoted by jzj, as the positive square root of jzj2 de�ned byjzj2 = �z z = (x2 + y2; 0) = x2 + y2 : (5.4)It is manifest that jzj � 0, with jzj = 0 if and only if z = 0.It is now straightforward to verify that the following fundamental laws of algebra aresatis�ed:1. Commutative and Assoiative Laws of Addition:z1 + z2 = z2 + z1 ;z1 + (z2 + z3) = (z1 + z2) + z3 = z1 + z2 + z3 ; (5.5)78



2. Commutative and Assoiative Laws of Multipliation:z1 z2 = z2 z1 ;z1 (z2 z3) = (z1 z2) z3 = z1 z2 z3 ; (5.6)3. Distributive Law: (z1 + z2) z3 = z1 z3 + z2 z3 : (5.7)We an also de�ne the operation of division. If z1 z2 = z3, then we see from the previousrules that, multiplying by �z1, we have�z1 (z1 z2) = (�z1 z1) z2 = jz1j2 z2 = �z1 z3 ; (5.8)and so, provided that jz1j 6= 0, we an write the quotientz2 = z3z1 = z3 �z1jz1j2 : (5.9)We an, of ourse, reognise that from the previous rules we have that the square of theomplex number (0; 1) is (�1; 0), whih we agreed to all simply �1. Thus we an view(0; 1) as being the square root of �1:(0; 1) � i = p�1 : (5.10)We an now use the familiar abbreviated notation for omplex numbersz = x+ i y : (5.11)The symbol i is alled the imaginary unit.One might be wondering at this stage what all the fuss is about; we appear to be makingrather a meal out of saying some things that are pretty obvious. Well, one reason for this isthat one an also go on to onsider more general types of \number �elds," in whih some ofthe previous properties ease to hold. It then beomes very important to formalise thingsproperly, so that there is a lear set of statements of what is true and what is not. Forexample, the \next" extension beyond the omplex numbers is to the quaternions, whereone has three independent imaginary units, usually denoted by i, j and k, subjet to therulesi2 = j2 = k2 = �1 ; i j = �j i = k ; j k = �k j = i ; k i = �i k = j : (5.12)A quaternion q is then a quantity of the formq = q0 + q1 i + q2 j + q3 k ; (5.13)79



where q0, q1, q2 and q3 are all real numbers. There is again an operation of omplexonjugation, �q, in whih the signs of all three of i, j and k are reversed�q = q0 � q1 i� q2 j� q3 k ; (5.14)The modulus jqj of a quaternion q is a real number, de�ned to be the positive square rootof jqj2 � �q q = q �q = q20 + q21 + q22 + q23 : (5.15)Clearly jqj � 0, with equality if and only if q = 0.Whih of the previously-stated properties of omplex numbers still hold for the quater-nions? It is not so obvious, until one goes through and heks. It is perfetly easy to do this,of ourse; the point is, though, that it does now need a bit of areful heking, and the valueof setting up a formalised struture that de�nes the rules beomes apparent. The answeris that for the quaternions, one has now lost multipliative ommutativity, so q q0 6= q0 q ingeneral. A onsequene of this is that there is no longer a unique de�nition of the quotientof quaternions. However, a very important point is that we do keep the following property.If q and q0 are two quaternions, then we havejq q0j = jqj jq0j ; (5.16)as one an easily verify from the previous de�nitions.Let us note that for the quaternions, if we introdue the notation a for a = 1; 2; 3 by1 = i ; 2 = j ; 3 = k ; (5.17)then the algebra of the quaternions, given in (5.12), an be written asa b = �Æab + �ab  : (5.18)(Einstein summation onvention for the repeated  index is understood here.) In fat, onean reognise this as the multipliation algebra of �p�1 times the Pauli matries �a ofquantum mehanis, a = �p�1�a, whih an be represented as�1 =  0 11 0! ; �2 =  0 �p�1p�1 0 ! ; �3 =  1 00 �1! : (5.19)(We use the rather lumsy notation p�1 here to distinguish this \ordinary" square root ofminus one from the i quaternion.) In this representation, the quaternion de�ned in (5.13)is therefore written as q =  q0 �p�1 q3 �p�1 q1 � q2�p�1 q1 + q2 q0 +p�1 q3 ! : (5.20)80



Sine the quaternions are now represented by matries, it is immediately lear that we shallhave assoiativity, but not ommutativity, under multipliation.As a �nal remark about the quaternions, note that we an de�ne them as an orderedpair of omplex numbers. Thus we may de�neq = (a; b) = a+ b j = a0 + a1 i + b0 j + b1 k ; (5.21)where a = a0 + a1 i, b = b0 + b1 i. Here, we assign to i and j the multipliation rules givenin (5.12), and k is, by de�nition, nothing but i j. Quaternioni onjugation is given by�q = (�a;�b). The multipliation rule for the quaternions q = (a; b) and q0 = (; d) an theneasily be seen to be q q0 = (a � b �d; a d+ b �) : (5.22)Note that the omplex onjugations in this expression arise from taking the quaternion jthrough the quaternion i, whih generates a minus sign. This has the same e�et, therefore,as omplex onjugation:  j = j �. Notie that the way quaternions are de�ned here asordered pairs of omplex numbers is losely analogous to the de�nition of the omplexnumbers themselves as ordered pairs of real numbers. The multipliation rule (5.22) is alsovery like the multipliation rule in the last line in (5.2) for the omplex numbers. Indeed,the only real di�erene is that for the quaternions, the notion of omplex onjugation ofthe onstituent omplex numbers arises. It is beause of this that ommutativity of thequaternions is lost.The next stage after the quaternions is the otonions, where one has 7 independentimaginary units. The rules for how these ombine is quite intriate, leading to the rathersplendidly-named Zorn Produt between two otonions. It turns out that for the otonions,not only does one not have multipliative ommutativity, but multipliative assoiativity isalso lost, meaning that A (BC) 6= (AB)C in general.For the otonions, let us denote the 7 imaginary units by a, where now 1 � a � 7.Their multipliation rule is reminisent of (5.18), but instead isa b = �Æab + ab  ; (5.23)where ab are a set of totally-antisymmetri onstant oeÆients. (Totally antisymmetrimeans that the interhange of any pair of indies auses a sign hange; for example, ab =�ba.) A onvenient hoie for the ab, whih are known as the struture onstants of theotonion algebra, is147 = 257 = 367 = 156 = 264 = 345 = �1 ; 123 = 1 : (5.24)81



Here, it is to be understood that all omponents related to these by the antisymmetry ofab will take the values implied by the antisymmetry, while all other omponents not yetspei�ed are zero.We may think of an otonion w as an objet built from 8 real numbers w0 and wa, withw = w0 + wa a : (5.25)Again, there is a omplex onjugate, where the signs of the 7 imaginary units are reversed:�w = w0 � wa a ; (5.26)and there is a modulus jwj, whih is a real number de�ned byjwj2 � �ww = w20 + 7Xa=1w2a : (5.27)Note that jwj � 0, and jwj vanishes if and only if w = 0.One an verify from (5.24) thatab ade = Æbd Æe � Æbe Æd + bde ; (5.28)where an absolutely ruial point is that bde is also totally antisymmetri. In fat,bde = 16�bdefgh fgh ; (5.29)where �bdefgh is the totally-antisymmetri tensor of 7 dimensions, with �1234567 = +1.It is straightforward to see that the otonions are non-assoiative. For example, fromthe rules given above we an see that 3 (1 7) = 3 4 = �5, while on the other hand(3 1) 7 = 2 7 = +5. So what does survive? A ruial thing that is still true for theotonions is that any two of them, say w and w0, will satisfyjww0j = jwj jw0j : (5.30)All of the real, omplex, quaternioni and otonioni algebras are division algebras. Thismeans that the onept of division makes sense, whih is perhaps quite surprising in thease of the otonions. Suppose that A, B and C are any three numbers in any one of thesefour number systems. First note that we have�A (AB) = ( �AA)B : (5.31)This is obvious from the assoiativity for the real, omplex or quaternioni algebras. It isnot obvious for the otonions, sine they are not assoiative (i.e. A (BC) 6= (AB)C), but82



a straightforward alulation using the previously-given properties shows that it is true forthe speial ase �A (AB) = ( �AA)B. Thus we an onsider the following manipulation. IfAB = C, then we will have �A (AB) = jAj2B = �AC : (5.32)Hene we have B = �ACjAj2 ; (5.33)where we are allowed to divide by the real number jAj2, provided that it doesn't vanish.Thus as long as A 6= 0, we an give meaning to the division of C by A. This shows that allfour of the number systems are division algebras.Finally, note that again we an de�ne the otonions as an ordered pair of the previousobjets, i.e. quaternions, in this hain of real, omplex, quaternioni and otonioni divisionalgebras. Thus we de�ne the otonion w = (a; b) = a+ b 7, where a = a0+a1 i+a2 j+a3 kand b = b0 + b1 i + b2 j + b3 k are quaternions, and i = 1, j = 2 and k = 3. The onjugateof w is given by �w = (�a;�b). It is straightforward to show, from the previously-givenmultipliation rules for the imaginary otonions, that the rule for multiplying otonionsw = (a; b) and w0 = (; d) is ww0 = (a � �d b; d a+ b �) : (5.34)This is very analogous to the previous multipliation rule (5.22) that we found for thequaternions. Note, however, that the issue of ordering of the onstituent quaternions inthese otonioni produts is now important, and indeed a areful alulation from themultipliation rules shows that the ordering must be as in (5.34). In fat (5.34) is rathergeneral, and enompasses all three of the multipliation rules that we have met. As a rulefor the quaternions, the ordering of the omplex-number onstituents in (5.34) would beunimportant, and as a rule for the omplex numbers, not only the ordering but also theomplex onjugation of the real-number onstituents would be unimportant.After disussing the generalities of division algebras, let us return now to the omplexnumbers, whih is the subjet we wish to develop further here. Sine a omplex numberz is an ordered pair of real numbers, z = (x; y), it is natural to represent it as a point inthe two-dimensional plane, whose Cartesian axes are simply x and y. This is known as theComplex Plane, or sometimes the Argand Diagram. Of ourse it is also often onvenient toemploy polar oordinates r and � in the plane, related to the Cartesian oordinates byx = r os � ; y = r sin � : (5.35)83



Sine we an also write z = x+ i y, we therefore havez = r (os � + i sin �) : (5.36)Note that jzj2 = r2 (os2 � + sin2 �) = r2.Realling that the power-series expansions of the exponential funtion, the osine andthe sine funtions are given byex = Xn�0 xnn! ; os x =Xp�0 (�1)p x2p(2p)! ; sinx =Xp�0 (�1)p x2p+1(2p+ 1)! ; (5.37)we an see that in partiular, in the power series expansion of ei � the real terms (even powersof � assemble into the power series for os �, whilst the imaginary terms (odd powers of �)assemble into the series for sin �. In other wordsei � = os � + i sin � : (5.38)Turning this around, whih an be ahieved by adding or subtrating the omlex onjugate,we �nd os � = 12 (ei � + e�i �) ; sin � = 12i(ei � � e�i �) : (5.39)Combining (5.36) and (5.38), we therefore havez = r ei � : (5.40)Note that we an also write this as z = jzj ei �. The angle � is known as the phase, or theargument, of the omplex number z. When omplex numbers are multiplied together, thephases are additive, and so if z1 = jz1j ei �1 and z2 = jz2j ei �2 , thenz1 z2 = jz1j jz2j ei (�1+�2) : (5.41)We may note that the following inequality holds:jz1 + z2j � jz1j+ jz2j : (5.42)This an be seen by alulating the square:jz1 + z2j2 = (�z1 + �z2)(z1 + z2) = jz1j2 + jz2j2 + �z1 z2 + �z2 z1 ;= jz1j2 + jz2j2 + 2jz1 jz2j os(�1 � �2) ; (5.43)� jz1j2 + jz2j2 + 2jz1 jz2j = (jz1j+ jz2j)2 ;where we write z1 = jz1j ei�1 and z2 = jz2j ei�2 . (The inequality follows from the fat thatos � � 1.) By indution, the inequality (5.42) extends to any �nite number of terms:jz1 + z2 + � � � + znj � jz1j+ jz2j+ � � �+ jznj : (5.44)84



5.2 Analyti or Holomorphi FuntionsHaving introdued the notion of omplex numbers, we an now onsider situations wherewe have a omplex funtion depending on a omplex argument. The most general kind ofpossibility would be to onsider a omplex funtion f = u+i v, where u and v are themselvesreal funtions of the omplex variable z = x+ i y;f(z) = u(x; y) + i v(x; y) : (5.45)As it stands, this notion of a funtion of a omplex variable is too broad, and on-sequently of limited value. If funtions are to be at all interesting, we must be able todi�erentiate them. Suppose the funtion f(z) is de�ned in some region, or domain, D inthe omplex plane (the two-dimensional plane with Cartesian axes x and y). We wouldnaturally de�ne the derivative of f at a point z0 in D as the limit off(z)� f(z0)z � z0 = ÆfÆz (5.46)as z approahes z0. The key point here, though, is that in order to be able to say \thelimit," we must insist that the answer is independent of how we let z approah the pointz0. The omplex plane, being 2-dimensional, allows z to approah z0 on any of an in�nityof di�erent trajetories. We would like the answer to be unique.A lassi example of a funtion of z whose derivative is not unique is f(z) = jzj2 = �z z.Thus from (5.46) we would attempt to alulate the limitjzj2 � jz0j2z � z0 = z �z � z0 �z0z � z0 = �z + z0 �z � �z0z � z0 : (5.47)Now, if we write z � z0 = jz � z0j ei �, we see that this beomes�z + z0 e�2i � = �z + z0 (os 2� � i sin 2�) ; (5.48)whih shows that, exept at z0 = 0, the answer depends on the angle � at whih z approahesz0 in the omplex plane. One say that the funtion jzj2 is not di�erentiable exept at z = 0.The interesting funtions f(z) to onsider are those whih are di�erentiable in somedomain D in the omplex plane. Plaing the additional requirement that f(z) be singlevalued in the domain, we have the de�nition of an analyti funtion, sometimes known as aholomorphi funtion. Thus:A funtion f(z) is analyti or holomorphi in a domain D in the omplex plane if it issingle-valued and di�erentiable everywhere in D.85



Let us look at the onditions under whih a funtion is analyti in D. It is easy to deriveneessary onditions. Suppose �rst we take the limit in (5.46) in whih z + Æz approahesz along the diretion of the real axis (the x axis), so that Æz = Æx;ÆfÆz = Æu+ i ÆÆx+ i Æy = ux Æx+ i vx ÆxÆx = ux + i vx : (5.49)(Clearly for this to be well-de�ned the partial derivatives ux � �u=�x and vx � �v=�x mustexist.)Now suppose instead we approah along the imaginary axis, Æz = i Æy so that nowÆfÆz = Æu+ i ÆÆx+ i Æy = uy Æy + i vy Æyi Æy = �iuy + vy : (5.50)(This time, we require that the partial derivatives uy and vy exist.) If this is to agree withthe previous result from approahing along x, we must have ux + i vx = vy � iuy, whih,equating real and imaginary parts, givesux = vy ; uy = �vx : (5.51)These onditions are known as the Cauhy-Riemann equations. It is quite easy to show thatwe would derive the same onditions if we allowed Æz to lie along any ray that approahesz at any angle.The Cauhy-Riemann equations by themselves are neessary but not suÆient for theanalytiity of the funtion f . The full statement is the following:A ontinuous single-valued funtion f(z) is analyti or holomorphi in a domain D if thefour derivatives ux, uy, vx and vy exist, are ontinuous and satisfy the Cauhy-Riemannequations.15There is a nie alternative way to view the Cauhy-Riemann equations. Sine z = x+i y,and hene �z = x� i y, we may solve to express x and y in terms of z and �z:x = 12(z + �z) ; y = � i2 (z � �z) : (5.52)Formally, we an think of z and �z as being independent variables. Then, using the hainrule, we shall have �z � ��z = �x�z ��x + �y�z ��y = 12�x � i2 �y ;��z � ���z = �x��z ��x + �y��z ��y = 12�x + i2 �y ; (5.53)15A funtion f(z) is ontinuous at z0 if, for any given � > 0 (however small), we an �nd a number Æ suhthat jf(z)� f(z0)j < � for all points z in D satisfying jz � z0j < Æ.86



where �x � �=�x and �y � �=�y. (Note that �z means a partial derivative holding �z �xed,et.) So if we have a omplex funtion f = u+ i v, then ��zf is given by��zf = 12ux + i2 uy + i2vx � 12 vy ; (5.54)whih vanishes by the Cauhy-Riemann equations (5.51).16 So the Cauhy-Riemann equa-tions are equivalent to the statement that the funtion f(z) depends on z but not on �z. Wenow see instantly why the funtion f = jzj2 = �z z was not in general analyti, although itwas at the origin, z = 0.We have seen that the real and imaginary parts u and v of an analyti funtion satisfy theCauhy-Riemann equations (5.51). From these, it follows that uxx = vyx = vxy = �uyy, andsimilarly for v. In other words, u and v eah satisfy Laplae's equation in two dimensions:r2u = 0 ; r2v = 0 ; where r2 � �2�x2 + �2�y2 : (5.55)This is a very useful property, sine it provides us with ways of solving Laplae's equationin two dimensions. It has appliations in 2-dimensional eletrostatis and gravity, and inhydrodynamis.Note that another onsequene of the Cauhy-Riemann equations (5.51) is thatux vx + uy vy = 0 ; (5.56)or, in other words, ~ru � ~rv = 0 ; (5.57)where ~r � ( ��x; ��y ) (5.58)is the 2-dimensional gradient operator. Equation (5.57) says that families of urves in the(x; y) plane orresponding to u = onstant and v = onstant interset at right-angles at allpoints of intersetion. This is beause ~ru is perpendiular to the lines of onstant u, while~rv is perpendiular to the lines of onstant v.16One might feel uneasy with treating z and �z as independent variables, sine one is atually the omplexonjugate of the other. The proper way to show that it is a valid proedure is temporarily to introdue agenuinely independent omplex variable ~z, and to write funtions as depending on z and ~z, rather than zand �z. After performing the di�erentiations in this enlarged omplex 2-plane, one then sets ~z = �z, whihamounts to taking the standard \setion" that de�nes the omplex plane. It then beomes apparent thatone an equally well just treat z and �z as independent, and ut out the intermediate step of enlarging thedimension of the omplex spae. 87



5.2.1 Power SeriesA very important onept in omplex variable theory is the idea of a power series, and itsradius of onvergene. We ould onsider the in�nite series P1n=0 an (z � z0)n, but sine asimple shift of the origin in the omplex plane allows us to take z0 = 0, we may as wellmake life a little bit simpler by assuming this has been done. Thus, let us onsiderf(z) = 1Xn=0 an zn ; (5.59)where the an are onstant oeÆients, whih may in general be omplex.A useful riterion for onvergene of a series is the Cauhy test. This states that if theterms bn in an in�nite sum Pn bn are all non-negative, then Pn bn onverges or divergesaording to whether the limit of (bn) 1n (5.60)is less than or greater than 1, as n tends to in�nity.We an apply this to determine the onditions under whih the series (5.59) is absolutelyonvergent. Namely, we onsider the series1Xn=0 janj jzjn ; (5.61)whih is learly a sum of non-negative terms. Ifjanj 1n �! 1=R (5.62)as n �! 1, then it is evident that the power series (5.59) is absolutely onvergent if jzj < R,and divergent if jzj > R. (As always, the borderline ase jzj = R is trikier, and dependson �ner details of the oeÆients an.) The quantity R is alled the radius of onvergeneof the series. The irle of radius R (entred on the expansion point z = 0 in our ase) isalled the irle of onvergene. The series (5.59) is absolutely onvergent for any z thatlies in within the irle of onvergene.We an now establish the following theorem, whih is of great importane.If f(z) is de�ned by the power series (5.59), then f(z) is an analyti funtion at everypoint within the irle of onvergene.This is all about establishing that the power series de�ning f(z) is di�erentiable withinthe irle of onvergene. Thus we de�ne�(z) = 1X(n)=1nan zn�1 ; (5.63)88



without yet prejudging that �(z) is the derivative of f(z). Suppose the series (5.59) hasradius of onvergene R. It follows that for any � suh that 0 < � < R, jan �nj must bebounded, sine we know that even the entire in�nite sum is bounded. We may say, then,that jan �nj < K for any n, where K is some positive number. Then, de�ning r = jzj, and� = jhj, it follows that if r < � and r + � < �, we havef(z + h)� f(z)h � �(z) = 1Xn=0 an �(z + h)n � znh � n zn�1� : (5.64)Using the inequality (5.44), we have���(z + h)n � znh � n zn�1��� = ��� 12! n(n� 1) zn�2 h+ 13! n(n� 1)(n� 2) zn�3 h2 + � � � + hn�1��� ;� 12! n(n� 1) rn�2 � + 13! n(n� 1)(n� 2) rn�3 �2 + � � � + �n�1 ;= (r + �)n � rn� � n rn�1 : (5.65)Hene 1Xn=0 janj ���(z + h)n � znh � n zn�1��� � K 1Xn=0 1�n h(r + �)n � rn� � n rn�1i ;= K h1� � ��� r � � � ��� r�� �(�� r)2 i ;= K ��(�� r � �)(�� r)2 : (5.66)Clearly this tends to zero as � goes to zero. This proves that �(z) given in (5.63) is indeedthe derivative of f(z). Thus f(z), de�ned by the power series (5.59), is di�erentiable withinits irle of onvergene. Sine it is also manifestly single-valued, this means that it isanalyti with the irle of onvergene.It is also lear that the derivative f 0(z), given, as we now know, by (5.63), is has thesame radius of onvergene as the original series for f(z). This is beause the limit ofjnanj1=n as n tends to in�nity is learly the same as the limit of janj1=n. The proess ofdi�erentiation an therefore be ontinued to higher and higher derivatives. In other words,a power series an be di�erentiated term by term as many times as we wish, at any pointwithin its irle of onvergene.5.3 Contour Integration5.3.1 Cauhy's TheoremA very important result in the theory of omplex funtions is Cauhy's Theorem, whihstates: 89



� If a funtion f(z) is analyti, and it is ontinuous within and on a smooth losedontour C, then IC f(z) dz = 0 : (5.67)The symbol H denotes that the integration is taken around a losed ontour; sometimes,when there is no ambiguity, we shall omit the subsript C that labels this ontour.To see what (5.67) means, onsider �rst the following. Sine f(z) = u(x; y) + i v(x; y),and z = x+ i y, we may write (5.67) asIC f(z) dz = IC(u dx� v dy) + i IC(v dx+ u dy) ; (5.68)where we have separated the original integral into its real and imaginary parts. Written inthis way, eah of the ontour integrals an be seen to be nothing but a losed line integral ofthe kind familiar, for example, in eletromagnetism. The only di�erene here is that we arein two dimensions rather than three. However, we still have the onept Stokes' Theorem,known as Green's Theorem in two dimensions, whih asserts thatI ~E � d~̀= ZS ~r� ~E � d~S ; (5.69)where C is a losed urve bounding a domain S, and ~E is any vetor �eld de�ned in Sand on C, with well-de�ned derivatives in S. In two dimensions, the url operator ~r� justmeans ~r� ~E = �Ey�x � �Ex�y : (5.70)(It is e�etively like the z omponent of the three-dimensional url.) ~E � d~̀ means Ex dx+Ey dy, and the area element d~S will just be dx dy.Applying Green's theorem to the integrals in (5.68), we therefore obtainIC f(z) dz = � ZS ��v�x + �u�y� dx dy + i ZS ��u�x � �v�y� dx dy : (5.71)But the integrands here are preisely the quantities that vanish by virtue of the Cauhy-Riemann equations (5.51), and thus we see that H f(z) dz = 0, verifying Cauhy's theorem.An alternative proof of Cauhy's theorem an be given as follows. De�ne �rst the slightlymore general integral F (�) � � I f(�z) dz ; 0 � � � 1 ; (5.72)where � is a onstant parameter that an be freely hosen in the interval 0 � � � 1.Cauhy's theorem is therefore the statement that F (1) = 0. To show this, �rst di�erentiateF (�) with respet to �: F 0(�) = I f(�z) dz + � I z f 0(�z) dz : (5.73)90



(The prime symbol 0 always means the derivative of a funtion with respet to its argument.)Now integrate the seond term by parts, givingF 0(�) = I f(�z) dz + ��[��1 z f(�z)℄� ��1 I f(�z) dz�= [��1 z f(�z)℄ ; (5.74)where the square brakets indiate that we take the di�erene between the values of theenlosed quantity at the beginning and end of the integration range. But sine we areintegrating around a losed urve, and sine z f(�z) is a single-valued funtion, this mustvanish. Thus we have established that F 0(�) = 0, implying that F (�) = onstant. We andetermine this onstant by onsidering any value of � we wish. Taking � = 0, it is learfrom (5.72) that F (0) = 0, whene F (1) = 0, proving Cauhy's theorem.Why did we appear not to need the Cauhy-Riemann equations (5.51) in this proof?The answer, of ourse, is that e�etively we did, sine we assumed that we ould sensiblytalk about the derivative of f , alled f 0. As we saw when we disussed the Cauhy-Riemannequations, they are the onsequene of requiring that f 0(z) have a well-de�ned meaning.Cauhy's theorem has very important impliations in the theory of integration of om-plex funtions. One of these is that if f(z) is an analyti funtion in some domain D, thenif we integrate f(z) from points z1 to z2 within D the answerZ z2z1 f(z) dz (5.75)is independent of the path of integration within D. This follows immediately by noting thatif we onsider two integration paths P1 and P2 then the total path onsisting of integrationfrom z1 to z2 along P1, and then bak to z1 in the negative diretion along P2 onstitutesa losed urve C = P1 � P2 within D. Thus Cauhy's theorem tells us that0 = IC f(z) dz = ZP1 f(z) dz � ZP2 f(z) dz : (5.76)Another related impliation from Cauhy's theorem is that it is possible to de�ne aninde�nite integral of f(z), by g(z) = Z zz0 f(z0) dz0 ; (5.77)where the ontour of integration an be taken to be any path within the domain of analyt-iity. Notie that the integrated funtion, g(z), has the same domain of analytiity as theintegrand f(z). To show this, we just have to show that the derivative of g(z) is unique.This (almost self-evident) property an be made evident by onsideringg(z) � g(�)z � � � f(�) = R z� (f(z0)� f(�)) dz0z � � : (5.78)91



Sine f(z) is ontinuous and single-valued, it follows that jf(z0)� f(�)j will tend to zero atleast as fast as jz � �j for any point z0 on a diret path joining � to z, as z approahes �.Together with the fat that the integration range itself is tending to zero in this limit, itis evident that the right-hand side in (5.78) will tend to zero as � approahes �, implyingtherefore that g0(z) exists and is equal to f(z).A third very important impliation from Cauhy's theorem is that if a funtion f(z)that does ontain some sort of singularities within a losed urve C is integrated around C,then the result will be unhanged if the ontour is deformed in any way, provided that itdoes not ross any singularity of f(z) during the deformation. This property will prove tobe invaluable later, when we want to perform expliit evaluations of ontour integrals.Finally, on the subjet of Cauhy's theorem, let us note that we an turn it around,and e�etively use it as a de�nition of an analyti funtion. This is the ontent of Morera'sTheorem, whih states:� If f(z) is ontinuous and single-valued within a losed ontour C, and if H f(z) dz = 0for any losed ontour within C, then f(z) is analyti within C.This an provide a useful way of testing whether a funtion is analyti in some domain.5.3.2 Cauhy's Integral FormulaSuppose that the funtion f(z) is analyti in a domain D. Consider the integralG(a) = IC f(z)z � a dz ; (5.79)where the ontour C is any losed urve within D. There are three ases to onsider,depending on whether the point a lies inside, on, or outside the ontour of integration C.Consider �rst the ase when a lies within C. By an observation in the previous setion,we know that the value of the integral (5.79) will not alter if we deform the ontour in anyway provided that the deformation does not ross over the point z = a. We an exploit thisin order to make life simple, by deforming the ontour into a small irle C 0, of radius �,entred on the point a. Thus we may writez � a = � ei� ; (5.80)with the deformed ontour C 0 being parameterised by taking � from 0 to 2�.1717Note that this means that we de�ne a positively-oriented ontour to be one whose path runs anti-lokwise, in the diretion of inreasing �. Expressed in a oordinate-invariant way, a positively-orientedlosed ontour is one for whih the interior lies to the left as you walk along the path.92



Thus we have dz = i � ei� d�, and soG(a) = i Z 2�0 f(a+ � ei�) d� = i f(a) Z 2�0 d� + i Z 2�0 [f(a+ � ei�)� f(a)℄ d� : (5.81)In the limit as � tends to zero, the ontinuity of the funtion f(z) implies that the lastintegral will vanish, sine f(a+ � ei �) = f(a) + f 0(a) � ei � + � � �, and so we have that if f(z)is analyti within and on any losed ontour C thenIC f(z)z � a dz = 2� i f(a) ; (5.82)provided that C ontains the point z = a. This is Cauhy's integral formula.Obviously if the point z = a were to lie outside the ontour C, then we would, byCauhy's theorem, have IC f(z)z � a dz = 0 ; (5.83)sine then the integrand would be a funtion that was analyti within C.The third ase to onsider is when the point a lies exatly on the path of the ontourC. It is somewhat a matter of de�nition, as to how we should handle this ase. The mostreasonable thing is to deide, like in the Judgement of Solomon, that the point is to beviewed as being split into two, with half of it lying inside the ontour, and half outside.Thus if a lies on C we shall have IC f(z)z � a dz = � i f(a) : (5.84)We an view the Cauhy integral formula as a way of evaluating an analyti funtion ata point z in terms of a ontour integral around any losed urve C that ontains z:f(z) = 12� i IC f(�) d�� � z : (5.85)A very useful onsequene from this is that we an use it also to express the derivatives off(z) in terms of ontour integrals. Essentially, one just di�erentiates (5.85) with respet toz, meaning that on the right-hand side it is only the funtion (��z)�1 that is di�erentiated.We ought to be a little areful just one to verify that this \di�erentiation under the integral"is justi�ed, so that having established the validity, we an be avalier about it in the future.The demonstration is in any ase pretty simple. We havef(z + h)� f(z)h = 12� i I f(�)h � 1� � z � h � 1� � z� d� ;= 12� i I f(�) d�(� � z)(� � z � h) : (5.86)93



Now in the limit when h �! 0 the left-hand side beomes f 0(z), and thus we getf 0(z) = 12� i I f(�) d�(� � z)2 : (5.87)The question of the validity of this proess, in whih we have taken the limit h �! 0 underthe integration, omes down to whether it was valid to assume thatT � � I f(�) � 1(� � z)2 � 1(� � z � h)(� � z)� d�= h I f(�) d�(� � z)2 (� � z � h) (5.88)vanishes as h tends to zero. Now it is evident thatjT j � jhjM Lb2 (b� jhj) ; (5.89)where M is the maximum value of jf(�)j on the ontour, L is the length of the ontour,and b is the minimum value of of j� � zj on the ontour. These are all �xed numbers,independent of h, and so we see that indeed T must vanish as h is taken to zero.More generally, by ontinuing the above proedure, we an show that the n'th derivativeof f(z) is given by f (n)(z) = 12� i I f(�) dndzn� 1� � z� d� ; (5.90)or, in other words, f (n)(z) = n!2� i IC f(�) d�(� � z)n+1 : (5.91)Note that sine all the derivatives of f(z) exist, for all point C within the ontour C, itfollows that f (n)(z) is analyti within C for any n.5.3.3 The Taylor SeriesWe an use Cauhy's integral formula to derive Taylor's theorem for the expansion of afuntion f(z) around a point z = a at whih f(z) is analyti. An important outome fromthis will be that we shall see that the radius of onvergene of the Taylor series extends upto the singularity of f(z) that is nearest to z = a.From Cauhy's integral formula we have that if f(z) is analyti inside and on a ontourC, and a+ h lies inside C, thenf(a+ h) = 12� i I f(z) dzz � a� h : (5.92)Now, bearing in mind that the geometri series PNn=0 xn sums to give (1�xN+1) (1�x)�1,we have that NXn=0 hn(z � a)n+1 = 1z � a� h � hN+1(z � a� h) (z � a)N+1 : (5.93)94



We an use this identity as an expression for 1z�a�h in (5.92), implying thatf(a+ h) = NXn=0 hn2� i I f(z) dz(z � a)n+1 + hN+12� i I f(z) dz(z � a� h) (z � a)N+1 : (5.94)In other words, in view of our previous result (5.91), we havef(a+ h) = NXn=0 hnn! f (n)(a) +RN ; (5.95)where the \remainder" term RN is given byRN = hN+12� i IC f(z) dz(z � a� h) (z � a)N+1 : (5.96)Now, if M denotes the maximum value of jf(z)j on the ontour C, then by taking C tobe a irle of radius r entred on z = a, we shall havejRN j � jhjN+1M r(r � jhj) rN+1 = M rr � jhj � jhjr �N+1 : (5.97)Thus if we hoose h suh that jhj < r, it follows that as N is sent to in�nity, RN will go tozero. This means that the Taylor seriesf(a+ h) = 1Xn=0 hnn! f (n)(a) (5.98)will be onvergent for any h lying within the irle of radius r entred on z = a. But we anhoose this irle to be as large as we like, provided that it does not enlose any singularityof f(z). Therefore, it follows that the radius of onvergene of the Taylor series (5.98) ispreisely equal to the distane between z = a and the nearest singularity of f(z).5.3.4 The Laurent SeriesSuppose now that we want to expand f(z) around a point z = a where f(z) has a singularity.Clearly the previous Taylor expansion will no longer work. We an, however, onstrut amore general kind of series expansion, known as a Laurent series. To do this, onsider aontour omprising two irles C1 and C2 entred on the point z = a, where C1 has a largerradius that takes it out as far as possible before hitting the next singularity of f(z), whileC2 is an arbitrarily small irle enlosing a. Take the path C1 to be antilokwise, whilethe path C2 is lokwise. We an make C1 and C2 into a single losed ontour, by joiningthem along a narrow \auseway," as shown in Figure 1.
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Figure 1: The ontour C = C1 + C2 for Cauhy's integralNow onsider Cauhy's integral formula for this ontour, whih will givef(a+ h) = 12� i IC f(z) dzz � a� h ; (5.99)sine the resulting omplete urve C = C1+C2 enloses no singularities exept for the poleat z = a+ h. We an write this asf(a+ h) = 12� i IC1 f(z) dzz � a� h + 12� i IC2 f(z) dzz � a� h : (5.100)For the �rst integral, around the large irle C1, we an use the same expansion for (z�a�h)�1 as we used in the Taylor series previously, obtained by setting N =1 in (5.93), andusing the fat that the seond term on the right-hand side then vanishes, sine hN+1=jz �ajN+1 goes to zero on C1 when N goes to in�nity, as a result of the radius of C1 being largerthan jhj. In other words, we expand (z � a� h)�1 as1z � a� h = 1(z � a)(1� h (z � a)�1) ;= 1z � a �1 + hz � a + h2(z � a)2 + � � � � ; (5.101)= 1Xn=0 hn(z � a)n+1 :On the other hand, in the seond integral in (5.100) we an expand (z � a� h)�1 in a96



series valid for jz � aj << jhj, namely1z � a� h = � 1h(1� (z � a)h�1) ;= �1h �1 + z � ah + (z � a)2h2 + � � � � ; (5.102)= � 1Xn=1 (z � a)n�1hn :Thus we �ndf(a+ h) = 12� i 1Xn=0hn IC1 f(z) dz(z � a)n+1 + 12� i 1Xn=1 1hn IC+2 f(z) (z � a)n�1 dz ; (5.103)where we de�ne C+2 to mean the ontour C2 but with the diretion of the integration pathreversed, i.e. C+2 runs anti-lokwise around the point z = a, whih means it is now thestandard positive diretion for a ontour. Thus we havef(a+ h) = 1Xn=�1an hn ; (5.104)where the oeÆients an are given byan = 12� i I f(z) dz(z � a)n+1 : (5.105)Here, the integration ontour is C1 when evaluating an for n � 0, and C+2 when evaluatingan for n < 0. Notie that we an in fat just as well hoose to use the ontour C1 forthe n < 0 integrals too, sine the deform of the ontour C+2 into C1 does not ross anysingularities of the integrand when n < 0.The expansion in (5.104) is known as the Laurent Series. By similar arguments to thosewe used for the Taylor series, one an see that the series onverges in an annulus whoselarger radius is de�ned by the ontour C1. This ontour ould be hosen to be the largestpossible irle entred on the singularity of f(z) at z = a that does not enlose any othersingularity of f(z).In the Laurent series, the funtion f(z) has been split as the sum of two parts. The�rst part (the terms with n � 0 in (5.104)), is analyti everywhere inside the larger irleC1. The seond part (the terms with n � �1 in (5.104)) is analyti everywhere outside thesmall irle C2 enlosing the singularity as z = a.5.4 Classi�ation of SingularitiesWe are now in a position to lassify the types of singularity that a funtion of a omplexvariable may possess. 97



Suppose that f(z) has a singularity at z = a, and that its Laurent expansion for f(a+h),given in general in (5.104), atually terminates at some spei� negative value of n, sayn = �N . Thus we have f(a+ h) = 1Xn=�N an hn : (5.106)We then say that f(z) has a pole of order N at z = a. In other words, as z approahes athe funtion f(z) has the behaviourf(z) = a�N(z � a)N + less singular terms : (5.107)If, on the other hand, the sum over negative values of n in (5.104) does not terminate,but goes on to n = �1, then the funtion f(z) has an essential singularity at z = a. Alassi example is the funtion f(z) = e 1z : (5.108)This has the Laurent expansion f(z) = 1Xn=0 1n! zn (5.109)around z = 0, This has terms in arbitrarily negative powers of z, and so z = 0 is an essentialsingularity.Funtions have quite a ompliated behaviour near an essential singularity. For example,if z approahes zero along the positive real axis, e1=z tends to in�nity. On the other hand, ifthe approah to zero is along the negative real axis, e1=z instead tends to zero. An approahto z = 0 along the imaginary axis auses e1=z to have unit modulus, but with an ever-inreasing phase rotation. In fat a funtion f(z) with an essential singularity an take onany value, for z near to the singular point.Note that the Laurent expansion (5.104) that we have been disussing here is appliableonly if the singularity of f(z) is an isolated one.18 There an also exist singularities of adi�erent kind, whih are neither poles nor essential singularities. Consider, for example,the funtions f(z) = pz, or f(z) = log z. Neither of these an be expanded in a Laurentseries around z = 0. They are both disontinuous along an entire semi-in�nite line startingfrom the point z = 0. Thus the singularity at z = 0 is not an isolated one; it is alled abranh point. We shall disuss these in more detail later.For now, just take note of the fat that a singularity in an analyti funtion does notneessarily mean that the funtion is in�nite there. By de�nition, a funtion f(z) is singular18By de�nition, if a funtion f(z) has a singularity at z = a, then it is an isolated singularity if f(z) anbe expanded in a Laurent series around z = a. 98



at z = a if it is not analyti at z = a. Thus, for example, f(z) = z1=2 is singular at z = 0,even though f(0) = 0. This an be seen from the fat that we annot expand z1=2 as apower series around z = 0, and therefore z1=2 annot be analyti there.For now, let us look in a bit more detail at funtions with isolated singularities.5.4.1 Entire FuntionsA very important, and initially perhaps rather surprising, result is the following, known asLiouville's Theorem:A funtion f(z) that is analyti for all �nite values of z and is bounded everywhere isa onstant.We an prove this using the result obtained earlier from Cauhy's integral formula, forf 0(a): f 0(a) = 12� i I f(z) dz(z � a)2 : (5.110)Take the ontour of integration to be a irle of radius R entred on z = a. Sine we areassuming that f(z) is bounded, we may take jf(z)j � M for all points z on the ontour,where M is some �nite positive number. Then, using (5.110), we must havejf 0(a)j � � M2� R2� (2� R) = MR : (5.111)Thus by taking R to in�nity, and realling our assumption that f(z) remains bounded forall �nite z (meaning that M is �nite, no matter how large R is), we see that f 0(a) must bezero. Thus f(a) is a onstant, independent of a. Thus Liouville's theorem is established.An illustration of Liouville's theorem an be given with the following example. Supposewe onstrut a funtion that is well-behaved, and bounded, everywhere on the real axis. Anexample might be f(x) = 11 + x2 ; (5.112)whih rather boringly falls o� to zero as x tends to +1 or �1, having attained the exitingpeak of f = 1 at the origin. However, viewed as a funtion of the variable z in the omplexplane, it has a more interesting behaviour, sine we havef(z) = 11 + z2 = 1(z � i)(z + i) = i2(z + i) � i2(z � i) ; : (5.113)Thus the funtion f(z) atually has poles at z = �i, away from the z axis. Liouville'stheorem tells us that any bounded funtion we try to onstrut is inevitably going to havesingularities somewhere, unless we are ontent with the humble onstant funtion.99



A similar argument to the above allows us to extend Liouville's theorem to the following:If f(z) is analyti for all �nite z, and if jf(z)j is proportional to jzjk for some integerk as z approahes in�nity, then f(z) is a polynomial of degree � k.To show this, we follow the same strategy as before, by using the higher-derivativeonsequenes of Cauhy's integral:f (n)(a) = n!2� i I f(z) dz(z � a)n+1 : (5.114)Assume that jf(z)j �M jzjk on the ontour at radius R entred on z = a. Then we havejf (n)(a)j � �n!M Rk2�Rn+1� (2� R) = n!M Rk�n : (5.115)Thus we see that as R tends to in�nity all the terms with k < n will vanish, and sof (n)(a) = 0 ; for n > k : (5.116)But this is just telling us that f(z) is a polynomial in z with zk as its highest power, whihproves the theorem. Liouville's theorem itself is just the speial ase k = 0.A funtion f(z) that is a polynomial in z of degree k,f(z) = kXn=0 an zn ; (5.117)is learly analyti for all �nite values of z. However, if k > 0 it will inevitably have a poleat in�nity. To see this, we use the usual trik of making the oordinate transformation� = 1z ; (5.118)and then looking at the behaviour of the funtion f(1=�) at � = 0. Clearly, for a polynomialof degree k of the form (5.117), we shall getf(1=�) = kXn=0 an ��n ; (5.119)implying that there are poles of orders up to and inluding k at z =1.Complex funtions that are analyti in every �nite region in the omplex plane are alledentire funtions. All polynomials, as we have seen, are therefore entire funtions. Anotherexample is the exponential funtion ez, de�ned by the power-series expansionez = 1Xn=0 znn! : (5.120)100



By the Cauhy test for the onvergene of series, we see that (jzjn=n!)1=n tends to zero asn tends to in�nity, for any �nite jzj, and so the exponential is analyti for all �nite z. Ofourse the situation at in�nity is another story; here, one has to look at e1=� as � tendsto zero, and as we saw previously this has an essential singularity, whih is more divergentthan any �nite-order pole. Other examples of entire funtions are os z, and the Besselfuntions of integer order, Jn(z). These have the power-series expansionsJn(z) = 1X̀=0 (�1)``! (n+ `)! �z2�n+2` : (5.121)Of ourse we know from Liouville's theorem that any interesting entire funtion (i.e.anything exept the purely onstant funtion) must have some sort of singularity at in�nity.5.4.2 Meromorphi FuntionsEntire funtions are analyti everywhere exept at in�nity. Next on the list aremeromorphifuntions:A Meromorphi Funtion f(z) is analyti everywhere in the omplex plane exept forisolated poles.We insist, in the de�nition of a meromorphi funtion, that the only singularities thatare allowed are poles, and not, for example, essential singularities.The number of poles in a meromorphi funtion must be �nite. This follows from thefat that if there were an in�nite number then there would exist some singular point, eitherat �nite z or at z =1, whih would not be isolated, thus ontraditing the de�nition of aneverywhere-meromorphi funtion.Any meromorphi funtion f(z) an be written as a ratio of two polynomials. Suh aratio is known as a rational funtion. To see why we an always write f(z) in this way, wehave only to make use of the observation above that the number of poles must be �nite. Letthe number of poles at �nite z be N . Thus at a set of N points zn in the omplex plane,the funtion f(z) has poles of orders dn. It follows that the funtiong(z) � f(z) NYn=1(z � zn)dn (5.122)must be analyti everywhere (exept possibly at in�nity), sine we have leverly arrangedto anel out every pole at �nite z. Even if f(z) does have a pole at in�nity, it followsfrom (5.122) that g(z) will diverge no faster than jzjk for some �nite integer k. But we101



saw earlier, in the generalisation of Liouville's theorem, that any suh funtion must be apolynomial of degree � k. Thus we onlude that f(z) is a ratio of polynomials:f(z) = g(z)QNn=1(z � zn)dn : (5.123)The fat that a meromorphi funtion an be expressed as a ratio of polynomials anbe extremely useful. Also, let us remark that it is sometimes useful to introdue the notionof a funtion that is meromorphi only in some given region of the omplex plane. In otherwords, we may onsider a funtion whose only singularities in some region are poles.19A ratio of two polynomials an be expanded out as a sum of partial frations. Forexample 1 + z21� z2 = 1z + 1 � 1z � 1 � 1 : (5.124)Therefore it follows that a funtion f(z) that is meromorphi an be expanded out as a sumof partial frations in that region. Sine we are allowing for the possibility of a singularityat in�nity, the sum may be an in�nite one.Let us onsider an example of a funtion f(z) that is meromorphi in some region, andfurthermore where every pole is of order 1. This is in fat a very ommon irumstane. Asa piee of terminology, a pole of order 1 is also known as a simple pole. Let us assume foronveniene that f(z) is analyti at z = 0, and that the poles are loated at the points an,numbered in inreasing order of distane from the origin. Thus near z = an, we shall havef(z) � bnz � an ; (5.125)where the onstant bn haraterises the \strength" of the pole. In fat bn is known as theresidue at the pole z = an.Consider a irle Cp entred on z = 0 and with radius Rp hosen so that it enloses pof the poles. To avoid problems, we hoose Rp so that it does not pass through any pole.Then the funtion Gp(z) � f(z)� pXn=1 bnz � an (5.126)will be analyti within the irle, sine we have expliitly arranged to subtrat out allthe poles (whih we are assuming all to be of order 1). Using Cauhy's integral, we shalltherefore haveGp(z) = 12� i ICp Gp(�) d�� � z = 12� i ICp f(�) d�� � z � 12� i pXn=1 bn ICp d�(� � z)(� � an) : (5.127)19Note that we are not hanging the de�nition here. A meromorphi funtion will always mean a funtionthat has only pole singularities in the entire omplex plane (inluding in�nity). But it is useful in additionto be able to talk about more general funtions that are meromorphi only in a region.102



Now, eah term in the sum here integrates to zero. This is beause the integrand is1(� � z)(� � an) = 1z � an h 1� � z � 1� � an i (5.128)The integral (over �) is taken around a ontour that enloses both the simple pole at � = zand the simple pole at � = an. We saw earlier, in the proof of Cauhy's integral formula, thata ontour integral running anti-lokwise around a simple pole =(� � �0) gives the answer2�  i, and so the result of integrating (5.128) around our ontour is (2� i�2� i)=(z�an) = 0.Thus we onlude that Gp(z) = 12� i ICp f(�) d�� � z : (5.129)Now, onsider a sequene of ever-larger irles Cp, enlosing larger and larger numbers ofpoles. This de�nes a sequene of funtions Gp(z) for inreasing p, eah of whih is analytiwithin Rp. We want to show that Gp(z) is bounded as p tends to in�nity, whih will allow usto invoke Liouville's theorem and dedue that G1(z) = onstant. By a now-familiar methodof argument, we suppose that Mp is the maximum value that jf(�)j attains anywhere onthe irular ontour of radius Rp. Then from (5.129) we shall havejGp(z)j � MpRpRp � jzj : (5.130)Consider �rst the ase of a funtion f for whih Mp is bounded in value as Rp goesto in�nity. Then, we see from (5.130) that jGp(z)j is bounded as p goes to in�nity. ByLiouville's theorem, it follows that G1(z) must just be a onstant, . Thus in this ase wehave f(z) = + 1Xn=1 bnz � an : (5.131)Realling that we hose things so that f(z) is analyti at z = 0, we an determine theonstant  by setting z = 0 in this equation. Thusf(z) = f(0) + 1Xn=1 h bnz � an + bnan i : (5.132)We obtained this result by assuming that f(z) was bounded on the irle of radius Rp,as Rp was sent to in�nity. Even if this is not the ase, one an often onstrut a relatedfuntion, for example f(z)=zk for some suitable integer k, whih is bounded on the irle.With appropriate minor modi�ations, a formula like (5.132) an then be obtained.An example is long overdue. Consider the funtion f(z) = tan z. whih is, of ourse(sin z)= os z. Now we havesin z = sin(x+ i y) = sinx osh y + i os x sinhy ;os z = os(x+ i y) = os x osh y � i sinx sinh y ; (5.133)103



where we have used the standard results that os(i y) = osh y and sin(i y) = i sinhy. Thuswe havej sin zj2 = sin2 x osh2 y+os2 x sinh2 y ; j os zj2 = os2 x osh2 y+sin2 x sinh2 y : (5.134)It is evident that j sin zj is �nite for all �nite z, and that therefore tan z an have poles onlywhen os z vanishes. From the expression for j os zj2, we see that this an happen only ify = 0 and os x = 0, i.e. at z = (n+ 12)� ; (5.135)where n is an integer.Near z = (n+ 12)�, say z = � + (n+ 12 )�, where j�j �! 0, we shall havesin z �! sin(n+ 12 )� = (�1)n ;os z �! � sin(n+ 12)� sin � �! �(�1)n � ; (5.136)and so the pole at z = an = (n+ 12)� has residue bn = �1.We also need to examine the boundedness of f(z) = tan z on the irles Rp. Theseirles are most onveniently taken to go preisely half way between the poles, so we shouldtake Rp = p �. Now from (5.134) we havej tan zj2 = sin2 x osh2 y + os2 x sinh2 yos2 x osh2 y + sin2 x sinh2 y : (5.137)Bearing in mind that sinx and os x an never vanish simultaneously, and that sinh2 y andosh2 y both diverge like 14e2jyj as jyj tends to in�nity, we see that j tan zj is indeed boundedon the irles Rp of radius p �, as p tends to in�nity. Thus we an now invoke our result(5.132), to dedue thattan z = � 1Xn=�1 h 1z � (n+ 12)� + 1(n+ 12�)i : (5.138)We an split the summation range into the poles at positive and at negative values of x, bywriting1Xn=�1un = 1Xn=0 un + �1Xn=�1un = 1Xn=0un + 1Xm=0 u�m�1 = 1Xn=0un + 1Xn=0 u�n�1 ; (5.139)where in the third expression we have written n = �m � 1, and in the last expression wehave replaed m by n again. Thus (5.138) givestan z = � 1Xn=0 h 1z � (n+ 12)� + 1(n+ 12�)i� 1Xn=0 h 1z + (n+ 12)� � 1(n+ 12�)i (5.140)104



whih, grouping the summands together, beomestan z = 1Xn=0 2z(n+ 12 )2 �2 � z2 : (5.141)Another appliation of the result (5.132) is to obtain an expansion of an entire funtionas an in�nite produt. Suppose f(z) is entire, meaning that it is analyti everywhere exeptat in�nity. It follows that f 0(z) is an analyti funtion too, and so the funtiong(z) � f 0(z)f(z) = ddz log f(z) (5.142)is meromorphi for all �nite z. (Its only singularities are poles at the plaes where f(z)vanishes, i.e. at the zeros of f(z).)Let us suppose that f(z) has only simple zeros, i.e. it vanishes like n (z � an) near thezero at z = an, and furthermore, suppose that f(0) 6= 0. Thus we an apply the formula(5.132) to g(z), implying thatddz log f(z) = f 0(0)f(0) + 1Xn=1 h 1z � an + 1an i : (5.143)This an be integrated to givelog f(z) = log f(0) + f 0(0)f(0 z + 1Xn=1 h log �1� zan�+ zan i : (5.144)Finally, exponentiating this, we getf(z) = f(0) e[f 0(0)=f(0)℄ z 1Yn=1 �1� zan� ez=an : (5.145)This in�nite-produt expansion is valid for any entire funtion f(z) with simple zeros atz = an, none of whih is loated at z = 0, whose logarithmi derivative f 0=f is bounded ona set of irles Rp. Obviously, without too muh trouble, generalisations an be obtainedwhere some of these restritions are removed.Let us apply this result in an example. Consider the funtion sin z. From (5.134) wesee that it has zeros only at y = 0, x = n�. The zero at z = 0 is unfortunate, sine in thederivation of (5.145) we required our entire funtion f(z) to be non-zero at z = 0. But thisis easily handled, by taking our entire funtion to be f(z) = (sin z)=z, whih tends to 1 atz = 0. We now have a funtion that satis�es all the requirements, and so from (5.145) weshall have sin zz = 1Yn=�1�1� zn�� e zn � ; (5.146)105



where the term n = 0 in the produt is to be omitted. Combining the positive-n andnegative-n terms pairwise, we therefore �nd thatsin z = z 1Yn=1 h1� � zn��2 i : (5.147)It is manifest that this has zeros in all the right plaes.5.4.3 Branh Points, and Many-valued FuntionsAll the funtions we have onsidered so far have been single-valued ones; given a point z,the funtion f(z) has a unique value. Many funtions do not enjoy this property. A lassiexample is the funtion f(z) = z1=2. This an take two possible values for eah non-zeropoint z, for the usual reason that there is an ambiguity of sign in taking the square root.This an be made more preise here, by onsidering the representation of the point z asz = r ei�. Thus we shall have f(z) = (r ei�) 12 = r 12 e i2 � : (5.148)But we an also write z = r ei(�+2�), sine � is periodi, with period 2�, on the omplexplane. Now we obtain f(z) = (r ei (�+2�)) 12 = r 12 e i2 �+i� = �r 12 e i2 � : (5.149)In fat, if we look at the value of f(z) = z1=2 on the irle z = r ei �, taking � from � = 0to �0 = 2� � �, where � is a small positive onstant, we see thatf(r ei �) �! �f(r) ; (5.150)as � approahes �0. But sine we are bak essentially to where we started in the omplexplane, it follows that f(z) must be disontinuous; it undergoes a jump in its value, onompleting a iruit around the origin.Of ourse although in this desription we seemed to attah a partiular signi�ane tothe positive real axis there is not really anything espeially distinguished about this line.We ould just as well have re-oriented our disussion, and onluded that the jump in thevalue of f(z) = z1=2 ourred on some other axis emanating from the origin. The importantinvariant statement is that if you trae around any losed path that enirles the origin, thevalue of z1=2 will have hanged, by an overall fator of (�1), on returning to the startingpoint. The funtion f(z) = z1=2 is double-valued on the omplex plane.106



If we ontinue on and take a seond trip around the losed path, we will return againwith a fator of (�1) relative to the previous visitation of the starting point. So after tworotations, we are bak where we started and the funtion f(z) = z1=2 is bak to its originalvalue too. This is expressed mathematially by the fat thatf(r ei (�+4�)) = r 12 e i2 � e2� i = r 12 e i2 � = f(r ei �) : (5.151)An elegant way to deal with a multi-valued funtion suh as f(z) = z1=2 is to onsideran enlarged two-dimensional surfae on whih the funtion is de�ned. In the ase of thedouble-valued funtion f(z) = z1=2, we an do it as follows. Imagine taking the omplexplane, and making a semi-in�nite ut along the real axis, from x = 0 to x = +1. Now,stak a seond opy of the omplex plane above this one, again with a ut from x = 0 tox = +1. Now, identify (i.e. glue) the lower edge of the ut of the underneath omplexplane with the upper edge of the ut of the omplex plane that sits on top. Finally (a littletrikier to imagine!), identify the lower ut edge of the omplex plane on top with the upperut edge of the omplex plane that sits underneath. We have reated something a bit likea multi-story ar-park (with two levels, in this ase). As you drive anti-lokwise aroundthe origin, starting on the lower oor, you �nd, after one iruit, that you have driven uponto the upper oor. Carrying on for one more iruit, you are bak on the lower ooragain.20 What has been ahieved is the reation of a two-sheeted surfae, alled a RiemannSurfae, on whih one has to take z around the origin through a total phase of 4� beforebefore it returns to its starting point. The funtion f(z) = z1=2 is therefore single-valuedon this two-sheeted surfae. \Ordinary" funtions, i.e. ones that were single-valued on theoriginal omplex plane, simply have the property of taking the same value on eah of thetwo sheets, at z = r ei � and z = r ei (�+2�).We already noted that the hoie of where to run the ut was arbitrary. The importantthing is that for the funtion f(z) = z1=2, it must run from z = 0 out to z =1, along anyarbitrarily spei�able path. It is often onvenient to take this to be the ut along the realpositive axis, but any other hoie will do.The reason why the origin is so important here is that it is at z = 0 that the atualbranh point of the funtion f(z) = z1=2 lies. It is easy to see this, by following the valueof f(z) = z1=2 as z is taken around various losed paths (it is simplest to hoose irles) inthe omplex plane. One easily sees that the f(z) �! �f(z) disontinuity is enountered20Of ourse multi-story ar-parks don't work quite like that in real life, owing to the need to be able toembed them in three dimensions! 107



for any path that enloses the origin, but no disontinuity arises for any losed path thatdoes not enlose the origin.If one enirles the origin, one also enirles the point at in�nity, so f(z) = z1=2 also hasa branh point at in�nity. (Clearly f(1=�) = ��1=2 is also double valued on going around� = 0.) So in fat, the branh ut that we must introdue is running from one branh pointto the other. This is a general feature of multi-valued funtions. In more ompliated ases,this an mean that there are various possible hoies for how to selet the branh uts. Inthe present ase, hoosing the branh ut along any arbitrary path from z = 0 to z = 1will do. Then, as one follows around a losed path, there is a disontinuity in f(z) eah timethe branh ut is rossed. If a losed path rosses it twie (in opposite diretions), then thetwo anel out, and the funtion returns to its original value without any disontinuity.21Consider another example, namely the funtionf(z) = (z2 � 1) 12 = (z � 1) 12 (z + 1) 12 : (5.152)It is easy to see that sine z1=2 has a branh point at z = 0, here we shall have branhpoints at z = 1 and z = �1. Any losed path enirling either z = �1 or z = +1 (but notboth) will reveal a disontinuity assoiated with the two-valuedness of (z + 1) 12 or (z � 1) 12respetively. On the other hand, a iruit that enloses both of the points z = 1 and z = �1will not enounter any disontinuity. The minus sign oming from enirling one branhpoint is anelled by that oming from enirling the other. The upshot is that we anhoose our branh uts in either of two super�ially-di�erent ways. One of the hoies isto run the branh ut from z = �1 to z = +1. Another quite di�erent-looking hoie is torun a branh ut from z = 1 to z = +1 along the real positive axis, and another ut fromz = �1 to z = �1 along the real negative axis.For either of these hoies, one gets the right onlusion. Namely, as one follows alongany path, there is a disontinuity whenever a branh ut is rossed. Crossing twie in agiven path will ause the two disontinuities to anel out. so even if onsider the seondhoie of branh uts, with two uts running out to in�nity from the points z = �1 and21In the speial ase of z1=2, for whih the funtion is exatly two-valued, then rossing over the ut twieeven both in the same diretion will ause a anellation of the disontinuity. But more generally, a doublerossing of the branh will ause the disontinuities to anel only if the rossings are in opposite diretions.Of ourse multiple rossings of the ut in the same diretion might lead to a anellation, if the funtion isonly �nitely-many valued. For example, f(z) = z1=n is n-valued, so winding n times around in the samediretion gets bak to the original value, if n is an integer. On the other hand f(z) = z1=� will never returnto its original value, no matter how many omplete iruits of the origin are made.108



z = +1, we get the orret onlusion that a losed path that enirles both z = �1 andz = +1 will reveal no disontinuity after returning to its starting point.Atually the two apparently-di�erent hoies for the branh uts are not so very di�erent,topologially-speaking. Really, z =1 is like a single point, and one e�etively should viewthe omplex plane as the surfae of a sphere, with everywhere out at in�nity orrespondingto the same point on the sphere. Think of making a stereographi projetion from the northpole of the sphere onto the in�nite plane tangent to the south pole. We think of this planeas the omplex plane. A straight line joining the north pole to a given point in the omplexplane therefore passes through a single point on the sphere. This gives a mapping from eahpoint in the omplex plane into a point on the sphere. Clearly, things get a bit degenerateas we go further and further out in the omplex plane. Eventually, we �nd that all pointsat jzj = 1, regardless of their diretion out from the origin, map onto a single point onthe sphere, namely the north pole. This sphere, known as the Riemann Sphere, is reallywhat the omplex plane is like. Of ourse as we have seen, a lot of otherwise well-behavedfuntions tend to have more severe singularities at z = 1, but that doesn't detrat fromthe usefulness of the piture. Figure 2 below show the mapping of a point Q in the omplexplane into a orresponding point P on the Riemann sphere.As it happens, our funtion f(z) = (z2 � 1)1=2 is rather moderately behaved at z =1;it has a Laurent expansion with just a simple pole:f(1=�) = (��2 � 1) 12 = ��1 (1� �2) 12 ;= 1� � 12� � 18�3 � 116 �5 + � � � : (5.153)Sine it has no branh point there, we an atually take the seond hoie of branh uts,where the two uts ran from z = �1 and z = +1 to in�nity (in other words a single linefrom z = �1 to the north pole and bak to z = +1), and deform it ontinuously into the�rst hoie, where the branh ut simply runs from z = �1 to z = +1. If you think of thebranh ut as an elasti band joining z = �1 to z = +1 via the north pole, it only takessomeone like Superman wandering around at the north pole to give it a little tweak, and itan ontrat smoothly and ontinuously from the seond hoie of branh ut to the �rst.5.5 The Oppenheim FormulaBefore proeeding with the mainstream of the development, let us pause for an interludeon a rather elegant and urious topi. It is a rather little-known method for solving the109
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Figure 2: The point Q in the omplex plane projets onto P on the Riemann sphere.following problem. Suppose we are given the real part u(x; y) of an analyti funtionf(z) = u(x; y)+i v(x; y). It is a lassi exerise, to work out the imaginary part v(x; y), andhene to learn what the full analyti funtion f(z) is, by making use of the Cauhy-Riemannequations.Let us �rst onsider this standard way to solve the problem. Before trying to solve forv(x; y), it is worth heking to be sure that a solution exists. In other words, we an �rstverify that u(x; y) is indeed the real part of an analyti funtion. We know that if it is,then the Cauhy-Riemann equations (5.51) must hold. As we saw earlier, these equations,ux = vy, uy = �vx, imply in partiular that uxx + uyy = 0; i.e. that u satis�es the two-dimensional Laplae equation. In fat the impliation goes in the other diretion too; ifu(x; y) satis�es the Laplae equation uxx + uyy = 0 then it follows that it an be taken tobe the real part of some analyti funtion. We an say that uxx+uyy = 0 is the integrabilityondition for the pair of equations ux = vy, uy = �vx to admit a solution for v(x; y).To solve for v(x; y) by the traditional method, one di�erentates u(x; y) with respet tox or y, and integrates with respet to y or x respetively, to onstrut the funtion v(x; y)
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using (5.51): v(x; y) = Z yy0 �u(x; y0)�x dy0 + �(x) ;v(x; y) = � Z xx0 �u(x0; y)�y dx0 + �(y) : (5.154)The �rst integral, whih omes from integrating ux = vy, leaves an arbitrary funtionof x unresolved, while the seond, oming from integrating uy = �vx, leaves an arbitraryfuntion of y unresolved. Consisteny between the two resolves everything, up to an additiveonstant in v(x; y). This onstant never an be determined purely from the given data, sinelearly if f(z) is analyti then so is f(z)+i , where  is a real onstant. But the rela parts off(z) and f(z)+i  are idential, and so learly we annot dedue the value of , merely fromthe given u(x; y). Note that we do need both equations in (5.154), in order to determinev(x; y) up to the additive onstant . Of ourse the freedom to pik di�erent onstant lowerlimits of integration y0 and x0 in (5.154) just amounts to hanging the arbitrary funtions�(x) and �(y), so we an hoose y0 and x0 in any way we wish.Let us hek this with an example. Suppose we are given u(x; y) = ex os y, and askedto �nd v(x; y). A quik hek shows that uxx+ uyy = 0, so we will not be wasting our timeby searhing for v(x; y). We haveux = vy = ex os y ; uy = �vx = �ex sin y ; (5.155)and so integrating as in (5.154) we getv(x; y) = ex sin y + �(x) ; v(x; y) = ex sin y + �(y) : (5.156)Sure enough, the two expressions are ompatible, and we see that �(x) = �(y). By thestandard argument that is the same as one uses in the separation of variables, it must bethat �(x) = �(y) = , where  is a (real) onstant. Thus we have found that v(x; y) =ex sin y + , and sof(z) = u+ i v = ex (os x+ i sin y) + i  = ex ei y + i  = ex+i y + i = ez + i  : (5.157)What is not so well known is that one an do the job of �nding v(x; y) from u(x; y)without ever needing to di�erentiate or integrate at all. This makes a nie party trik, ifyou go to the right (or maybe wrong!) sort of nerdish parties. The way it works is absurdlysimple, and so, in the best traditions of a onjuring trik, here �rst is the \show." Unlike111



the onjuror's trik, however, we shall see afterwards how the rabbit was slipped into thehat. I have not been able to �nd very full referenes to it; the earliest I ame aross is to aertain Prof. A. Oppenheim, so I shall refer to it as the \Oppenheim Method."The way to derive the analyti funtion f(z), given its real part u(x; y), is the following:f(z) = 2u(z2 ; z2 i) +  ; (5.158)where  is a onstant. The real part of  an be �xed by using the known given expressionfor the real part of f(z). The imaginary part of  is not determinable. Of ourse this isalways the ase; f(z) and f(z) + i , where  is a real onstant, have the same real partsand the same analytiity properties, so no method ould tell us what  is, in the absene offurther spei�ation. (In the usual Cauhy-Riemann derivation of v(x; y), this arbitrarinessarose as a onstant of integration.)Just to show that it really does work, onsider the same example that we treated aboveusing the traditional method. Suppose we are given that u(x; y) = ex os y is the real partof an analyti funtion f(z). What is f(z)? Aording to (5.158), the answer isf(z) = 2e 12 z os(� i2 z) +  = 2e 12 z osh(12z) +  ;= ez + 1 +  : (5.159)Now, we �x  by noting, for example, that from the original u(x; y) we have u(0; 0) = 1,and so we should hoose  so that f(z) has real part 1 at z = 0. Thus we have  = �1, andhene f(z) = ez. (There is no need to be tedious about always adding i , sine this trivialpoint about the arbitrariness over the imaginary onstant is now well understood.) Finally,we an easily verify that indeed f(z) = ez is the answer we were looking for, sineez = ex+i y = ex (os y + i sin y) ; (5.160)and so sure enough, this analyti funtion has real part ex os y.How did it work? Like all the best onjuring triks, the explanation is ludirously simple.Sine f(z) is analyti, we an expand it as a power series, f(z) = Pn�0 an zn. Note thatwe are assuming here that it is in partiular analyti at z = 0; we shall show later how toremove this assumption. If we write the expansion oeÆients an as an = �n + i�n, where�n and �n are real, then from the series expansion we shall have2u(x; y) = f(z) + f(z) = Xn�0 h(�n + i�n) (x + i y)n + (�n � i�n) (x� i y)ni : (5.161)112



Now plug in the values x = z=2, y = z=(2i), as required in the Oppenheim formula:2u(z2 ; z2i) = Xn�0 h(�n + i�n)�z2 + z2�n + (�n � i�n)�z2 � z2�ni ; (5.162)nn = Xn�0(�n + i�n) zn + �0 � i�0 ; (5.163)= f(z) + �0 � i�0 :That's all there is to it! The result is proven. Omne ignotum pro magni�o.We assumed in the proof that f(z) was analyti at z = 0. If it's not, then in itspresent form the proedure an sometimes break down. For example, suppose we onsiderthe funtion u(x; y) = 12 log(x2 + y2). (Seretly, we know that this is the real part of thefuntion f(z) = log z, whih of ourse is analyti for all �nite z exept for the branh pointat z = 0.) Trying the Oppenheim formula (5.158), we getf(z) = log(14z2 � 14z2) +  = log 0 +  : (5.164)Oooppps!! Not to worry, we know why it has failed. We need to �nd a generalisation of theOppenheim formula, to allow for suh ases where the funtion we are looking for happensto be non-analyti at z = 0. The answer is the following:f(z) = 2u(z + a2 ; z � a2i ) +  ; (5.165)where a is an arbitrary onstant, to be hosen to avoid any unpleasantness. Let's try thisin our funtion u(x; y) = 12 log(x2 + y2):f(z) = log h�z + a2 �2 � �z � a2 �2i+  ;= log(a z) +  = log z + log a+  : (5.166)So for any value of a other than a = 0, everything is �ne. As usual, an elementary exami-nation of a speial ase �xes the real part of the onstant , to give  = � log a.It is easy to see why the generalisation (5.165) works. We just repeat the derivationin (5.163), but now onsider an expansion of the funtion f(z) around z = a rather thanz = 0; f(z) =Pn�0 an (z�a)n. Provided we don't hoose a so that we are trying to expandaround a singular point of f(z), all must then be well:2u(z + a2 ; z � a2i ) = Xn�0 h(�n + i�n)�z + a2 + z � a2 � a�n + (�n � i�n)�z + a2 � z � a2 � a�ni ;= Xn�0(�n + i�n) (z � a)n + �0 � i�0 ; (5.167)= f(z) + �0 � i�0 : 113



Just to show o� the method in one further example, suppose we are givenu(x; y) = e xx2+y2 os yx2 + y2 : (5.168)Obviously we shall have to use (5.165) with a 6= 0 here. Thus we getf(z) = 2e z+a2a z os z � a2i a z +  = 2e z+a2a z osh z � a2a z ;= e z+a2a z �e z�a2a z + ea�z2a z �+  ; (5.169)= e 1a + e 1z +  :Fixing the onstant  from a speial ase, we getf(z) = e 1z : (5.170)The method has even worked for a funtion with an essential singularity, provided that wetake are not to try using a = 0. (Try doing the alulation by the traditional proedureusing (5.154) to see how muh simpler it is to use the generalised Oppenheim formula.)Having shown how e�etive the Oppenheim method is, it is perhaps now time to admitto why in some sense a little bit of a heat is being played here. This is not to say thatanything was inorret; all the formulae derived are perfetly valid. It is a slightly unusualkind of trik that has been played, in fat.Normally, when a onjuror performs a trik, it is he who \slips the rabbit into thehat," and then pulls it out at the appropriate moment to astound his audiene. Ironiallyenough, in the ase of the Oppenheim formula it is the audiene itself that unwittingly slipsthe rabbit into the hat, and yet nevertheless it is duly amazed when the rabbit reappears.The key point is that if one were atually working with a realisti problem, in whihonly the real part of an analyti funtion were known, one would typially be restritedto knowing it only as an \experimental result" from a set of observations. Indeed, in aommon irumstane suh information about the real part of an analyti funtion mightarise preisely from an experimental observation of, for example, the refrative index of amedium as a funtion of frequeny. The imaginary part, on the other hand, is related to thedeay of the wave as it moves through the medium. There are quite profound DispersionRelations that an be derived that relate the imaginary part to the real part. They arederived preisely by making use of the Cauhy-Riemann relations, to derive v(x; y) fromu(x; y) by taking the appropriate derivatives and integrals of u(x; y), as in (5.154).So why was the Oppenheim formula a heat? The answer is that it assumes that oneknows what happens if one inserts omplex values like x = (z + a)=2 and y = (z � a)=(2i)114



into the \slots" of u(x; y) that are designed to take the real numbers x and y. In a real-lifeexperiment one annot do this; one annot set the frequeny of a laser to a omplex value!So the knowledge about the funtion u(x; y) that the Oppenheim formula requires one tohave is knowledge that is not available in pratial situations. In those real-life ases, onewould instead have to use (5.154) to alulate v(x; y). And the proess of integration is\non-loal," in the sense that the value for the integral depends upon the values that theintegrand takes in an entire region in the (x; y) plane. This is why dispersion relationsatually ontain quite subtle information.The ironi thing is that although the Opennheim formula is therefore in some sense a\heat," it nevertheless works, and works orretly, in any example that one is likely tohek it with. The point is that when we want to test a formula like that, we tend not to goout and start measuring refrative indies; rather, we reah into our memories and drag outsome familiar funtion whose properties have already been established. So it is a formulathat is \almost never" usable, and yet it works \almost always" when it is tested with toyexamples. It is a bit like asking someone to pik a random number. Amongst the set of allnumbers, the hane that an arbitrarily hosen number will be rational is zero, and yet thehane that the person's hosen number will be rational is pretty lose to unity.5.6 Calulus of ResiduesAfter some rather lengthy preliminaries, we have now established the groundwork for thefurther development of the subjet of omplex integration. First, we shall derive a generalresult about the integration of funtions with poles.If f(z) has an isolated pole of order n at z = a, then by de�nition, it an be expressedas f(z) = a�n(z � a)n + a�n+1(z � a)n�1 + � � �+ a�1z � a + �(z) ; (5.171)where �(z) is analyti at and near z = a. The oeÆient of a�1 in this expansion is alledthe residue of f(z) at the pole at z = a.Let us onsider the integral of f(z) around a losed ontour C whih enloses the poleat z = a, but within whih �(z) is analyti. (So C enloses no other singularities of f(z)exept the pole at z = a.) We haveIC f(z) dz = nXk=1 a�k IC dz(z � a)k + I �(z) dz : (5.172)By Cauhy's theorem we know that the last integral vanishes, sine �(z) is analyti withinC. To evaluate the integrals under the summation, we may deform the ontour C to a irle115



of radius � entred on z = a, respeting the previous ondition that no other singularitiesof f(z) shall be enompassed.Letting z � a = � ei�, the deformed ontour C is then parameterised by allowing � torange from 0 to 2�, while holding � �xed. Thus we shall haveIC dz(z � a)k = Z 2�0 i � ei� d��keik � = i �1�k Z 2�0 e(1�k) i � d� = �1�k he(1�k) i �1� k i2�0 : (5.173)When the integer k takes any value other than k = 1, this learly gives zero. On the otherhand, when k = 1 we have IC dzz � a = i Z 2�0 d� = 2� i (5.174)as we saw when deriving Cauhy's integral formula. Thus we arrive at the onlusion thatIC f(z) dz = 2� i a�1 : (5.175)The result (5.175) gives the value of the integral when the ontour C enloses only thepole in f(z) loated at z = a. Clearly, if the ontour were to enlose several poles, atloations z = a, z = b, z = , et., we ould smoothly deform C so that it desribed irlesaround eah of the poles, joined by narrow \auseways" of the kind that we enounteredpreviously, whih would ontribute nothing to the total integral.Thus we arrive at the Theorem of Residues, whih asserts that if f(z) be analytieverywhere within a ontour C, exept at a number of isolated poles inside the ontour,then IC F (z) dz = 2� i Xs Rs ; (5.176)where Rs denotes the residue at pole number s.It is useful to note that if f(z) has a simple pole at z = a, then the residue at z = a isgiven by taking the limit of (z � a) f(z) as z tends to a.5.7 Evaluation of real integralsThe theorem of residues an be used in order to evaluate many kinds of integrals. Sine thisis an important appliation, we shall look at a number of examples. First, a list of threemain types of real integral that we shall be able to evaluate:(1) Integrals of the form Z 2�0 R(os �; sin �) d� ; (5.177)where R is a rational funtion of os � and sin �. (Reall that if f(z) is a rationalfuntion, it means that it is the ratio of two polynomials.)116



(2) Integrals of the form Z 1�1 f(x) dx ; (5.178)where f(z) is analyti in the upper half plane (y > 0) exept for poles that do not lieon the real axis. The funtion f(z) is also required to have the property that z f(z)should tend to zero as jzj tends to in�nity whenever 0 � arg(z) � �. (arg(z) is thephase of z. This ondition means that z f(z) must go to zero for all points z that goto in�nity in the upper half plane.)(3) Integrals of the form Z 10 x��1 f(x) dx ; (5.179)where f(z) is a rational funtion, analyti at z = 0, with no poles on the positive realaxis. Furthermore, z� f(z) should tend to zero as z approahes 0 or in�nity.First, onsider the type (1) integrals. We introdue z as the omplex variable z = ei �.Thus we have os � = 12(z + z�1) ; sin � = 12i(z � z�1) : (5.180)Realling that R is a rational funtion of os � and sin �, it follows that the integral (5.177)will beome a ontour integral of some rational funtion of z, integrated around a unit irleentred on the origin. It is a straightforward proedure to evaluate the residues of the polesin the rational funtion, and so, by using the theorem of residues, the result follows.Let us onsider an example. Suppose we wish to evaluateI(p) � Z 2�0 d�1� 2p os � + p2 ; (5.181)where 0 < p < 1. Writing z = ei �, we shall have d� = �i z�1 dz, and heneI(p) = IC dzi (1� p z)(z � p) (5.182)Sine we are assuming that 0 < p < 1, it follows from the fat that C is the unit irle thatthe only pole enlosed is the simple pole at z = p. Thus the residue of the integrand atz = p is given by taking the limit of(z � p) h 1i (1� p z)(z � p)i (5.183)as z tends to p, i.e. �i=(1� p2). Thus from the theorem of residues (5.176), we getZ 2�0 d�1� 2p os � + p2 = 2�1� p2 ; 0 < p < 1 : (5.184)117



Note that if we onsider the same integral (5.181), but now take the onstant p to begreater than 1, the ontour C (the unit irle) now enloses only the simple pole at z = 1=p.Multiplying the integrand by (z � 1=p), and taking the limit where z tends to 1=p, we now�nd that the residue is +i=(1� p2), wheneZ 2�0 d�1� 2p os � + p2 = 2�p2 � 1 ; p > 1 : (5.185)In fat the results for all real p an be ombined into the single formulaZ 2�0 d�1� 2p os � + p2 = 2�jp2 � 1j : (5.186)For a more ompliated example, onsiderI(p) � Z 2�0 os2 3� d�1� 2p os 2� + p2 ; (5.187)with 0 < p < 1. Now, we haveI(p) = IC �12z3 + 12z�3�2 dzi z (1� p z2)(1 � p z�2) = IC (z6 + 1)2 dz4i z5 (1� p z2)(z2 � p) : (5.188)The integrand has poles at z = 0, z = �p 12 and z = �p� 12 . Sine we are assuming 0 < p < 1,it follows that only the poles at z = 0 and z = �p 12 lie within the unit irle orrespondingto the ontour C. The only slight ompliation in this example is that the pole at z = 0 isof order 5, so we have to work a little harder to extrat the residue there. Let us pause toderive a general result for how to evaluate the residue at an n'th-order pole:If f(z) has a pole of order n at z = a, it follows that it will have the formf(z) = g(z)(z � a)n ; (5.189)where g(z) is analyti in the neighbourhood of z = a. Thus we may expand g(z) in a Taylorseries around z = a, givingf(z) = 1(z � a)n �g(a) + (z � a) g0(a) + � � �+ 1(n� 1)! (z � a)n�1 g(n�1)(a) + � � � � ;= g(a)(z � a)n + g0(a)(z � a)n�1 + � � �+ g(n�1)(a)(n� 1)! (z � a) + � � � : (5.190)We then read o� the residue, namely the oeÆient of the �rst-order pole term 1=(z � a),�nding g(n�1)(a)=(n � 1)!. Re-expressing this in terms of the original funtion f(z), using(5.189), we arrive at the general result that118



If f(z) has a pole of order n at z = a, then the residue R is given byR = 1(n� 1)! h dn�1dzn�1 ((z � a)n f(z))iz=a : (5.191)Returning to our example, it is now a ompletely mehanial proedure to alulate theresidues at z = 0, z = p 12 and z = �p 12 . After a little algebra, we get residuesi (1 + p2 + p4)4p3 ; � i (1 + p3)28p3 (1� p2) ; � i (1 + p3)28p3 (1� p2) ; (5.192)respetively. Plugging into the theorem of residues (5.176), we therefore obtain the resultZ 2�0 os2 3� d�1� 2p os 2� + p2 = � (1� p+ p2)(1� p) ; (5.193)when 0 < p < 1.Note that using formula (5.191) is not neessarily the easiest way of evaluating theresidue at a high-order pole. All that we are really asking for is to know the 1=(z � a)term in the Laurent expansion of the funtion f(z). Let us take our example in the integralin (5.188), and its 5'th-order pole at z = 0. We want the Laurent-series expansion of theintegrand around z = 0. Inspetion of the integrand reveals that the pole terms ome onlyfrom the 1=z5 fator; the rest of the terms that multiply this have no singularities at z = 0.Thus the other fators are all analyti around z = 0, so we an just expand them in Taylorseries. We need only keep terms up to order z4 in the Taylor expansion of the funtion thatmultiplies 1=z5, sine we only are about �nding the 1=z term in the Laurent expansion ofthe integrand. Thus we have(z6 + 1)24i z5 (1� p z2)(z2 � p) = i4p z5 (1 + z6)2 (1� p z2)�1 (1� z2=p)�1= i4p z5 (1 + � � �)(1 + p z2 + p2 z4 + � � �)(1 + z2=p+ z4=p2 + � � �)= i4p z5 �1 + (p+ p�1) z2 + (1 + p2 + p�2) z4 + � � � �= i4p z5 + i (p+ p�1)4p z3 + i (1 + p2 + p�2)4p z + � � � (5.194)From this, we an read o� the residue, and it indeed agrees with the �rst expression in(5.192). Of ourse what we have just done here is ompletely equivalent to the alulationthat led to (5.191). But as a way of organising the alulation in a spei� example,espeially if one does not have an algebrai omputer program available, it is probablysimpler to onstrut the Taylor expansion of the analyti funtion that multiplies the polefator \by hand," as in (5.194). 119



As a �nal example of the type (1) lass of integrals, onsiderI(a; b) � Z 2�0 d�(a+ b os �)2 = IC 4z dzi (b+ 2a z + b z2)2 ; (5.195)where a > b > 0. The integrand has (double) poles atz = �a�pa2 � b2b ; (5.196)and so just the pole at z = (�a + pa2 � b2)=b lies inside the unit irle. After a littlealulation, one �nds the residue there, and hene, from (5.176), we getZ 2�0 d�(a+ b os �)2 = 2� a(a2 � b2) 32 : (5.197)Turning now to integrals of type 2 (5.178), the approah here is to onsider a ontourintegral of the form I � IC f(z) dz ; (5.198)where the ontour C is taken to onsist of the line from x = �R to x = +R along the xaxis, and then a semiirle of radius R in the upper half plane, thus altogether forming alosed path.The ondition that z f(z) should go to zero as jzj goes to in�nity with 0 � arg(z) � �ensures that the ontribution from integrating along the semiirular ar will vanish whenwe send R to in�nity. (On the ar we have dz = iRei � d�, and so we would like Rf(Rei �)to tend to zero as R tends to in�nity, for all � in the range 0 � � � �, whene the onditionthat we plaed on f(z).) Thus we shall have thatZ 1�1 f(x) dx = 2� i Xs Rs ; (5.199)where the sum is taken over the residues Rs at all the poles of f(z) in the upper half plane.The ontour is depited in Figure 3 below.Consider, as a simple example, Z 1�1 dx1 + x2 : (5.200)Clearly, the funtion f(z) = (1 + z2)�1 ful�ls all the requirements for this type of integral.Sine f(z) = (z + i)�1 (z � i)�1, we see that there is just a single pole in the upper halfplane, at z = i. It is a simple pole, and so the residue of f(z) there is 1=(2i). Consequently,from (5.199) we derive Z 1�1 dx1 + x2 = � : (5.201)120



R-RFigure 3: The ontour enloses poles of f(z) in the upper half planeOf ourse in this simple example we ould perfetly well have evaluated the integralinstead by more \elementary" means. A substitution x = tan � would onvert (5.200) intoZ 12�� 12� d� = � : (5.202)However, in more ompliated examples the ontour integral approah is often muh easierto use. Consider, for instane, the integralZ 1�1 x4 dx(a+ b x2)4 ; (5.203)where a > 0 and b > 0. The funtion f(z) = z4 (a + b z2)�4 has poles of order 4 atz = �i(a=b) 12 , and so there is just one pole in the upper half plane. Using the formula(5.191) to alulate the residue, and multiplying by 2� i, we getZ 1�1 x4 dx(a+ b x2)4 = 116 � a� 32 b� 52 : (5.204)Finally, onsider integrals of type 3 (5.179). In general, � is assumed to be a realnumber, but not an integer. We onsider the funtion (�z)��1 f(z), whih therefore hasa branh-point singularity at z = 0. We onsider a ontour C of exatly the form givenin Figure 1, with a = 0. Eventually, we allow the radius of the larger irle C1 to beomein�nite, while the radius of the smaller irle C2 will go to zero. In view of the assumptionthat z� f(z) goes to zero as z goes to 0 or in�nity, it follows that the ontributions fromintegrating around these two irles will give zero.Unlike the situation when we used the ontour of Figure 1 for deriving the Laurent series,we are now faed with a funtion (�z)��1 f(z) with a branh point at z = 0. Consequently,121



there is a disontinuity as one traes the value of (�z)��1 f(z) around a losed path thatenirles the origin. This means that the results of integrating along the two sides of the\auseway" onneting the irles C1 and C2 will not anel.We an take the phase of (�z)��1 to be real when z lies at the point where the smallirle C2 intersets the negative real axis. Consequently, on the lower part of the auseway(below the real axis), the phase will be ei� (��1). On the other hand, on the upper part ofthe auseway (above the real axis), the phase will be e�i� (��1). Thus we �nd thatIC(�z)��1 f(z) dz = �ei� (��1) Z 10 x��1 f(x) dx+ e�i� (��1) Z 10 x��1 f(x) dx ;= 2i sin(� �) Z 10 x��1 f(x) dx ; (5.205)where the minus sign on the �rst term on the right in the top line omes from the fatthat the integral from x = 0 to x =1 is running in the diretion opposite to the indiateddiretion of th ontour in Figure 1. The ontour integral on the left-hand side piks up allthe ontributions from the poles of f(z). Thus we have the result thatZ 10 x��1 f(x) dx = �sin�� Xs Rs ; (5.206)where Rs is the residue of (�z)��1 f(z) at pole number s of the funtion f(z).As an example, onsider the integralZ 10 x��1 dx1 + x : (5.207)Here, we therefore have f(z) = 1=(z + 1), whih just has a simple pole, at z = �1. Theresidue of (�z)��1 f(z) is therefore just 1, and so from (5.206) we obtain that when 0 <� < 1, Z 10 x��1 dx1 + x = �sin�� : (5.208)(The restrition 0 < � < 1 is to ensure that the fall-o� onditions for type 3 integrands atz = 0 and z =1 are satis�ed.)A ommon irumstane is when there is in fat a pole in the integrand that lies exatlyon the path where we wish to run the ontour. An example would be an integral of the type(2) disussed above, but where the integrand now has poles on the real axis. If these aresimple poles, then the following method an be used. Consider a situation where we wishto evaluate R1�1 f(x) dx, and f(z) has a single simple pole on the real axis, at z = a. Whatwe do is to make a little detour in the ontour, to skirt around the pole, so the ontour C inFigure 3 now aquires a little semiirular \bypass" , of radius �, taking it into the upper122



half plane around the point z = a. This is shown in Figure 4 below. Thus before we takethe limit where R �! 1, we shall haveZ a���R f(x) dx+ Z f(z) dz + Z Ra+� f(x) dx = 2� i Xj Rj ; (5.209)where as usual Rj is the residue of f(z) at its j'th pole in the upper half plane.
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R-RFigure 4: The ontour bypasses a pole at the originTo evaluate the ontribution on the semiirular ontour , we let z�a = � ei �, implyingthat the ontour is parameterised (in the diretion of the arrow) by taking � to run from �to 0. Thus near z = a we shall have f(z) � eR=(z� a), where eR is the residue of the simplepole at z = a, and dz = i � ei � d�, wheneZ f(z) dz = i eR Z 0� d� = �i�R : (5.210)Sending R to in�nity, and � to zero, the remaining two terms on the left-hand side of (5.209)de�ne what is alled the Cauhy Prinipal Value Integral, denoted by P R ,P Z 1�1 f(x) dx � Z a���1 f(x) dx+ Z 1a+� f(x) dx ; (5.211)where one takes the limit where the small positive quantity � goes to zero. Suh a de�nitionis neessary in order to give meaning to what would otherwise be an ill-de�ned integral.In general, we therefore arrive at the result that if f(z) has several simple poles on thereal axis, with residues eRb�, as well as poles in the upper half plane with residues Rj , thenP Z 1�1 f(x) dx = 2� iXj Rj + i� Xk eRk : (5.212)123



Here, the prinipal-value presription is used to give meaning to the integral, analogouslyto (5.211), at eah of the simple poles on the real axis.Consider, as an example, R1�1(sinx)=x dx. Atually, of ourse, this integrand has nopole on the real axis, sine the pole in 1=x is anelled by the zero of sinx. But one way todo the alulation is to say that we shall alulate the imaginary part ofZ 1�1 eixx dx = Z 1�1 osxx dx+ i Z 1�1 sinxx dx : (5.213)We must now use the prinipal-value presription to give meaning to this integral, sinethe real part of the integrand in (5.213), namely (os x)=x, does have a pole at x = 0. Butsine we are after the imaginary part, the fat that we have \regulated" the real part of theintegral will not upset what we want. Thus from (5.212) we �nd thatP Z 1�1 eixx dx = i� ; (5.214)and so from the imaginary part (whih is all there is; the prinipal-value integral hasregulated the ill-de�ned real part to be zero) we getZ 1�1 sinxx dx = � : (5.215)Notie that there is another way that we ould have handled a pole on the real axis.We ould have bypassed aound it the other way, by taking a semiirular ontour ~ thatwent into the lower half omplex plane instead. Now, the integration (5.210) would bereplaed by one where � ran from � = � to � = 2� as one follows in the diretion of thearrow, giving, eventually, a ontribution �i� eR rather than +i� eR in (5.212). But all isatually well, beause if we make a detour of this kind we should atually now also inludethe ontribution of this pole as an honest pole enlosed by the full ontour C, so it will alsogive a ontribution 2� i eR in the �rst summation on the right-hand side of (5.212). So atthe end of the day, we end up with the same onlusion no matter whih way we detouraround the pole.Another ommon kind of real integral that an be evaluated using the alulus of residuesinvolves the log funtion. Consider, for example, the following:I � Z 10 log x dx(1 + x2)2 : (5.216)One way to evaluate this is by taking the usual large semiirular ontour in the upper halfplane, with a little semiirular detour  (in the upper half plane) bypassing the branhpoint at z = 0, as in Figure 4. Then we shall haveZ ���1 log x dx(1 + x2)2 + Z log z dz(1 + z2)2 + Z 1� log x dx(1 + x2)2 = 2� iR ; (5.217)124



where R is the residue of (log z)=(1+z2)2 at the double pole at z = i in the upper half plane.(As usual, we must hek that the integrand indeed has the appropriate fall-o� propertyso that the ontribution from the large semiirular ar goes to zero; it does.) There are aouple of new features that this example illustrates.First, onsider the integral around the little semiirle . Letting z = � ei � there weshall have Z log z dz(1 + z2)2 = �i � Z �0 log(� ei �) ei � d�(1 + �2 e2i �)2 : (5.218)This looks alarming at �rst, but loser inspetion reveals that it will give zero, one we takethe limit � �! 0. The point is that after writing log(� ei �) = log �+ i �, we see that the �integrations will not introdue any divergenes, and so the overall fators of � or � log � inthe two parts of the answer will both niely kill o� the ontributions, as � �! 0.Next, onsider the �rst integral on the left-hand side of (5.217). For this, we an hangevariable from x, whih takes negative values, to t, say, whih is positive. But we need totake are, beause of the multi-valuedness of the log funtion. So we should de�nex = ei� t : (5.219)In all plaes exept the log, we an simply interpret this as x = �t, but in the log we shallhave log z = log(ei� t) = log t+ i�. Thus the �rst integral in (5.217) givesZ 0�1 log x dx(1 + x2)2 = Z 10 log t dt(1 + t2)2 + i� Z 10 dt(1 + t2)2 : (5.220)(Now that we know that there is no ontribution from the little semiirle , we an justtake � = 0 and forget about it.) The �rst term on the right-hand side here is of exatly thesame form as our original integral I de�ned in (5.216). The seond term on the right is asimple integral. It itself an be done by ontour integral methods, as we have seen. Sinethere is no new subtlety involved in evaluating it, let's just quote the answer, namelyZ 10 dt(1 + t2)2 = 14� : (5.221)Taking stok, we have now arrived at the result that2I + 14 i�2 = 2� iR : (5.222)It remains only to evaluate the residue of (log z)=(1 + z2)2 at the double pole at z = i inthe upper half plane. We do this with the standard formula (5.191). Thus we haveR = ddz h log z(z + i)2 i ; (5.223)125



to be evaluated at z = i = ei�=2. (Note that we should write it expliitly as ei�=2 in orderto know exatly what to do with the log z term.) Thus we getR = i4 + 18� : (5.224)Plugging into (5.222), we see that the imaginary term on the left-hand side is anelled bythe imaginary term in (5.224), leaving just 2I = ��=2. Thus, eventually, we arrive at theresult that Z 10 log x dx(1 + x2)2 = �14� : (5.225)Aside from the spei�s of this example, there are two main general lessons to be learnedfrom it. The �rst is that if an integrand has just a logarithmi divergene at some pointz = a, then the ontour integral around a little semiirle or irle entred on z = a will givezero in the limit when its radius � goes to zero. This is beause the logarithmi divergeneof log � is outweighed by the linear fator of � oming from writing dz = i � ei � d�.The seond general lesson from this example is that one should pay areful attention tohow the a oordinate rede�nition is performed, for example when re-expressing an integralalong the negative real axis as an integral over a positive variable (like t in our example).In partiular, one has to handle the rede�nition with appropriate are in the multi-valuedlog funtion.5.8 Analyti ContinuationAnalytiity of a funtion of a omplex variable is a very restritive ondition, and onse-quently it has many powerful impliations. One of these is the onept of analyti ontin-uation. Let us begin with an example.Consider the funtion g(z), whih is de�ned by the power seriesg(z) �Xn�0 zn : (5.226)It is easily seen, by applying the Cauhy test for onvergene, that this series is absolutelyonvergent for jzj < 1. It follows, therefore, that the funtion g(z) de�ned by (5.226) isanalyti inside the unit irle jzj < 1. It is also true, of ourse, that g(z) is singular outsidethe unit irle; the power series diverges.Of ouse (5.226) is a very simple geometri series, and we an see by inspetion that itan be summed, when jzj < 1, to give f(z) = 11� z : (5.227)126



This is analyti everywhere exept for a pole at z = 1. So we have two funtions, g(z) andf(z), whih are both analyti inside the unit irle, and indeed they are idential insidethe unit irle. However, whereas the funtion g(z) is singular outside the unit irle, thefuntion f(z) is well-de�ned and analyti in the entire omplex plane, with the exeptionof the point z = 1 where it has a simple pole.It is evident, therefore, that we an view f(z) = 1=(1 � z) as an extrapolation, orontinuation, of the funtion g(z) = 1 + z + z2 + � � � outside its irle of onvergene. Aswe shall prove below, there is an enormously powerful statement that an be made; thefuntion 1=(1� z) is the unique analyi ontinuation of the original funtion g(z) de�ned inthe unit irle by (5.226). This uniqueness is absolutely ruial, sine it means that one ansensibly talk about the analyti ontinuation of a funtion that is initially de�ned in somerestrited region of the omplex plane. A priori, one might have imagined that there ouldbe any number of ways of de�ning funtions that oinided with g(z) inside the unit irle,but that extrapoloated in all sorts of di�erent ways as one went outside the unit irle. Andindeed, if we don't plae the extra, and very powerful, restrition of analytiity, then thatwould be exatly the ase. We ould indeed dream up all sorts of non-analyti funtionsthat agreed with g(z) inside the unit irle, and that extrapolated in arbitrary ways outsidethe unit irle.22 The amazing thing is that if we insist that the extrapolating funtion beanalyti, then there is preisely one, and only one, analyti ontinuation.In the present example, we have the luxury of knowing that the funtion g(z), de�ned bythe series expansion (5.226), atually sums to give 1=(1�z) for any z within the unit irle.This immediately allows us to dedue, in this example, that the analyti ontinuation ofg(z) is preisely given by g(z) = 11� z ; (5.228)whih is de�ned everywhere in the omplex plane exept at z = 1. So in this toy example,we know what the funtion \really is."Suppose, for a moment, that we didn't know that the series (5.226) ould be summedto give (5.228). We ould, however, disover that g(z) de�ned by (5.226) gave perfetlysensible results for any z within the unit irle. (For example, by applying the Cauhy testfor absolute onvergene of the series.) Suppose that we use these results to evaluate f(z)in the neighbourhood of the point z = �12 . This allows us, by using Taylor's theorem, to22We ould, for example, simply de�ne a funtion F (z) suh that F (z) � g(z) for jzj < 1, and F (z) � h(z)for jzj � 1, where h(z) is any funtion we wish. But the funtion will in general be horribly non-analyti onthe unit irle jzj = 1 where the hangeover ours.127



onstrut a series expansion for g(z) around the point z = �12 :g(z) = Xn�0 g(n)(�12)n! (z + 12)n : (5.229)Where does this onverge? We know from the earlier general disussion that it will onvergewithin a irle of radius R entred on z = �12 , where R is the distane from z = �12 to thenearest singularity. We know that atually, this singularity is at z = 1. Therefore our newTaylor expansion (5.229) is onvergent in a irle of radius 32 , entered on z = �12 . Thisirle of onvergene, and the original one, are depited in Figure 5 below. We see thatthis proess has taken us outside the original unit irle; we are now able to evaluate \thefuntion g(z)" in a region outside the unit irle, where its original power-series expansion(5.226) does not onverge.23

Figure 5: The irles of onvergene for the two series23Seretly, we know that the power series we will just have obtained is nothing but the standard Taylorexpansion of 1=(1 � z) around the point z = � 12 :11 � z = 23 + 49 (z + 12 ) + 827 (z + 12 )2 + 1681 (z + 12 )3 + � � � ; (5.230)whih indeed onverges in a irle of radius 32 . 128



It should be lear that be repeated use of this tehnique, we an eventually over theentire omplex plane, and hene onstrut the analyti ontinuation of g(z) from its originalde�nition (5.226) to a funtion de�ned everywhere exept at z = 1.The ruial point here is that the proess of analyti ontinuation is a unique one. Toshow this, we an establish the following theorem:Let f(z) and g(z) be two funtions that are analyti in a region D, and supposethat they are equal on an in�nite set of points having a limit point z0 in D. Thenf(z) � g(z) for all points z in D.In other words, if we know that the two analyti funtions f(z) and g(z) agree on anar of points ending at point24 z0 in D, then they must agree everywhere in D. (Note thatwe do not even need to know that they agree on a smooth ar; it is suÆient even to knowthat they agree on a disrete set of points that get denser and denser until the end of thear at z = z0 is reahed.)To prove this theorem, we �rst de�ne h(z) = f(z) � g(z). Thus we know that h(z)is analyti in D, and it vanishes on an in�nite set of points with limit point z0. We arerequired to prove that h(z) must be zero everywhere in D. We do this by expanding h(z)in a Taylor series around z = z0: h(z) = 1Xk=0 ak (z � z0)k ; (5.231)whih onverges in some neighbourhood of z0 sine h(z) is analyti in the neighbourhoodof z = z0. Sine we want to prove that h(z) = 0, this means that we want to show that allthe oeÆients ak are zero.Of ourse sine h(z0) = 0 we know at least that a0 = 0. We shall prove that all theak are zero by the time-honoured proedure of supposing that this is not true, and thenarriving at a ontradition. Let us suppose that am, for some m, is the �rst non-zero akoeÆient. This means that if we de�nep(z) � (z � z0)�m h(z) = (z � z0)�m 1Xk=m ak (z � z0)k ;= am + am+1 (z � z0) + � � � ; (5.232)then p(z) is an analyti funtion, and its Taylor series is therefore also onvergent, in theneighbourhood of z = z0. Now omes the punh-line. We know that h(z) is zero for all24An example of suh a set of points would be zn = z0 + 1=n, with n = 1; 2; 3 : : :.129



the points z = zn in that in�nite set that has z0 as a limit point. Thus in partiular thereare points zn with n very large that are arbitrarily lose to z = z0, and at whih h(z)vanishes. It follows from its de�nition that p(z) must also vanish at these points. But sinethe Taylor series for p(z) is onvergent for points z near to z = z0, it follows that for p(zn)to vanish when n is very large we must have am = 0, sine all the higher terms in theTaylor series would be negligible. But this ontradits our assumption that am was the �rstnon-vanishing oeÆient in (5.231). Thus the premise that there exists a �rst non-vanishingoeÆient was false, and so it must be that all the oeÆients ak vanish. This proves thath(z) = 0, whih is what we wanted to show.The above proof shows that h(z) must vanish within the irle of onvergene, enteredon z = z0, of the Taylor series (5.231). By repeating the disussion as neessary, we anextend this region gradually until the whole of the domain D has been overed. Thus wehave established that f(z) = g(z) everywhere in D, if they agree on an in�nite set of pointswith limit point z0.By this means, we may eventually seek to analytially extend the funtion to the wholeomplex plane. There may well be singularities at ertain plaes, but provided we don'trun into a solid \wall" of singularities, we an get around them and extend the de�nitionof the funtion as far as we wish. Of ourse if the funtion has branh points, then we willenounter all the usual multi-valuedness issues as we seek to extend the funtion.Let us go bak for a moment to our example with the funtion g(z) that was originallyde�ned by the power series (5.226). We an now immediately invoke this theorem. It iseasily established that the series (5.226) sums to give 1=(1� z) within the unit irle. Thuswe have two analyti funtions, namely g(z) de�ned by (5.226) and f(z) de�ned by (5.227)that agree in the entire unit irle. (Muh more than just an ar with a limit point, infat!) Therefore, it follows that there is a unique way to extend analytially outside theunit irle. Sine f(z) = 1=(1 � z) is ertainly analyti outside the unit irle, it followsthat the funtion 1=(1 � z) is the unique analyti extension of g(z) de�ned by the powerseries (5.226).Let us now onsider a less trivial example, to show the power of analyti ontinuation.5.9 The Gamma FuntionThe Gamma funtion �(z) an be represented by the integral�(z) = Z 10 e�t tz�1 dt ; (5.233)130



whih onverges if Re(z) > 0. It is easy to see that if Re(z) > 1 then we an perform anintegration by parts to obtain�(z) = (z � 1) Z 10 e�t tz�2 dt� he�t tz�1i10 = (z � 1) �(z � 1) ; (5.234)sine the boundary term then gives no ontribution. Shifting by 1 for onveniene, we have�(z + 1) = z �(z) : (5.235)One easily sees that if z is a positive integer k, the solution to this reursion relation is�(k) = (k � 1)!, sine it is easily established by elementary integration that �(1) = 1. Theresponsibility for the rather tiresome shift by 1 in the relation �(k) = (k � 1)! lies withLeonhard Euler.Of ourse the de�nition (5.233) is valid only when the integral onverges. It's lear thatthe e�t fator ensures that there is no trouble from the upper limit of integration, but fromt = 0 there will be a divergene unless Re(z) > 0. Furthermore, for Re(z) > 0 it is lear thatwe an di�erentiate (5.233) with respet to z as many times as we wish, and the integralswill still onverge.25 Thus �(z) de�ned by (5.233) is �nite and analyti for all points withRe(z) > 0.We an now use (5.235) in order to give an analyti ontiuation of �(z) into the regionwhere Re(z) � 0. Spei�ally, if we write (5.235) as�(z) = �(z + 1)z ; (5.237)then this gives a way of evaluating �(z) for points in the strip �1+ � < Re(z) < � (� a smallpositive quantity) in terms of �(z) at points with Re(z) > 0, where it is known to be analyti.The funtion so de�ned, and the original Gamma funtion, have an overlapping region ofonvergene, and so we an make an analyti ontinuation into the strip �1+� < Re(z) < �.The proess an then be applied iteratively, to over more and more strips over to the left-hand side of the omplex plane, until the whole plane has been overed by the analytiextension.Of ourse the analytially ontinued funtion �(z) is not neessarily analyti at everypoint in the omplex plane, and indeed, as we shall see, it has isolated poles. To explore25Write tz = ez log t, and so, for example,�0(z) = Z 10 dt tz�1 log t e�t : (5.236)Now matter how many powers of log t are brought down by repeated di�erentiation, the fator of tz�1 willensure onvergene at t = 0. 131



the behaviour of �(z) in the region of some point z with Re(z) � 0, we �rst iterate (5.235)just as many times n as are neessary in order to express �(z) in terms of �(z + n+ 1):�(z) = �(z + n+ 1)(z + n)(z + n� 1)(z + n� 2) � � � z ; (5.238)where we hoose n so that Re(z + n + 1) > 0 but Re(z + n) < 0. Sine we have alreadyestablished that �(z + n + 1) will therefore be �nite, it follows that the only singularitiesof �(z) an ome from plaes where the denominator in (5.238) vanishes. By virtue of ourhoie of n, this will therefore happen when z = 0 or z is a negative integer.To study the preise behaviour near the point z = �n, we may set z = �n+ �, wherej�j << 1, and use (5.238) to give�(�n+ �) = (�1)n �(1 + �)(n� �)(n� �� 1) � � � (1� �) � : (5.239)Thus there is a simple pole at � = 0. Its residue is alulated by multiplying (5.239) by � andtaking the limit � �! 0. Thus we onlude that �(z) is meromorphi in the whole �niteomplex plane, with simple poles at the points z = 0, �1, �2, �3; : : :, with the residue atz = �n being (�1)n=n!. (Sine �(1) = 1.)The regular spaing of the poles of �(z) is reminisent of the poles of the funtionsose �z or ot �z. Of ourse in these ases, they have simple poles at all the integers; zeronegative and positive. We an in fat make a funtion with preisely this property out of�(z), by writing the produt �(z) �(1 � z) : (5.240)From what we saw above, it is lear that this funtion will have simple poles at preiselyall the integers. Might it be that this funtion is related to ose �z or ot �z?To answer this, onsider again the original integral representation (5.233) for �(z), andnow make the hange of variables t �! t2. This implies dt=t �! 2dt=t, and so we shallhave �(z) = 2 Z 10 e�t2 t2z�1 dt : (5.241)Thus we may write�(a) �(1� a) = 4 Z 10 dx Z 10 dy e�(x2+y2) x2a�1 y�2a+1 : (5.242)Introduing polar oordinates via x = r os �, y = r sin �, we therefore get�(a) �(1 � a) = 4 Z 12�0 (ot �)2a�1 d� Z 10 r e�r2 dr : (5.243)132



The r integration is trivially performed, giving a fator of 12 , and so we have�(a) �(1 � a) = 2 Z 12�0 (ot �)2a�1 d� : (5.244)Now, we let s = ot �. This gives�(a) �(1 � a) = 2 Z 10 s2a�1 ds1 + s2 : (5.245)If we restrit a to be a real number in the range 0 < a < 1, this integral falls into theategory of type 3 that we disussed a ouple of setions ago. Thus we have�(a) �(1� a) = 2�sin(2� a) X R ; (5.246)where R are the residues at the poles of (�z)2a�1=(1 + z2). These poles lie at z = �i, andthe residues are easily seen to be 12e�i� a. Thus we get�(a) �(1� a) = 2�sin(2� a) os(� a) = 2� os(� a)2 sin(� a) os(� a) ;= �sin� a : (5.247)By the now-familiar tehnique of analyti ontinuation, we therefore onlude that�(z) �(1 � z) = �sin� z ; (5.248)in the whole omplex plane. This result is one that will be useful in the next setion, whenwe shall disuss the Riemann Zeta funtion.Before moving on to the Riemann Zeta funtion, let us �rst use (5.248) to unover aouple more properties of the Gamma funtion. The �rst of these is a simple fat, namelythat �(12) = p� : (5.249)We see this by setting z = 12 in (5.248).The seond, more signi�ant, property of �(z) that we an dedue from (5.248) is that�(z)�1 an entire funtion. That is to say, �(z)�1 is analyti everywhere in the �nite omplexplane. Sine we have already seen that the only singularities of �(z) are poles, this meansthat we need only show that �(z) has no zeros in the �nite omplex plane. Looking at(5.248) we see that if it were to be the ase that �(z) = 0 for some value of z, then it wouldhave to be that �(1 � z) were in�nite there.26 But we know preisely where �(1 � z) is26Reall that sin�z is an entire funtion, and it therefore has no singularity in the �nite omplex plane.Consequently, 1=(sin �z) must be non-vanishing for all �nite z.133



in�nite, namely the poles at z = 1; 2; 3 : : :, and �(z) is ertainly not zero there. Therefore�(z) is everywhere non-zero in the �nite omplex plane. Consequently, �(z)�1 is analytieverywhere in the �nite omplex plane, thus proving the ontention that �(z)�1 is an entirefuntion.Before losing this setion, we may observe that we an also give ontour integral rep-resentations for the Gamma funtion, as follows. Consider �rst the Hankel integral�(z) = � 12 i sin�z ZC e�t (�t)z�1 dt ; (5.250)where we integrate in the omplex t-plane around the so-alled Hankel Contour depited inFigure 6 below. This starts at +1 just above the real axis, swings around the origin, andgoes out to +1 again just below the real axis.

Figure 6: The Hankel ontourBy methods analogous to those we used previously, we see that we an deform this intothe ontour depited in Figure 7. If Re(z) > 0, there will be no ontribution from integratingaround the small irle surrounding the origin, in the limit where its radius is sent to zero.Hene the ontour integral is re-expressible simply in terms of the two semi-in�nite lineintegrals just above and below the real axis.134



Figure 7: The deformation of the Hankel ontourFor the integral below the real axis, we have t = e2� i x, for x running from 0 to +1.Therefore (�t) = ei� x there. For the integral above the real axis, we have t = x, and hene(�t) = e�i� x, with x running from +1 to 0. Consequently, we getZC e�t (�t)z�1 dz = (ei� (z�1) � e�i� (z�1)) Z 10 e�t tz�1 dt ;= �2 i sin(�z) Z 10 e�t tz�1 dt ; (5.251)and hene we see that (5.250) has redued to the original real integral expression (5.233)when Re(z) > 0. However, the integral in the expression (5.250) has a muh wider appli-ability; it is atually single-valued and analyti for all z. (Reall that we are integratingaround the Hankel ontour, whih does not pass through the point t = 0, and so there isno reason for any singularity to arise, for any value of z.)Combining (5.250) with (5.248), we an give another ontour integral expression for�(z), namely 1�(z) = � 12� i ZC e�t (�t)�z dt ; (5.252)135



where we again integrate around the Hankel ontour of Figure 6, in the omplex t plane.Again, this integral is valid for all z. Indeed with this expression we see again the resultthat we previously dedued from (5.248), that �(z)�1 is an entire funtion, having nosingularities anywhere in the �nite omplex plane.A pause for reetion is appropriate here. What we have shown is that �(z) de�ned by(5.250) or (5.252) gives the analyti ontinuation of our original Gamma funtion (5.233) tothe entire omplex plane, where it is analyti exept for simple poles at z = 0;�1;�2; : : :.How is it that these ontour integrals do better than the previous real integral (5.233),whih only onverged when the real part of z was greater than 0? The ruial point isthat in our derivation, when we related the real integral in (5.233) to the ontour integral(5.250), we noted that the ontribution from the little irle as the ontour swung aroundthe origin would go to zero provided that the real part of z was greater than 0.So what has happened is that we have re-expressed the real integral in (5.233) in termsof a ontour integral of the form (5.250), whih gives the same answer when the real partof z is greater than 0, but it disagrees when the real part of z is � 0. In fat it disagreesby the having the rather nie feature of being onvergent and analyti when Re(z) � 0,unlike the real integral that diverges. So as we wander o� westwards in the omplex z planewe wave a fond farewell to the real integral, with its divergent result, and adopt insteadthe result from the ontour integral, whih happily provides us with analyti answers evenwhen Re(z) � 0. We should not be worried by the fat that the integrals are disagreeingthere; quite the ontrary, in fat. The whole point of the exerise was to �nd a better wayof representing the funtion, to over a wider region in the omplex plane. If we had merelyreprodued the bad behaviour of the original integral in (5.233), we would have ahievednothing by introduing the ontour integrals (5.250) and (5.252).Now we turn to the Riemman Zeta funtion, as a slightly more intriate example of theanalyti ontinuation of a funtion of a omplex variable.5.10 The Riemann Zeta FuntionConsider the Riemman Zeta Funtion, �(s). This is originally de�ned by�(s) � 1Xn=1 1ns : (5.253)This sum onverges whenever the real part of s is greater than 1. (For example, �(2) =Pn�1 n�2 an be shown to equal �2=6, whereas �(1) = Pn�1 n�1 is logarithmially diver-gent. The sum is more and more divergent as Re(s) beomes less than 1.)136



Sine the series (5.253) de�ning �(s) is onvergent everywhere to the right of the lineRe(s) = 1 in the omplex plane, it follows that �(s) is analyti in that region. It is reasonableto ask what is its analyti ontinuation over to the left of Re(s) = 1. As we have alreadyseen from the simple example of f(z) = 1=(1 � z), the mere fat that our original powerseries diverges in the region with Re(s) � 0 does not in any way imply that the \atual"funtion �(s) will behave badly there. It is just our power series that is inadequate.How do we do better? To begin, reall that we de�ne the Gamma funtion �(s) by�(s) = Z 10 e�u us�1 du (5.254)We saw in the previous setion that if s = k, where k is an integer, then �(k) is nothingbut the fatorial funtion (k � 1)!. If we now let u = n t, then we see that�(s) = ns Z 10 e�n t ts�1 dt : (5.255)We an turn this around, to get an expression for n�s.Plugging into the de�nition (5.253) of the Zeta funtion, we therefore have�(s) = 1�(s) 1Xn=1 Z 10 e�n t ts�1 dt : (5.256)Taking the summation through the integral, we see that we have a simple geometri series,whih an be summed expliitly:1Xn=1 e�n t = 11� e�t � 1 = 1et � 1 ; (5.257)and hene we arrive at the following integral representation for the Zeta funtion:�(s) = 1�(s) Z 10 ts�1 dtet � 1 : (5.258)So far so good, but atually we haven't yet managed to ross the barrier of the Re(s) = 1line in the omplex plane. The denominator in the integrand goes to zero like t as t tendsto zero, so to avoid a divergene from the integration at the lower limit t = 0, we mustinsist that the real part of s should be greater than 1. This is the same restrition thatwe enountered for the original power series (5.253). What we do now is to turn our realintegral (5.258) into a omplex ontour integral, using the same sort of ideas that we usedin the previous setion.To do this, onsider the integral ZC (�z)s�1 dzez � 1 ; (5.259)137



where C is the same Hankel ontour, depited in Figure 6, that we used in the disussion ofthe Gamma funtion in the previous setion. Sine the integrand we are onsidering herelearly has poles at z = 2� in for all the integers n, we must make sure that as it irlesround the origin, the Hankel ontour keeps lose enough to the origin (with passing throughit) so that it does not enompass any of the poles at z = �2� i;�4� i; : : :.By methods analogous to those we used previously, we see that we an again deformthis into the ontour depited in Figure 7, where the small irle around the origin will besent to zero radius. It is lear that there is no ontribution from the little irle, providedthat the real part of s is greater than 1. Hene the ontour integral is re-expressible simplyin terms of the two semi-in�nite line integrals just above and below the real axis.For the integral below the real axis, we have z = e2� i t, for t running from 0 to +1.Therefore (�z) = ei� t there. For the integral above the real axis, we have z = t, and hene(�z) = e�i� t, with t running from +1 to 0. Consequently, we getZC (�z)s�1 dzez � 1 = (ei� (s�1) � e�i� (s�1)) Z 10 ts�1 dtet � 1 ; (5.260)From (5.258), this means that we have a new expression for the Zeta funtion, as�(s) = � 12i �(s) sin�s ZC (�z)s�1 dzez � 1 : (5.261)We an neaten this result up a bit more, if we make use of the identity (5.248) satis�edby the Gamma funtion, whih we proved in the previous setion:�(s) �(1� s) = �sin�s : (5.262)Using this in (5.261), we arrive at the �nal result�(s) = ��(1� s)2� i ZC (�z)s�1 dzez � 1 : (5.263)Now omes the punh-line. The integral in (5.263) is a single-valued and analyti fun-tion of s for all values of s. (Reall that it is evaluated using the Hankel ontour in Figure 6,whih does not pass through t = 0, so there is no reason for any singular behaviour.) Con-sequently, the only possible non-analytiity of the Zeta funtion an ome from the �(1�s)prefator. Now, we studied the singularities of the Gamma funtion in the previous setion.The answer is that �(1 � s) has simple poles at s = 1; 2; 3; : : :, and no other singularities.So these are the only possible points where �(s) might have poles. But we already knowthat �(s) is analyti whenever the real part of s is greater than 1. So it must in fat be thease that the poles of �(1 � s) at s = 2; 3; : : : are exatly anelled by zeros oming from138



the integral in (5.263). Only the pole at s = 1 might survive, sine we have no independentargument that tells us that �(s) is analyti there. And in fat there is a pole in �(s) there.To see this, we need only to evaluate the integral in (5.263) at s = 1. This is an easytask. It is 12� i ZC dzez � 1 ; (5.264)whih is just given by the residue of the integrand at z = 0. Doing the series expansion,one �nds 1ez � 1 = 1z � 12 + 112z � 1720 z3 + � � � (5.265)so the residue is 1. From (5.263), this means that near to s = 1 we shall have�(s) � ��(1� s) : (5.266)In fat �(1� s) has a simple pole of residue �1 at s = 1, as we saw in the previous setion,and so the upshot is that �(s) has a simple pole of residue +1 at s = 1, but it is otherwiseanalyti everywhere.It is interesting to try working out �(s) for some values of s that were inaessible inthe original series de�nition (5.253). For example, let us onsider �(0). From (5.263) wetherefore have �(0) = 12� i ZC dzz (ez � 1) ; (5.267)where we have used that �(1) = 1. Now, it is lear that we an lose o� the Hankel ontourof Figure 6 out at +1 near the real axis, sine we will just be adding a small line integralat jzj � R, in the limit where R �! 1. The 1=z fator in the integrand therefore ensuresthat we have a �nite ontribution there of the form12� Z �0��0 d� ei � (5.268)whih beomes arbitrarily small as we take the angular ar width �0 to zero. We thereforejust need to use the alulus of residues to evaluate (5.267), for a losed ontour enirlingthe seond-order pole at z = 0. For this, we have1z (ez � 1) = 1z2 � 12z + 112 + � � � ; (5.269)showing that the residue is �12 . Thus we obtain the result�(0) = �12 : (5.270)139



One an view this result rather whimsially as a \regularisation" of the divergent ex-pression that one would obtain from the original series de�nition of �(s) in (5.253):�(0) = Xn�1n0 = Xn�1 1 = 1 + 1 + 1 + 1 + � � � = �12 : (5.271)Atually, this strange-looking formula is not entirely whimsial. It is preisely the sortof divergent sum that arises in a typial Feynman diagram loop alulation in quantum�eld theory (orresponding, for example, to summing the zero-point energies of an in�nitenumber of harmoni osillators). The whole subtlety of handling the in�nities in quantum�eld theory is onerned with how to reognise and subtrat out unphysial divergenesassoiated, for example, with the in�nite zero-point energy of the vauum. This proessof renormalisation and regularisation an atually, remarkably, be made respetable, andin partiular, it an be shown that the �nal results are independent of the regularisationsheme that one uses. One sheme that has been developed is known as \Zeta FuntionRegularisation," and it onsists preisely of introduing regularisation parameters that ausea divergent sum suh as (5.271) to be replaed by Pn�1 n�s. The regularisation sheme(whose rigour an be proved up to the \industry standards" of the subjet) then onsists ofreplaing the in�nite result forPn�1 1 by the expression �(0), where �(s) is the analytially-ontinued funtion de�ned in (5.263).The Riemann Zeta funtion is very important also in number theory. This goes beyondthe sope of this ourse, but a ouple of remarks on the subjet are maybe of interest. First,we may make the following manipulation, valid for Re(s) > 1:�(s) = Xn�1n�s = 1�s + 2�s + 3�s + 4�s + 5�s + 6�s + 7�s + � � �= 1�s + 3�s + 5�s + � � �+ 2�s (1�s + 2�s + 3�s + � � �) ; (5.272)whene (1� 2�s) �(s) = 1�s + 3�s + 5�s + � � � : (5.273)So all the terms where n is a multiple of 2 are now omitted in the sum. Now, repeat thisexerise but pulling out a fator of 3�s:(1� 2�s) �(s) = 1�s + 5�s + 7�s + 11�s + � � �+ 3�s (1�s + 3�s + 5�s + 7�s + � � �) ;= 1�s + 5�s + 7�s + 11�s + � � �+ 3�s (1� 2�s) �(s) ; (5.274)whene (1� 2�s) (1 � 3�s) �(s) = 1�s + 5�s + 7�s + 11�s + � � � : (5.275)140



We have now have a sum where all the terms where n is a multiple of 2 or 3 are omitted.Next, we do the same for fators of 5, then 7, then 11, and so on. If 2; 3; 5; 7; : : : ; p denoteall the prime numbers up to p, we shall have(1� 2�s) (1� 3�s) � � � (1� p�s) �(s) = 1 +X0n�s ; (5.276)where P0 indiates that only those values of n that are prime to 2; 3; 5; 7; : : : ; p our inthe summation. It is now straightforward to show that if we p to in�nity, this summationgoes to zero, sine the \�rst" term in the sum is the lowest integer that is prime to all theprimes, i.e. n = 1. Sine Re(s) > 1, the \sum" is therefore zero. Hene we arrive at theresult, known as Euler's produt for the Zeta funtion:1�(s) =Yp �1� 1ps� ; Re(s) > 1 ; (5.277)where the produt is over all the prime numbers. Thus we see that the Riemann Zetafuntion an play an important rôle in the study of prime numbers.As a �nal remark, there is a very important, and still unproven onjeture, known asRiemann's Hypothesis. This onerns the loation of the zeros of the Zeta funtion. Onean easily see from Euler's produt (5.277), or from the original series de�nition (5.253),that �(s) has no zeros for Re(s) > 1. One an also rather easily show that when Re(s) < 0,the only zeros lie at the negative even integers, s = �2;�4; : : :. (We shall prove this inthe next setion, in fat.) This leaves the strip 0 � Re(s) � 1 unaounted for. Riemann'sHypothesis, whose proof would have far-reahing onsequenes in number theory, is that inthis strip, all the zeros of �(s) lie on the line Re(s) = 12 .5.11 Summation of SeriesAnother appliation of the alulus of residues is for evaluating ertain types of in�niteseries. The idea is the following. We have seen that the funtions ose �z and ot �z havethe property of having simple poles at all the integers, whilst otherwise being analyti inthe whole �nite omplex plane. In fat, they are bounded everywhere as one takes jzj toin�nity, exept along the real axis where the poles lie. Using these funtions, we an writedown ontour integrals that are related to in�nite sums.First, let us note that the residues of the two trigonometri funtions are as follows:� � ot �z has residue 1 at z = n� � ose �z has residue (�1)n at z = n 141



Consider the following integral:Ip � ICp f(z)� ot �z ; (5.278)where Cp is a losed ontour that enloses the poles of ot �z at z = 0;�1;�2; : : : ;�p, butdoes not enlose any that lie at any larger value of jzj. A typial hoie for the ontourCp is a square, entred on the origin, with side 2p+ 1. (See Figure 8 below.) Then by thetheorem of residues we shall haveIp = 2� i pXn=�p f(n) + 2� i Xa Ra ; (5.279)where Ra denotes the residue of f(z)� ot �z at pole number a of the funtion f(z), andthe summation is over all suh poles that lie within the ontour Cp. In other words, we havesimply split the total sum over residues into the �rst term, whih sums over the residues atthe known simple poles of ot �z, and the seond term, whih sums over the poles assoiatedwith the funtion f(z) itself. Of ourse, in the �rst summation, the residue of f(z)� ot �zat z = n is simply f(n), sine the pole in � ot �z is simple, and itself has residue 1. (Weare assuming here that f(z) doesn't itself have poles at the integers.)Now, it is lear that if we send p to in�nity, so that the orresponding ontour Cp growsto in�nite size and enompasses the whole omplex plane, we shall haveIC1 f(z)� ot �z = 2� i 1Xn=�1 f(n) + 2� i Xa Ra ; (5.280)where the seond sum now ranges over the residues Ra of f(z)� ot �z at all the poles off(z). Furthermore, let us suppose that the funtion f(z) is suh thatjz f(z)j �! 0 as jzj �! 1 : (5.281)It follows that the integral around the ontour C1 out at in�nity will be zero. Consequently,we obtain the result that 1Xn=�1 f(n) = �Xa Ra ; (5.282)where the right-hand sum is over the residues Ra of f(z)� ot �z at all the poles of f(z).In a similar fashion, using ose �z in plae of ot �z, we have that1Xn=�1(�1)n f(n) = �Xa eRa ; (5.283)where the right-hand sum is over the residues of f(z)� ose �z at all the poles of f(z).142
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Figure 8: The square ontours enlose the poles of f(z) (square dots) and the poles of ot �zor ose �z (round dots)Consider an example. Suppose we takef(z) = 1(z + a)2 : (5.284)This has a double pole at z = �a. Using (5.191), we therefore �nd that the residue off(z)� ot �z at z = �a is R = ��2 ose 2(�a) ; (5.285)and hene from (5.282) we onlude that1Xn=�1 1(n+ a)2 = �2sin2 �a : (5.286)We an also evaluate the analgous sum with alternating signs, by using (5.283) instead.Now, we aluate the residue of (z + a)�2 � ose �z at the double pole at z = �a, andonlude that 1Xn=�1 (�1)n(n+ a)2 = �2 os �asin2 �a : (5.287)143



Clearly there are wide lasses of in�nite series that an be summed by this method. Weonlude this setion with an example whih is relevant to our previous disussion of thezeros of the Riemann Zeta funtion. Reall that we showed in the previous setion that theZeta funtion ould be represented by the integral (5.263), whih we repeat here:�(s) = ��(1� s)2� i ZC (�z)s�1 dzez � 1 ; (5.288)where C is the Hankel ontour. Now, imagine making a losed ontour C 0, onsisting ofa large outer irle, entred on the origin, and with radius (2N + 1)�, whih joins ontothe Hankel ontour way out to the east in the omplex plane. See Figure 9 below. As weobserved previously, the integrand in (5.288) has poles at z = 2� in for all the integersn. In fat, of ourse, it is very similar to the ose and ot funtions that we have beenonsidering in our disussion in this setion, sine1ez � 1 = e� 12 ze 12 z � e� 12 z = 12e� 12 z oseh (12z) : (5.289)The only di�erene is that beause we now have the hyperboli funtion oseh rather thanthe trigonometri funtion ose , the poles lie along the imaginary axis rather than the realaxis.Sine the Hankel ontour itself was arranged so as to sneak around the origin withoutenompassing the poles at z = �2� i;�4� i; : : :, it follows that the losed ontour C 0 willpreisely enlose the poles at z = 2� in, for all non-vanishing positive and negative integersn. For some given positive integer m, onsider the pole atz = 2� im = 2� e 12� im: (5.290)When we evaluate the residue Rm here, we therefore haveRm = (2� e� 12� im)s�1 ; (5.291)sine (ez � 1)�1 itself learly has a simple pole with residue 1 there. (We have used thefat that (5.290) implies �z = 2�me� 12� i, sine we have to be areful when dealing withthe multiply-valued funtion (�z)s�1.) There is also a pole at z = �2� e 12� im, whih bysimilar reasoning will have the residue R�m given byR�m = (2� e 12� im)s�1 ; (5.292)Putting the two together, we therefore getRm +R�m = 2 (2� m)s�1 sin(12� s) : (5.293)144



Figure 9: The ontour C 0 omposed of the Hankel ontour plus a large irleBy the theorem of residues, it follows that if we evaluateZC0 (�z)s�1 dzez � 1 ; (5.294)where C 0 is the losed ontour de�ned above, and then we send the radius (2N +1)� of theouter irle to in�nity, we shall getZC0 (�z)s�1 dzez � 1 = �2� i Xm�1(Rm +R�m) ;= �4� i Xm�1(2�m)s�1 sin(12� s)= �2 (2�)s i sin(12� s) Xm�1ms�1 ;= �2 (2�)s i sin(12� s) �(1� s) : (5.295)It is lear from the �nal step that we should require Re(s) < 0 here. (Note that the diretionof the integration around large irle is lokwise, whih is the diretion of dereasing phase,so we pik up the extra �1 fator when using the theorem of residues.)Now, if we onsider the losed ontour C 0 in detail, we �nd the following. It is omprisedof the sum of the Hankel ontour, plus the irle at large radius R = (2N + 1)�, with N145



sent to in�nity. On the large irle we shall havej(�z)s�1j = Rs�1 ; (5.296)whih falls o� faster than 1=R sine we are requiring Re(s) < 0. This is enough to outweighthe fator of R that omes from writing z = Rei � on the large irle. Sine the (ez � 1)�1fator annot introdue any divergene (the radii R = (2N + 1)� are leverly designedto avoid passing through the poles of (ez � 1)�1), it follows that the ontribution fromintegrating around the large irle goes to zero as N is sent to in�nity. Therefore whenevaluating the ontour integral on the left-hand side of (5.295), we are left only with theontribution from the Hankel ontour C. But from (5.288), this means that we haveZC0 (�z)s�1 dzez � 1 = ZC (�z)s�1 dzez � 1 = � 2� i�(1� s) �(s) : (5.297)Comparing with (5.295), we therefore onlude that if Re(s) < 0,�(s) = 2 (2�)s�1 �(1� s) sin(12�s) �(1� s) : (5.298)This an be neatened up using (5.248) to write �(1 � s) = �=(�(s) sin(�s)), and thenusing the fat that sin(�s) = 2 sin(12�s) os(12�s). This gives us the �nal result2s�1 �(s) �(s) os(12�s) = �s �(1� s) ; (5.299)Both sides are analyti funtions, exept at isolated poles, and so even though we derivedthe result under the restrition Re(s) < 0, it immediately follows by analyti ontinuationthat it is valid in the whole omplex plane.This beautiful formula was disovered by Riemann. What wonderful days they musthave been, when suh a result was waiting to be disovered!We an use Riemann's formula to prove the result stated in the previous setion, thatfor Re(s) < 0, the only zeros of �(s) lie at the negative even integers, s = �2;�4 : : :. To dothis, we need only observe that taking Re(s) > 1 in (5.299), the funtions making up theleft-hand side are non-singular. Furthermore, in this region the left-hand side is non-zeroexept at the zeros of os(12� s). (Sine �(s) and �(s) are both, from their de�nitions, learlynon-vanishing in this region.) In this region, the zeros of os(12� s) our at s = 2n + 1,where n is an integer with n � 1. They are simple zeros. Thus in this region the right-handside of (5.299) has simple zeros at s = 2n + 1. In other words, �(s) has simple zeros ats = �2;�4;�6; : : :, and no other zeros when Re(s) < 0.Combined with the observation that the original series de�nition (5.253) makes lear that�(s) annot vanish for Re(s) > 1, we arrive at the onlusion that any possible additional146



zeros of �(s) must lie in the strip with 0 � Re(s) � 1. Riemann's formula does not helpus in this strip, sine it reets it bak onto itself. It is known that there are in�nitelymany zeros along the line Re(s) = 12 . As we mentioned before, the still-unproven RiemannHypothesis asserts that there are no zeros in this strip exept along Re(s) = 12 .5.12 Asymptoti ExpansionsUntil now, whenever we have made use of a series expansion for a funtion it has been takenas axiomati that the series should be onvergent in order to be usable, sine a divergingseries obviously, by de�nition, is giving an in�nite or ill-de�ned result. Surprisingly, perhaps,there are irumstanes where a diverging series is nevertheless useful. The basi idea isthat even if the series has a divergent sum, it might be that by stopping the summation atsome appropriate point, the partial summation an give a reasonable approximation to therequired funtion. An series of this sort is known as an Asymptoti Expanson.First, let us look at an illustrative example. Consider the funtion f(x) de�ned byf(x) = ex Z 1x t�1 e�t dt : (5.300)Integrating by parts we getf(x) = ex h� t�1 e�ti1x � ex Z 1x t�2 e�t dt ;= 1x � ex Z 1x t�2 e�t dt : (5.301)Integrating by parts n times givesf(x) = 1x � 1x2 + 2!x3 � 3!x4 + � � �+ (�1)n+1 (n� 1)!xn + (�1)n n! ex Z 1x t�n�1 e�t dt : (5.302)This seems to be giving us a nie series expansion for f(x). The only trouble is that is isdivergent.If we de�ne un�1 � (�1)n (n� 1)!xn ; (5.303)then we would have f(x) = 1Xn=0un (5.304)if the series expansion made sense. If we apply the ratio test for onvergene, we �nd��� umum�1 ��� = mx ; (5.305)147



whih goes to in�nity as m goes to in�nity, at �xed x. Thus the radius of onvergene iszero.Rather than abandoning the attempt, onsider the partial sumSn(x) � nXm=0um = 1x � 1x2 + 2!x3 � � � �+ (�1)n n!xn+1 : (5.306)Now let us ompare Sn(x) with f(x). From (5.302), we havef(x)� Sn(x) = (�1)n+1 (n+ 1)! ex Z 1x t�n�2 e�t dt : (5.307)Using the fat that ex�t � 1 for x � t � 1, we therefore havejf(x)� Sn(x)j = (n+ 1)! ex Z 1x t�n�2 e�t dt < (n+ 1)! Z 1x t�n�2 dt = n!xn+1 : (5.308)We see that if we take x to be suÆiently large, whilst holding n �xed, then (5.308)beomes very small. This means that the partial sum Sn(x) will be a good approximationto f(x) if we take x suÆiently large. If we take x � 2n, then we shall havejf(x)� Sn(x)j = n!2n+1 nn+1 = n(n� 1) � � � 2 � 12n+1 nn � � �nn < 12n+1 n2 : (5.309)So by taking n to be large (implying that x will be large), we see that we an makejf(x)�Sn(x)j to be very small indeed. The funtion f(x) an be alulated to high aurayfor large x by taking the sum of a suitable number of terms in the series Pm um. This isknown as an asymptoti expansion of f(x). It is usually denoted by the symbol � ratherthan an equals sign, namely f(x) � 1Xm=1 (�1)m (m� 1)!xm : (5.310)A preise de�nition of an asymptoti expansion is the following. A divergent seriesa0 + a1z + a2z2 + � � � + anzn + � � � (5.311)in whih the sum of the �rst (n+ 1) terms is Sn(z) is said to be an asymptoti expansionof a funtion f(z) (for some spei�ed range of values for arg (z)) if the quantity Rn(z) �zn (f(z)� Sn(z)) satis�es limjzj �! 1 Rn(z) = 0 (n �xed) ; (5.312)even though limn �!1 jRn(z)j =1 (z �xed) ; (5.313)148



This last equation is the statement that the series is divergent, whilst (5.312) is the statementthat the series is usable in the asymptoti sense. In other words, we an ensure thatjzn (f(z)� Sn(z))j < � (5.314)for any arbitrarily small �, by taking jzj to be suÆiently large.It is easy to see that our original example (5.310) satis�es the ondition (5.312), sinefrom (5.308) we havejxn (f(x)� Sn(x))j < n!x �! 0 as x �! 1 : (5.315)Notie that unlike ordinary onvergent series expansions, an asymptoti expansion is notunique; it is possible for two di�erent funtions to have an idential asymptoti expansion.An equivalent statement is that there exist funtions whose asymptoti expansion is simply0. An example of suh a funtion is f(x) = e�x ; (5.316)when x is positive. It is lear that this funtion itself satis�es the ondition (5.312), for anyn: xn e�x �! 0 as x �!1 ; (5.317)and so the appropriate asymptoti expansion for e�x is simplye�x � 0 : (5.318)Of ourse, having established that there exist funtions whose asymptoti expansion is 0, itis an immediate onsequene that adding suh a funtion to any funtion f(x) gives anotherwith the same asymptoti expansion as f(x).It is important to know the rules about what is allowable, and what is not allowable,when performing manipulations with asymptoti expansions. Firstly, if two asymptotiexpansions that are valid in an overlapping range of values of arg (z) are multiplied to-gether, then the result is an asymptoti expansion for the produt of the two funtions theyrepresented. Thus if f(z) � 1Xn=0 an z�n and g(z) � 1Xn=0 bn z�n ; (5.319)then f(z) g(z) � 1Xn=0 n z�n ; (5.320)149



where n = nXp=0 ap bn�p : (5.321)In other words, one just multiplies the expansions in the ordinary way, and, qua asymptotiexpansions, the results behave as one would hope. One proves this by diretly verifyingthat the ondition (5.312) is satis�ed by (5.320).Another allowed manipulation is the integration of an asymptoti expansion. For ex-ample, if we have an asymptoti expansionf(x) � 1Xn=2 an x�n ; (5.322)then integrating this term by term gives an asymptoti expansion for the integral of f(x):Z 1x f(y) dy � 1Xn=0 an Z 1x y�n dy� 1Xn=2 1n� 1 an x�n+1 : (5.323)(We onsidered an example where a0 = a1 = 0, for the sake of minor simpli�ation of thedisussion.) Again, the proof of this statement is a simple matter of verifying that theondition (5.312) for an asymptoti expansion is satis�ed.The situation for di�erentiation of an asymptoti expansion is a little more ompliated.It is not in general permissable to di�erentiate an asymptoti expansion for f(x), unless itis already known by some other means that f 0(x) itself has an asymptoti expansion. Anexample that illustrates this is f(x) = e�x sin(ex). This funtion is similar to e�x, in thatits asymptoti expansion for positive x is simply 0:f(x) = e�x sin(ex) � 0 : (5.324)(It is easy to see that xn e�x sin(ex) goes to zero as x goes to +1, for any n. This is beausethe e�x goes to zero faster than any power of x as x goes to infnity, while j sin(ex)j � 1.)However, the derivative of f(x) isf 0(x) = �e�x sin(ex) + os(ex) ; (5.325)and the seond term does not admit an asymptoti expansion.Notie that in our disussion of asymptoti expansions, the phase of z, i.e. arg(z), playsan important rôle. A funtion f(z) may have a totally di�erent asymptoti expansionfor some range of arg(z) as ompared with some other range. For example, we saw that150



the funtion e�x has the asymptoti expansion e�x � 0 when x is real and positive. Onthe other hand, if x is real and negative, it is easily veri�ed that it does not admit anyasymptoti expansion at all. In less extreme examples, one an enounter funtions thathave \interesting" but di�erent asymptoti expansions for di�erent ranges of arg(z).A ommon situation where asymptoti expansions arise ours in a partiular kindof approximation sheme for evaluating ertain lasses of ontour integral, known as the\Method of Steepest Desent." It is to this subjet that we now turn.5.13 Method of Steepest DesentThis approximation sheme is appliable to a ertain rather speial lass of ontour integral,of the following form: J(s) = ZC g(z) es f(z) dz : (5.326)The idea is that one wants to get an approximate asymptoti form for J(s), valid for largevalues of s. For now, we shall have in mind that s is real. The method assumes that thefuntion f(z) is suh that its real part goes to �1 at both ends of the ontour C. Itis furthermore assumed that the prefator funtion g(z) is a slowly-varying one, so thatthe behaviour of the integrand is dominated by the exponential fator. In partiular, theintegrand will be assumed to vanish (for positive real s), at both endpoints.If the parameter s is large and positive, the integrand will beome large when the realpart of f(z) is large and positive, and on the other hand the integrand will beome relativelysmall when the real part of f(z) is small or negative. If we are seeking to approximateJ(s) by an asymptoti expansion, then we are interested in the situation when s beomesarbitrarily large and positive. It is lear then that the asymptoti behaviour of J(s) willbe dominated from the ontribution (or ontributions) to the integral from the region or(regions) where the real part of f(z) reahes a maximum value.Within reason, we are allowed to deform the integration path C as we wish, withouta�eting the �nal result for J(s). Spei�ally, provided the deformation does not ause thepath to ross over a pole or other singularity of the integrand, then we an distort the pathin any desired way. As we have observed above, the most important ontributions to J(s)will ome from the plae or plaes along the path where the real part of the funtion f(z)has a maximum. Let us assume for now, to simplify the disussion, that there is just onesuh maximum, at z = z0. Thus at this point we shall have �u=�x = 0 = �u=�y, and henef 0(z0) = 0 : (5.327)151



If we onsider integrating along the segment of the ontour in the viinity of the max-imum at z = z0, it is lear that life would be made a lot simpler if it were the ase thatthe imaginary part of f(z) were onstant there. To see this, write f(z) = u(x; y) + i v(x; y).If the imaginary part v(x; y) were varying along the path near z = z0, then when s is verylarge it is lear that there will be a fator ei s v (5.328)in the integrand that is making the phase spin round and round like a propeller blade.Evaluating the integral along this dominant segment of the whole path C would then bevery triky.To avoid this diÆulty, we an exploit our freedom to deform the integration path, sothat we angle it around in the neighbourhood of z = z0 suh that v(x; y) is nearly onstantthere. So we want our path near z = z0 to be suh that both of the following onditionshold: f 0(z0) = 0 ; Im(f(z)) = Im(f(z0)) : (5.329)Now early on in our disussion of analyti funtions, we saw that the real and imaginaryparts satisfy the following equations:r2 u = 0 = r2v ; ru � rv = 0 : (5.330)The �rst of these two onditions tells us that u and v annot have maxima or minima.Thus, to take u for example, it tells us that�2u�x2 + �2u�y2 = 0 : (5.331)So if the seond derivative with respet to x is positive at some point, then the seondderivative with respet to y must be negative there. So the stationary point z = z0 that wede�ned by our requirement f 0(z0) = 0 must atually be a saddle point. When we speak ofz = z0 orresponding to the maximum of u(x; y) on our path, we should therefore have inmind the image of a hiker slogging up to a mountain pass, or saddle, and heading on downthe other side. As he reahes the top of the saddle, he atually sees the ground rising bothto his left and to his right, but he, having attained the saddle, heads on downwards intothe valley on the other side.Now onsider the seond equation in (5.330). This says that the lines of u=onstant areorthogonal to the lines of v =onstant. Therefore, if you try to imagine the topography inthe viinity of the saddle, this means that the way to keep v =onstant as you walk up and152



over the saddle is to make sure that you hoose your path suh that u falls o� as rapidlyas possible, on either side of the saddle peak. Thus, viewing your path from the top ofthe saddle, it should desend as rapidly as possible into the valley on either side. In otherwords, the ontour should follow the path of Steepest Desent.We shall therefore now assume that we have adjusted the ontour so that either side ofthe point z0, it follows the steepest possible path of dereasing u(x; y). Near z = z0, weneessarily have that f(z) = f(z0) + 12(z � z0)2 f 00(z0) + � � � ; (5.332)sine we de�ned z0 by f 0(z0) = 0. Sine the ontour has the property that v =onstant,it follows that 12(z � z0)2 f 00(z0) must be real. Furthermore, it must be negative along theontour, sine by onstrution the ontour is suh that u dereases in eah diretion as onemoves away from z = z0. Then, assuming f 00(z0) 6= 0, we havef(z)� f(z0) � 12(z � z0)2 f 00(z0) = � 12s t2 ; (5.333)where this equation is de�ning the new (real) variable t.As we have already observed, sine we are assuming that s is large and positive, theintegral will be dominated by the ontribution from the region near to z = z0. We areassuming also that g(z) is slowly varying, so to a good approximation we may take it outsidethe integration, setting its argument equal to z0, and hene we shall have the approximateresult that J(s) � g(z0) es f(z0) Z 1�1 e� 12 t2 dzdt dt : (5.334)Note that we have taken the range of the integration to run from �1 to 1. Again, thisis an approximation that is well justi�ed when s is large and positive. This an be seenby looking at (5.333): When s is very large, t an beome very large before the magnitudeof f(z) � f(z0) beomes appreiable. In other words, by the time the approximation ofexpanding (f(z)� f(z0) as in (5.333) has broken down the value of t is so large that e� 12 t2is negligable, and so the error introdued by allowing t to run all the way out to �1 is verysmall.To omplete the evaluation of the integral, we just need to work out dz=dt. Near toz = z0, we may write z � z0 = q ei� ; (5.335)where q is real and the phase � is onstant. In fat � spei�es the angle in the omplexplane along whih the diretion of steepest desent lies. Thus from (5.333) we havet2 = �s f 00(z0) q2 e2i� ; (5.336)153



and therefore t = q js f 00(z0)j 12 : (5.337)This means that we an writedzdt = ei� dqdt = ei� js f 00(z0)j� 12 ; (5.338)implying from (5.334) thatJ(s) � g(z0) es f(z0) ei�js f 00(z0)j 12 Z 1�1 e� 12 t2 dt : (5.339)The remaining integral here is just a Gaussian, giving a fator p2�, and so we arrive atthe �nal result J(s) � p2� g(z0) es f(z0) ei�js f 00(z0)j 12 : (5.340)Note that we have written this using the symbol �, denoting an asymptoti expansion. Thisis indeed appropriate; it is an approximation that gets better and better as s gets largerand larger.An it is instrutive to look at an example at this point. Let us onsider the Gammafuntion �(s+ 1), whih an be expressed in terms of the integral representation (5.233):�(s+ 1) = Z 10 xs e�x dx : (5.341)(We onsider �(s+1) here purely for later onveniene; blame Euler, as usual, for the shiftby 1!) First, we make the substitution x = s z, so that in terms of the new integrationvariable z we shall have�(s+ 1) = ss+1 Z 10 zs e�s z dz = ss+1 Z 10 es (log z�z) dz : (5.342)Writing it in this way, we see that it indeed has the general form o� (5.326), with g(z) = 1and f(z) = log z � z : (5.343)The ontour here is along the real axis, so z is in fat just a real variable here. It is learthat f(z) does indeed go to �1 at both endpoints of the integration, namely at z = 0 andz =1.To apply the method of steepest desent to this example, we �rst loate the stationarypoint of f(z), by solving f 0(z) = 1=z � 1 = 0, giving z0 = 1. We also need to alulatef 00(z) = �1=z2 at z = z0 = 1, giving f 00(1) = �1. There is no need to perform anydeformation of the original ontour in this example, sine the imaginary part of f(z) is zero154



in the whole region (for real z) around z = z0 = 1. Furthermore, the phase � vanishes.Substituting into (5.340), we therefore obtain the result�(s+ 1) � p2� ss+12 e�s : (5.344)Realling that �(s + 1) is otherwise known as s!, we an reognise (5.344) as Stirling'sApproximation to the fatorial funtion.How good an approximation is (5.344)? Well, we expet that it should get better andbetter as s gets larger and larger. A tabulation of the atual values and the results fromStirling's approximation, for a variety of values of s is instrutive. This is given below inTable 1. We see that Stirling's approximation to the Gamma funtion rapidly beomesquite a good one, even for quite modest values of s.We have seen that the methods of steepest desents has given a useful approximationto the Gamma funtion, and in a similar way it an be used in many other examples too.One might worry that, as presented above, it seems to be a method that produes a spei�approximate expression, without any indiation of how to get a better one by pushing thingsto higher orders. In fat, the approximations we made in the derivation above are nothingbut the leading-order terms in a series expansion that an be developed and pushed, inpriniple, to arbitrary order. Not surprisingly, the series expansion that one obtains by thismethod is an asymptoti expansion, and not a onvergent series.To see how we develop the full series, let us go bak to the Taylor expansion (5.332) forf(z), whih we approximated by just retaining the leading-order term, as in (5.333). Allthat we need do in order to get the full asymptoti series for J(s) is to work with the exatexpression, rather than the approximation in (5.333). Thus we de�ne t not by (5.333), butinstead by f(z)� f(z0) = � 12s t2 : (5.345)We use this expession in order to substitute for dz=dt in (5.334). Of ourse this is generallyeasier to say than to do, sine one e�etively has to invert the expression (5.345) in orderto obtain z as a funtion of t. Usually, one has to do this at the level of a power-seriesexpansion.One an easily write (5.345) as a power series, giving t as an expansion in powers ofz. There is in fat a systemati way to invert suh a series, so that one obtains instead zas a power series in t. It an be derived most elegantly using the alulus of residues. Weshall not interrupt the ow of this disussion to desribe this here. Instead. let us take ourprevious disussion of the Stirling approximation for the Gamma funtion, and push it to a155



ouple more orders by doing a somewhat brute-fore inversion of the relevant power series.Reall that for the Gamma funtion we had f(z) = log z � z, and hene the stationarypoint f 0(z0) = 0 determines that z0 = 1. Thus from (5.345) we have(z � 1)� log[1 + (z � 1)℄ = 12st2 : (5.346)The left-hand side here an be expanded in a power series in w � (z� 1), around the pointw = 0, giving 12w2 � 13w3 + 14w4 � 15w5 + � � � = 12s t2 : (5.347)We must now reast this as an expression for w as a power series in t. Thus we seek towrite it as w = Xn�0 an tn : (5.348)We an determine the oeÆients an simply by inserting (5.348) into (5.346), expanding inpowers of t, and solving order by order for the an suh that it equal t2=(2s), as demandedby (5.347). The result for the �rst few orders isz � 1 = w = ts 12 + t23s + t336s 32 � t4270s2 + t54320s 52 + � � � : (5.349)Thus we have dzdt = 1s 12 + 2t3s + t212s 32 � 2t3135s2 + t4864s 52 + � � � : (5.350)Substituting this into (5.334), it is lear by symmetry that only the terms in (5.350) thatinvolve even powers of t will give non-zero ontributions in the integral. The non-vanishingones an be evaluated by means of simple integrations by parts, to redue them to thestandard Gaussian inetgral. Thus we see from (5.342) that we obtain�(s+ 1) � p2� ss+12 e�s �1 + 112s + 1288s2 + � � � � : (5.351)This series, whih ould in priniple be developed to any arbitrary desired order, is theasymptoti expansion for the Gamma funtion.Finally, it is interesting to see how a numerial omparison with the true funtion looksnow.
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s s! Stirling Higher-order0.01 0.994325851191 0.236999259660 10.441134050580.1 0.951350769867 0.569718714898 1.2423033088741 1 0.922137008896 1.00218362425110 3.628800000000 106 3.598695618741 106 3.628809703606 106100 9.3326215443944 10157 9.324847625269 10157 9.3326215694180 101571000 4.023872600771 102567 4.023537292037 102567 4.023872600782 102567Table 1: Comparison of s!, Stirling's formula (5.344), and the higher-order expansion (5.351)Looking at the various entries in this Table, we see that for large s the asymptotiexpansion up to the order given in (5.351) is doing very well indeed. The Table also servesto illustrate the fat that at small values of s, the inlusion of higher terms in the asymptotiexpansion in fat makes things worse, not better. This is exatly what we expeted; for anygiven value of the argument there is an optimum plae at whih to ut o� the series, andinluding terms beyond that will give a worse approximation. For very small s, where theasymptoti series is in any ase expeted to be a disaster, we indeed see that we an makeit even worse by adding more terms.6 Non-linear Di�erential EquationsMost of our disussion of di�erential equations in this ourse has been onerned with linearseond-order ordinary di�erential equations, of the formy00(x) + p(x) y0(x) + q(x) y(x) = 0 : (6.1)It is not unommon to enounter ordinary di�erential equations that are non-linear in thedependent variable y. In suh ases, one may be luky and disover that the equation an besolved analytially, possibly after spotting some lever hanges of dependent or independentvariable. More often than not, however, the equation may prove not to be suseptible toexat solution by analyti methods. If this is the ase then one has to �nd some other wayof studying the solutions. One approah is to use numerial methods, whih usually means\putting it on the omputer." This is very straightfoward these days, and many omputerlanguages ome equipped with pakages for solving di�erential equations numerially. Forexample, the algebrai omputing languageMathematia o�ers also funtions that will solveessentially any given di�erential equation, or set of di�erential equations, numerially. Of157



ourse if the problem is of any omplexity or subtlety, it probably pays to have a deeperunderstanding of exatly how the numerial routines work. This is a major and importantsubjet, whih lies outside the sope of this ourse.Another approah that an prove to be very useful is to make use of graphial methodsfor studying the behaviour of the solutions to the di�erential equation. Suh tehniquesan be very helpful for a variety of reasons. Firstly, they are rather simple and intuitive,allowing one to see the struture of the solutions without the need for detailed omputation;the behaviour an often be established just with a few sribblings on the bak of an envelope.Seondly, the graphial tehniques an be very helpful for revealing the way in whih thesolutions depend upon the hoie of initial onditions or boundary onditions.To begin our disussion, let us onsider �rst the rather simple ase of �rst-order non-linear di�erential equations.6.1 Method of IsolinalsLet us onsider the �rst-order di�erential equationdydx = f(x; y) : (6.2)Solveing the di�erential equation means �nding the integral urves in the (x; y) plane,namely the funtions y(x) that satisfy (6.2). For many hoies of the funtion f(x; y), it isimpossible to obtain an analyti solution to the equation.To analyse the solutions graphially, we begin by onsidering the algebrai equationf(x; y) = � ; (6.3)where � is an arbitrary onstant. For eah hoie of �, this equation de�nes a urve in the(x; y) plane.Clearly, it must be that wherever a solution y = y(x) to (6.2) rosses the urve (6.3),the gradient of the integral urve is simply given by �, sine we shall havedydx = � (6.4)at that point. Sine eah point on a given urve implies that the integral urve intersetingit has the same gradient �, the urve f(x; y) = � is alled an isoline, or an isolinal urve.If we plot the isolinal urves f(x; y) = � for a range of values of �, and draw little linesegments on eah urve, with gradient equal to �, then if we simply \join the segments"with lines that interset the f(x; y) = � urves with gradient �, then the resulting lines158



will be the integral urves for (6.2). In other words, these lines will preisely desribe thesolutions to the di�erential equation. The various di�erent lines orrespond to the possiblehoies of initial ondition, assoiated with the arbitrary onstant of integration for (6.2).Let us begin with a simple example, where we an atually solve the di�erential equationexpliitly, so that we shall be able to see exatly what is going on. Consider the ase wheref(x; y) = x+ y, for whih we an easily solve (6.2), to givey =  ex � 1� x ; (6.5)where  is an arbitrary onstant. We shall keep this at the bak of our minds, but proeedfor now with the graphial approah and then make a omparison with the atual solutionsafterwards. The isolinal urves are x+ y = �, or in other words,y = �x+ � : (6.6)These are straight lines, themselves all having slope �1, with the onstant � parameterisingthe point of intersetion of the isoline with the y axis. A few of them are plotted inFigure 10 below; for those with the bene�t of olour they are in blue, but in any ase theyare reognisable as the straight lines running between the north-west and the south-east.Imagine little line segments interseting with eah isolinal, with slopes equal to the � valuespeifying the isolinal. This � value is equal to the interept of the isolinal with the yaxis. Thus the isolinal passing though (0; 0) would be deorated with little line segmentsof slope 0; the isolinal passing through (0; 1) would be deorated with little line segmentsof slope 1, and so on.Also depited in Figure 10 are some of the integral urves, i.e. the atual solutions of thedi�erential equation y0 = x+ y. Seretly, we know they are given by (6.5) (and ideed, thatis how Figure 10 was atually onstruted!), but we are pretending that we have to drawthe integral urves by the method desribed above. Thus the strategy is to draw lines thatinterset the isolinals with slopes equal to the slopes of the little line-segment deorationsdesribed above. Looking at Figure 10, we see that indeed the integral urves all have thisproperty. For example, it an be seen that wherever an integral urve intersets the isolinalthat passes through (0; 0), it has slope 0. And wherever an integral urve intersets theisolinal passing through (0; 1), it has slope 1, and so on. (Observe that all the integralurves indeed interset the (0; 1) isolinal perpendiularly, as they shhould sine they haveslope +1 there, while the isolinal itself has slope �1.)A onvenient way to haraterise the integral urves in this example is by the value ofy0 where they interset the y axis. Looking at our \seret" formula (6.5), this is related to159



the integration onstant  by y0 = � 1. Of ourse we know from the general analysis thatif we also draw in the isolinal passing through (0; y0), it will be deorated by little linesegments of slope y0. So the integral urve that passes through (0; y0) has slope y0 at thatpoint. The omplete integral urve an then be built up by \joining the dots," so that itintersets the isolinals at the orret angles. Of ourse in pratie one may need to drawquite a lot of isolinals, espeially in regions of the (x; y) plane where \interesting" thingsmay be happening.Note that in this toy example, on the left-hand side of the diagram all of the integralurves beome asymptoti to the isolinal passing through (0;�1), as x tends to �1. Thisis beause this isolinal is deorated by little line segments of slope �1, i.e. parallel to theisolinal itself. Thus it ats as a sort of \attrator" line, with all the integral urves homingin towards it as x gets more and more negative. Of ourse we an see this expliitly ifwe sneak another look at our \seret solution" (6.5); all the solutions at large negative xapproah y = �x� 1, regardless of the value of .
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Figure 10: The isolinal urves y = �x + � (displayed in blue), and the integral urves(displayed in red) for the di�erential equation y0 = x+ y.160



For a seond example, onsider the equationdydx = x2 + y2 : (6.7)The isolines are given by the equation x2 + y2 = �, whih de�nes irles of radius p�entred on the origin in the (x; y) plane. Eah irle should be deorated with little linesegments whose gradient is �, so the larger the irle, the steeper the gradient. The irleof zero radius orresponds to gradient zero.The isolinal lines and the integral urves for this example are depited in Figure 11below.
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Figure 11: The isolinal urves y2 = � � x2 (displayed in blue), and the integral urves(displayed in red) for the di�erential equation y0 = x2 + y2.Observe again that all the integral urves passing through a given isolinal (the irles)do so with the same slope. And indeed, one an see that the as the irles get smaller, sothe slope gets smaller.The equation (6.7) in this example an in fat be solved expliitly, although it takes a
161



form that is perhaps not immediately illuminating:y = x (J34 (12x2)� J�34 (12x2))J�14 (12x2) + J14 (12x2) ; (6.8)where  is an arbitrary onstant and J�(x) denotes the Bessel funtion of the �rst kind,whih solves Bessel's equation x2 J 00� + xJ 0� + (x2 � �2)J� = 0. It is quite useful, therefore,even in a ase like this where there exists an expliit but ompliated exat result, to beable to study the behaviour graphially. It is perhaps helpful to observe, sine we do stillhave the luxury of having an analyti expression for the solution here, that the �rst oupleof terms in its Taylor expansion around x = 0 are given byy = �2�(34 )�(14 ) + 4�(34 )2 x2 �(14 )2 + � � � : (6.9)(This expansion is valid for x approahing zero from above. For negative x, the overall signshould be reversed. This follows from the fat, manifest in (6.8), that the solution is an oddfuntion of x.)6.2 Phase-plane DiagramsThe method of isolinals desribed above applies spei�ally to �rst-order di�erential equa-tions. We an make use of this tehnique in order to study graphially the solutions ofa rather wide lass of seond-order ordinary di�erential equation. Spei�ally, if t is theindependent variable and x the dependent variable, we an study any di�erential equationwhere all the terms are funtions of x, _x and �x only; in other words the independent vari-able t does not appear expliitly anywhere. Suh di�erential equations are sometimes alledautonomous. An example would be the van de Pol equation,�x� � (1� x2) _x+ x = 0 : (6.10)Any aoutonomous seond-order ODE an be redued to a �rst-order ODE. The trik isto de�ne the quantity y = _x ; (6.11)from whih it follows that �x = dydt = dxdt dydx = y dydx : (6.12)Thus, in the example (6.10) above, the di�erential equation an be rewritten asy dydx � � (1� x2) y + x = 0 : (6.13)162



Any autonomous seond-order ordinary di�erential equation will be redued to a �rst-orderordinary di�erential equation by this substitution. It an then be studied by the method ofisolinals.The (x; y) plane is alled the phase plane. This is natural, sine x an be thought of asthe position, while y = _x an be thought of as the veloity, of a partile.Let us onsider, for a very simple example, the equation for a hramoni osillator�x+ !2 x = 0 : (6.14)Using the rede�nitions (6.11) and (6.12), the equation beomesy dydx + !2 x = 0 : (6.15)Proeeding now in the standard way, we see that the equation for the isolinals isy = �!2 x� ; (6.16)and so they are straight lines of slope �!2=� passing through the origin.Of ourse in this toy example we an easily solve (6.15), givingy2 + !2 x2 = 2 ; (6.17)where  is an arbitrary onstant. Thus the integral urves in the phase plane are ellipses,entred on the origin. Pretending, though, that we did not know this, we ould disover theshape of these urves in the usual way by drawing urves in the phase plane whose slopesat the intersetions with the isolinals are given by �. The isolinals and integral urvesare depited in Figure 12 below.The integral urves in Figure 12 show the relationship between the position x and theveloity y = _x for the partile. Note that when y = _x is positive, x must inrease as tinreases, and so it follows that the trajetory of the partile must be lokwise aroundthe ellipse. The fat that the path loses on itself means that the motion of the partile isperiodi. Of ourse in this toy example of the harmoni osillator we already knew that,but in a more ompliated equation it is useful to bear this in mind, as a way of reognisingperiodi motion.Let us onsider now a more ompliated example, namely the van de Pol equation givenin (6.10). This equation arises in ertain physial situations where there is osillatory motionthat is not simple harmoni. After making the substitution y = _x, we obtain equation (6.13).163
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Figure 12: The isolinal urves y = �!2 x=� (displayed in blue), and the integral urves(displayed in red) for the di�erential equation y y0 + !2 x = 0. (Plotted for ! = 2.)For onreteness, let us take the onstant � to be � = 1. From (6.13), the equation for theisolinals is y = x1� x2 � � : (6.18)The phase-plane diagram for the van de Pol equation is depited in Figure 13. As an beseen, the integral urves desribe quite ompliated paths in the phase plane, but in fatthey all end up settling down to losed ontours that go around the same trak repeatedly,regardless of the initial onditions. Suh losed traks are alled limit yles. Thus themotion eventually beomes periodi, but it is not simple harmoni motion, whih as we sawpreviously is haraterised by elliptial ontours in the phase plane.
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Figure 13: The phase-plane diagram for the van de Pol equation with � = 1. The light linesare the isolinals, and the heavy lines are integral urves.7 Cartesian Vetors and Tensors7.1 Rotations and reetions of Cartesian oordinateIn Cartesian tensor analysis, one of the most fundamental notions is that of a vetor. In anelementary introdution to vetors, the �rst example that one usually meets is the positionvetor, typially denoted by ~r, whih is thought of as the direted line onneting a pointQ to another point P . In itself, this is a rather geometrial onept, whih need not belinked to any spei� hoie of how the Cartesian oordinate system is hosen. For example,one ould displae the origin of the oordinate system arbitrarily, and one ould rotate theoordinate system arbitrarily. Of ourse often, one thinks of a position vetor as a diretedline from the origin O of the oordinate system to a given point P . In this ase, the originof the Cartesian oordinates would e�etively be \pinned down," but the hoie of how toorient the axes remains.We ommonly write the position vetor ~r of a point P as a triple of numbers,~r = (x; y; z) ; (7.1)165



where x, y and z are nothing but the projetions of the the line from O to P onto the x, yand z axes of the hosen system of Cartesian oordinates. The triple of numbers in (7.1) arealled the omponents of the vetor ~r with respet to this system of Cartesian oordinates.Of ourse, if we rotate to a new Cartesian oordinate system, then these three numbers willhange. However, they will hange in a spei� and alulable way.It is easier, for a simple illustration of what is going on, to think of the situation in 2,rather than 3, dimensions, so that a position vetor is just spei�ed by a pair of numbers,~r = (x; y) ; (7.2)these being the projetions of the line OP onto the x and y axes of the hosen Cartesianoordinate system. Suppose now that we hoose another Cartesian oordinate system, withthe same originO, but where the axes (x0; y0) are rotated anti-lokwise by an angle � relativeto the original axes (x; y). A simple appliation of trigononemtry shows that the omponents(x0; y0) of the position vetor OP with respet to the new (or primed) oordinate systemare related to its omponents (x; y) with respet to the original (or unprimed) oordinatesystem by x0 = x os � + y sin � ; y0 = �x sin � + y os � : (7.3)This an be written more elegantly as a matrix equation, x0y0 ! =  os � sin �� sin � os �!  xy ! : (7.4)An essential property of the rotation desribed above is that the length of the vetor ~r,de�ned by r � j~rj = qx2 + y2 (7.5)is the same whether we use the unprimed or the primed oordinate system. Namely, therotation desribed by (7.3) or (7.4) has the property thatx02 + y02 = x2 + y2 : (7.6)More generally, we an desribe any rotation of the Cartesian oordinate system in a formanalogous to (7.4), as  x0y0 ! =M  xy ! : (7.7)where M is a 2� 2 matrix that leaves the length of the vetor ~r unhanged. Sine we anwrite x2 + y2 = (x ; y )  xy ! ; (7.8)166



it follows that the requirement (7.6) of preserving the length of the vetor an be writtenas ( x ; y )  xy ! = ( x ; y ) M tM  xy ! ; (7.9)where M t is the transpose of M . Sine we want to require that the length of any vetor ~rshould be preserved, we an therefore strip o� the (x; y) vetors in (7.9), and onlude thatwe must have M tM = 1l (7.10)for any rotation, where 1l denotes the identity matrix. It is easily veri�ed that for ourrotation desribed in (7.4), the orresponding matrixM =  os � sin �� sin � os �! (7.11)indeed satis�es (7.10).Atually, the ondition (7.10) allows for slightly more than just rotations of the Cartesianaxes. It also allows for the possibility of making a reetion of the axes, suh asx0 = x ; y0 = �y : (7.12)This would be desribed by the matrixM =  1 00 �1! : (7.13)One an easily see that there is no hoie of � in (7.11) suh that it beomes (7.13). Thusthe full set of allowed length-preserving transformations of the Cartesian axes is omposedof rotations together with reetions. In fat it is not hard to see that any arbitraryombination of rotation and reetion an be re-expressed as a rotation ombined witha hosen spei� reetion, suh as the reetion about the x axis de�ned by (7.12). Inother words, the full set of symmetry transformations that we an allow for our Cartesianoordinate systems omprises rotations about the origin, together with a possible reetion.The set of pure rotations, and the set of rotations plus reetions, are disretely di�erent.7.2 The orthogonal group O(n), and vetors in n dimensionsIn two dimensions it is easy enough to see all this expliitly, by writing down 2�2 matries,but in higher dimensions it would be rather lumsy in general. It is therefore useful toabstrat the essential features of the Cartesian oordinate rotations and reetion, in afashion that an expressed suintly in any dimension. First of all, in n dimensions it167



is onvenient to label our Cartesian axes by (x1; x2; : : : ; xn), so that we don't run out ofletters of the alphabet. We an then desribe the allowed transformations of the Cartesianoordinates by 0BBBBB� x01x02...x0n
1CCCCCA =M 0BBBBB� x1x2...xn

1CCCCCA ; (7.14)where in order to preserve the length, the n� n matrix M must satisfyM tM = 1l : (7.15)Suh n � n matries satisfying (7.15) are alled orthogonal matries, and this is denotedby O(n). This terminology is derived from group theory, and signi�es that the set of alln � n matries satisfying (7.15) form a group. For any pair of O(n) matries M1 and M2the matrix produt M3 �M1M2 (7.16)is another O(n) matrix. The full set of requirements for a group are:1 There must be an assoiative law of ombination for all group elements a, b and ,suh that a � (b � ) = (a � b) � .2 For any group elements a and b, the ombination a � b must be a group element too.3 There must exist an identity element e, suh that a �e = e �a = a for any group elementa.4 Every group element a must have an inverse, a�1, suh that a�1 � a = a � a�1 = e.For our ase, the law of ombination is simply the multipliation of matries. Obviouslythis is assoiative, so requirement 1 is satis�ed. As already noted, requirement 2 is satis�edtoo, sine we shall haveM t3M3 = (M1M2)tM1M2 =M t2M t1M1M2 ;= M t2 1lM2 =M t2M2 = 1l : (7.17)Requirement 3 is learly satis�ed, and we simply have that e = 1l, the identity matrix.Finally, we an see straight away from (7.15) that in this ase the inverse of M is nothingbut M�1 =M t : (7.18)168



We an also see easily how to haraterise the ases where the transformation inludesa reetion as well as a rotation. From (7.15), we an take the determinant, and usingelementary properties we �nddet(M tM) = det(M t) det(M) = (detM)2 ;= det 1l = 1 : (7.19)Thus we dedue that O(n) matries satisfydetM = �1 : (7.20)We give the name SO(n) to O(n) matries whose determinant is +1, the \S" standing for\speial." Clearly the produt of any two SO(n) matries is also in SO(n),det(M1M2) = (detM1) (detM2) = 1 ; (7.21)and so SO(n) is a subgroup of O(n). The group of SO(n) matries desribes the situationof pure rotations. If an O(n) matrix M is suh that detM = �1, then it must be that Mdesribes a rotation plus a reetion. Note that the set of all detM = �1 matries do notform a group, sine the produt of two suh matries will have determinant +1.It is easy to see that a detM = �1 transformation neessarily inludes a reetion,by looking at examples. It is also lear from the fat that detM = +1 matries anbe ontinuously onneted to the identity, whilst detM = �1 matries involve a disretetransition from the identity. For example, in (7.11) we an ontinuously inrease � from 0to its �nal value. By ontrast, sine det 1l = +1 but the determinant of the matrix in (7.13)is �1, it is obvious that we annot perform a ontinuous sequene of deformations of 1l intothe matrix in (7.13).7.3 Cartesian vetors and tensorsNow let us ontinue with the main theme, of Cartesian vetor and tensor analysis. Wemay take the position vetor as the prototype of all vetors, and thus we may de�ne avetor V in n dimensions27 by saying that it has omponents (V1; V2; : : : Vn) that transformunder rotations of the Cartesian frame in a manner idential to that for the position vetor,27It is ustomary, at least in the USA, to use the arrow symbol to denote a vetor in three dimensions,thus ~V . In a general dimension n, it is more tradiational not to use an arrow, but simply to denote thevetor by V . We shall follow the tradition. 169



namely 0BBBBB� V 01V 02...V 0n
1CCCCCA =M 0BBBBB� V1V2...Vn

1CCCCCA : (7.22)It is very onvenient at this stage to introdue an index notation, so that we don't haveto write out big n-omponent olumn vetors. Thus we label the rows and olumns of then� n matrix M by indies i and j, so thatM = 0BBBBB�M11 M12 � � � M1nM21 M22 � � � M2n... ... . . . ...Mn1 Mn2 � � � Mnn
1CCCCCA : (7.23)The equation (7.22) an then be written asV 0i = nXj=1Mij Vj : (7.24)A further hugely simplifying re�nement, introdued by Einstein, is to reognise that inany valid vetor or tensor expression, a summation symbol will always be needed when apartiular index ours exatly twie in an expression, suh as the j index in (7.24). Furth-more, there will never be any irumstane in a valid expression when an index ours twiewithout the need for the summation. Therefore, in the Einstein Summation Convention,we may simply write (7.24) as V 0i =Mij Vj ; (7.25)with the repetition of the \dummy suÆx" j meaning that a summation over its index-range(1 to n) is understood.Notie that the orthogonality ondition (7.15) satis�ed by the matrix M an also bewritten simply in terms of the index notation. First, note that if A and B are matries,with omponents Aij and Bij respetively, then the matrix C � AB will have omponentsgiven by Cij = Aik Bkj : (7.26)The multipliation with the summation over k preisely orresponds to the matrix opera-tion of multiplying the rows of A into the olumns of B. Next, we note that the proessof transposing a matrix means preisely that we exhange the roles of the rows and theolumns, whih means that the omponents of the transpose of M are given by(M t)ij =Mji : (7.27)170



Finally, we note that the omponents of the unit matrix are nothing but Æij , the Kronekerdelta, whih is zero if i 6= j and 1 if i = j. Therefore (7.15) is written as(M t)ikMkj = Æij ; (7.28)and hene we have MkiMkj = Æij : (7.29)Suppose now that we have two vetors U and V . This means that we know that undera rotation28 of the Cartesian oordinates, their omponents Ui and Vi will transform asU 0i =Mij Uj ; V 0i =Mij Vj : (7.30)We may now de�ne the notion of the inner produt, or dot produt of U and V . Let usall this quantity f . We an de�ne this in terms of the omponents, asf � Ui Vi : (7.31)We an now easily see that f is a salar, whih means that it is ompletely invariant underrotations of the oordinate system. We prove this by using the transformation rules for Uand V given in (7.30), whih allows us to alulate what the quantity f 0 de�ned by (7.31),but for the primed omponents, in terms of f itself:f 0 � U 0i V 0i= Mij UjMik Vk= Æjk Uj Vk= Uj Vj= f : (7.32)Thus f 0 = f , proving that f is a salar under oordinate rotations. Note that a speial aseof an inner produt is when one takes the inner produt of a vetor with itself, asf = Vi Vi : (7.33)A moment's thought will onvine the reader that Vi Vi is nothing but the norm-squaredof the vetor V , and more generally Ui Vi is nothing but the usual dot produt or salarprodut of the vetors U and V .28We will sometimes loosely use the word \rotation," as a shorthand for \rotation or rotation and re-etion." On oasions when it is important to be preise about whether reetions are inluded, we willemphasise the point spei�ally. 171



We have now met salars, whih are invariant under oordinate rotations, and vetors,whose omponents rotate in the spei� way (7.25). It is not a big extension of thesenotions to enlarge the disussion to quantities with more than one index. These are alledtensors. To be preise, a p-index quantity Ti1���ip is a tensor under oordinate rotations if ittransforms in the following very spei� way:T 0i1���ip =Mi1j1 Mi2j2 � � �Mipjp Tj1���jp : (7.34)Thus eah index simultaneously transforms with a rotation matrix M . This tensor T isalled a rank-p tensor.It is obvious from the (7.25) that if we de�ne the so-alled outer produt of two vetorsU and V , as the quantity T with omponentsTij = Ui Vj ; (7.35)then this transforms preisely as a rank-2 tensor:T 0ij =MikMj` Tk` : (7.36)Obviously one an make higher-rank tensors by taking outer produts of larger numbers ofvetors. Not all tensors, hwoever, are simply the outer produts of vetors. More generally,a tensor an be expressed as the sum of a number of outer produts of vetors. One analso, of ourse, take outer produts of tensors to make bigger tensors of higher rank.It is very easy to see that if one ontrats a pair of indies on a tensor of rank p, thenone gets a tensor of rank p � 2. The proess of ontating indies means setting two ofthem equal. Then, the Einstein summation onvention omes into play, meaning that wehave the understanding that the two indies are then summed over. For example, supposewe have a rank-3 tensor Tijk. We an make a rank-1 tensor (i.e. a vetor) by ontrating apair of indies, for example we an de�neVi � Tijj : (7.37)The proof that Vi really is a vetor is the usual one; namely, to show that it really doestransform like a vetor under oordinate rotations. We do this by starting from the knowntransformation rule of Tijk, whih by de�nition, sine we are told that it is a tensor, trans-forms as T 0ijk =Mi`MjmMkn T`mn : (7.38)Notie by the way, that we must always be very areful not to abuse the Einstein summationonvention. If there are multiple dummy indies to be summed over, as with `, m and n172



here, then we must make sure that we have invented a new dummy suÆx name for eahseparate summation. Thus, for example, if we tried writing the right-hand side of (7.38) asMi`MjmMkm T`mm ; (7.39)then this would be omplete nonsense, sine we have the dummy suÆx m ouring 4 times,and we wouldn't know whih pairs were supposed to be summed over. It would be likewriting a omputer program with multiple summation labels in a multiple sum, and theninadvertently using the same index label for two summations that were meant to be distint.Going bak to our example, we now hek that Vi transforms properly as a vetor byits de�nition (7.37), but now expressed for the primed oordinate frame, and then applyingthe known transformation rule (7.38) for Tijk. Thus we getV 0i � T 0ijj= MikMj`Mjm Tk`m= Mik Æ`m Tk`m= Mik Tk``= Mik Vk ; (7.40)and so indeed it transforms in the way a vetor should.In general, any operation of taking outer produts, inner produts, or ontrations willause a tensorial expression to turn into another tensorial expression with more, or less,indies as the ase may be. A nie thing about it is that after getting austomed to theformalism, one doesn't need to hek every time whether an expression made from tensorsis itself a tensor. As long as only valid proedures are used, suh as taking outer or innerproduts or ontrations, the bottom line is that \if it looks like a tensor, it is a tensor."7.4 Invariant tensors, and the ross produtWe have seen that in general the omponents of a tensor transform in a non-trivial wayunder rotations of the Cartesian oordinate system. There are ertain exeptional tensors,however, whih have the property that their omponents do not transform at all underrotations. Suh tensors are alled Invariant Tensors.7.4.1 The Kroneker delta tensorWe have in fat already met one example, namely the Kroneker delta symbol Æij . Reallingthe de�ning property (7.15) for O(n) matries M , we may �rst note that M tM = 1l implies173



also MM t = 1l, for we have MM tM =M ; (7.41)and hene MM t =MM�1 = 1l : (7.42)Thus as well as (7.29), we also have that if M is an O(n) matrix then it satsi�esMikMjk = Æij : (7.43)This an be written as Æij =MikMj` Æk` : (7.44)Comparing with the general tensor transformation rule (7.34), we therefore see that theKroneker delta Æij is an invariant tensor, in the sense that if we de�ne it to have the samestruture in any Cartesian oordinate system, namely that it vanishes if i 6= j and equals 1if i = j, then it obeys the usual tensor transformation rule, but with the speial propertythat its omponents are ompletely unaltered under arbitrary rotations:Æ0ij = Æij : (7.45)Note that immediate properties of the Kronejker delta tensor areÆij Æjk = Æik ; Æii = n : (7.46)(The summation over repeated indies is understood, as usual. In the seond expression,Æii is therefore the trae of the identity matrix in n dimensions; hene the result n.)Note that the Kroneker delta tensor an be viewed as the basi building blok of thesalar produt of two vetors A and B:A �B = AiBj Æij = AiBi : (7.47)Of ourse, given Æij one an trivially onstrut lots of other invariant tensors, by takingouter produts of Kroneker deltas. For exampleTijk` � Æij Æk` (7.48)is a rank-4 invariant tensor. There is, however, one further invariant tensor that an bewritten down, whih is not merely onstruted from produts of Kroneker deltas. Thistensor, denoted by "i1���in in n dimensions, is sometimes alled the Levi-Civita tensor.174



7.4.2 The Levi-Civita (pseudo) TensorIn n dimensions, the Levi-Civita tensor (or pseudo-tensor, as we should more properlyall it; see later) has n indies. It is de�ned by the following rules. Firstly, it is totallyantisymmetri in all n of its indies, whih means that if any pair of indies is exhanged,it hanges sign: "i1i2���in = �"i2i1���in ; (7.49)and similarly for any exhange of two indies. Finally, we speify that"123���n = +1 : (7.50)This is enough to speify it ompletely. By the antisymmetry rule, any even permutation ofthe indies 1; 2; : : : ; n will give +1, while any odd permutation of the indies 1; 2; : : : ; n willgive �1. If any two indies on "i1���in are equal, then the antisymmetry property impliesthat it will vanish. Thus all the ases have been overed.To see that "i1���in is an invariant tensor under rotations29, we need a result from matrixtheory. The relevant fat is that if A is any n� n matrix with omponents Aij, thenAi1j1 Ai2j2 � � �Ainjn "j1j2���jn = (detA) "i1i2���in : (7.51)After some thought it is not hard to see that this is true. It is helpful to play around witha simple example suh as n = 2. In two dimensions, the statement is thatAik Aj` "k` = (detA) "k` : (7.52)Bearing in mind that we have "12 = �"21 = 1, "11 = "22 = 0, we an then onsider thepossible ases for the free indies i and j in (7.52). For example, with i = 1, j = 2 we �ndthat the left-hand side gives A11A22 �A12A21 ; (7.53)whih indeed agrees with the right-hand side, whih is detA times "12, or in other wordsdetA. With i = 1, j = 1, on the other hand, one gets 0 = 0. In a similar fashion, all theother omponents are onsistent with (7.52).In an arbitrary dimension, it is easy to see that unless the free indies i1 � � � in in (7.51)are taken to be 1 � � � n, or some permutation thereof, both sides of the equation will bezero. Sine there is manifest total antisymmetry on both sides of equation (7.51), it suÆes29Here, as we shall see below, we must be preise, and emphasise that this statement is true only for purerotations, but not rotations with reetions. 175



to hek just one of the n! possible non-zero ases, whih for simpliity we an take to bei1 � 1, i2 = 2,: : :,in = n. It is rather straightforward to see that the left-hand side is in fatonstruting the determinant for us. Let us agree to believe, then, that (7.51) is true inarbitrary dimensions.We now apply (7.51) to the ase of an SO(n) matrixM . It will be realled that this hasthe property detM = +1, and it desribes a pure rotation of Cartesian oordinates, withno reetion. We therefore have"i1i2���in =Mi1j1 Mi2j2 � � �Minjn "j1j2���jn : (7.54)Comparing with (7.34), we see that "i1i2���in obeys the general rule for the transformationof a tensor under oordinate rotations, but with the speial property that"0i1i2���in = "i1i2���in : (7.55)Just like Æij , therefore, "i1i2���in is an invariant tensor under rotations. However, thereis a subtlety here. The Kroneker delta is also a tensor under reetions as well as purerotations. By ontrast, "i1i2���in is not. As we see from (7.51), for an arbitrary rotationtogether, possibly, with rotations, we must write"i1i2���in =Mi1j1 Mi2j2 � � �Minjn (detM) "j1j2���jn (7.56)instead of (7.54). If we inlude the reetions, then the set of quantities "i1i2���in de�ned bytotal antisymmetry and "12���n = 1 in all frames does not transform like a normal tensor,but instead it piks up a minus sign if a reetion is involved. Quantities that transformlike tensors under pure rotations, but with an extra minus sign under reetions, are alledpseudo-tensors. Often, if one is just speaking \asually," one tends to refer to them simplyas tensors.The Levi-Civita pseudo-tensor plays an important role in vetor and tensor analysis.A very important property onerns the produt of two Levi-Civita pseudo-tensors. Itis probably easiest to desribe this by starting with low-dimensional examples. In twodimensions, we have "ij , with "12 = �"21 = 1, "11 = "22 = 0. It is easy to see, simply byheking all the possible index assignments, that"ij "k` = Æik Æj` � Æi` Æjk : (7.57)(Try it for a few hoies, suh as i = 1, j = 2, k = 1, ` = 2, et.)176



In three dimensions, the analogous produt rule involves 6 terms rather than 2 on theright-hand-side:"ijk "`mn = Æi` Æjm Ækn+Æin Æj` Ækm+Æim Æjn Æk`�Æi` Æjn Ækm�Æim Æj` Ækn�Æin Æjm Æk` : (7.58)Looking at this, one an see the pattern. The �rst term on the right-hand side has theprodut of a Kroneker delta linking the �rst indies on the two epsilon tensors, a Kronekerdelta linking the seond indies on the two epsilon tensors, and a Kroneker delta linkingthe last indies on the two epsilon tensors. Then, there are 5 more terms, whih orrespondto permuting around the `, m and n indies, with a plus sign for an even permutation, anda minus sign for an odd permutation. There are in total 3! possible permutations, henethe six terms on the right-hand side. The need for this permutation antisymmetry in theexpression on the right-hand side is obvious, sine we know that it is an antisymmetryof the left-hand side. Note also that although as stated above, the implementation ofthe permutation antisymmetry of `, m and n might seem to have been favoured over thepermutation antisymmetry of i, j, k, in fat everything is perfetly demorati. Havingenfored the antisymmetry in `, m and n on the right-hand side, it implies (as an easilybe seen by inspetion) an antisymmetry in i, j and k as well.It is not hard to prove (7.58), again by looking at all the possible index assignmentsfor i, j, k, `, m and n. This is not as daunting a task as it might sound, beause of theantisymmetries disussed above. In fat, if one thinks about it, there are very few ases thatneed to be heked expliitly; the rest all follow by invoking the permutation symmetries.The general expression for the produt of two epsilon tensors in n dimensions will involven! sums of produts of Kroneker deltas on the right-hand side:"i1���in "j1���jn = Æi1j1 � � � Æinjn + even perms� odd perms : (7.59)7.4.3 Three-dimensional vetor identitiesA very useful onsequene of (7.58) in 3 dimensions arises if we set k = n (whih means,of ourse, that this repeated index is then summed over 1, 2 and 3.) Bearing in mindthe properties of the Kroneker delta, given in (7.46), we therefore �nd (after a onvenientrelabelling of indies) "ijm "k`m = Æik Æj` � Æi` Æjk : (7.60)This identity allows us to derive very easily some of the basi Cartesian vetor identities inthree dimensions. 177



First, we note that the vetor produt ~A � ~B of vetors ~A and ~B gives a quantity~C � ~A� ~B whose omponents are given by~C = (C1; C2; C3) = (A2B3 �A3B2; A3B1 �A1B3; A1B2 �A2B1) ; (7.61)whih an be written very suintly using the epsilon pseudo-tensor, asCi = ( ~A� ~B)i = "ijkAj Bk : (7.62)It is straightforward to show, by the standard proedure of alulating the omponents C 0iin a transformed Cartesian oordinate system, that ~C transforms like a vetor under purerotations, but it aquires an extra (�1) fator under rotations with a reetion, owing tothe detM fator in the transformation rule for "ijk. Therefore ~C is a pseudo-vetor. Oneimmediately sees the antisymmetry of the vetor produt, ~A � ~B = � ~B � ~A, from theantisymmetry of "ijk.Some vetor identities now follow very straightforwardly. First, we may note that forany set of three 3-vetors ~A, ~B and ~C, the salar quantity known as their salar tripleprodut, ~A � ( ~B � ~C), an be written using "ijk as~A � ( ~B � ~C) = "ijkAiBj Ck : (7.63)It is now immediately obvious, from the total antisymmetry of "ijk, that (7.63) is totallyantisymmetri under any exhange of the vetors. Thus, we have~A � ( ~B � ~C) = ~B � ( ~C � ~A) = ~C � ( ~A� ~B)= � ~A � ( ~C � ~B) = � ~B � ( ~A� ~C) = � ~C � ( ~B � ~A) : (7.64)A speial ase following from the above is, of ourse, that ~A � ( ~A � ~B) = 0.Of ourse, stritly speaking ~A � ( ~B � ~C) is not an salar, but a pseudo-salar, sine itis onstruted using the epsilon pseudo-tensor. Thus unlike an ordinary salar, whih isinvariant both under rotations and reetions, ~A � ( ~B� ~C) is invariant under pure rotations,but it hanges sign under reetions.Now, let us onsider the vetor triple produt of any three 3-vetors ~A. ~B and ~C. Thisis de�ned as the vetor ~D, given by ~D = ~A� ( ~B � ~C) : (7.65)From (7.62), we see that we an write the omponents of ~D asDi = "ijm "mk`Aj Bk C` : (7.66)178



Note that ~D is an ordinary vetor, and not a pseudo-vetor. This is beause it involvestwo epsilon pseudo-tensors in its de�nition (7.66) in terms of the vetors ~A, ~B and ~C, andso the two detM fators that will arise when heking the transformation rule for ~D willmultiply and give (+1), even under reetions.The fat that ~D is a true vetor is also evident from (7.60), whih shows that the produtof the two epsilon pseudo-tensors an be re-expressed in terms of produts of Kroneker deltatensors. In fat using (7.60), we an re-express (7.65) in terms of salar produts. First,it is worth noting that beause "ijk has an odd number of indies, any rearrangement ofthe indies that is ahieved by a yli permutation implies an even number of index-pairexhanges, and so it leaves the sign of the epsilon tensor unhanged. In other words"ijk = "jki = "kij : (7.67)Therefore, it follows that we an yle "mk` to "k`m in (7.66) with no sign hange, and then,using (7.60), we get Di = (Æik Æj` � Æi` Æjk)Aj Bk C` : (7.68)Using the index-replaement rules for the Kroneker delta tensor, this impliesDi = BiAj Cj � CiAj Bj : (7.69)Thus, writing it bak in 3-vetor notation, we have~D � ~A� ( ~B � ~C) = ~B ( ~A � ~C)� ~C ( ~A � ~B) : (7.70)There are many other examples of vetor expressions that an be simpli�ed using thebasi identities (7.60), or (7.58) for the epsilon tensor. The rule is that whenever an ex-pression involves two or more vetor produt symbols \�", then they an be eliminatedpairwise, being replaed by salar produts. One one is familiar with the basi strutureof (7.60), most expressions apable of suh simpli�ations an be handled. It is so simpleto derive the results \as needed" that it is no longer worth taking the trouble to remembera formula suh as (7.70); it is easier to derive it as and when needed. Memorising (7.60) isitself very simple; with the ontrated index being \3'rd with 3'rd" on the epsilon tensors,the right-hand side is the produt of \1'st with 1'st" and \2'nd with 2'nd" Kroneker deltas,minus \1'st with 2'nd" and \2'nd with 1'st."7.4.4 Hodge dualisationThe notation in three-dimensional Cartesian vetor analysis of onstruting a vetor ~Cfrom the vetor produt ~C � ~A � ~B of two vetors ~A and ~B is suh a ommonplae that179



it sometimes surprises people to learn that it works only in three dimensions. The ruialquantity involved in the onstrution of the vetor produt is the 3-index epsilon tensor"ijk, and it has three indies preisely beause of being in three dimensions.The notation that does generalise to an arbitrary dimension is that from any pair ofvetors A and B we an form an antisymmetri rank-2 tensor W whose omponents Wijare de�ned by Wij = AiBj �Aj Bi : (7.71)In three dimensions, we an map bak and forth between Wij and the vetor Ci de�nedabove, by making use of the 3-index epsilon tensor:Ci = 12"ijkWjk = "ijk Aj Bk ;Wij = "ijk Ck : (7.72)Note that this ability to map both ways an be seen using (7.60). Thus, given Ci = 12"ijkWjk,we alulate "ijk Ck = 12"ijk "k`mW`m = 12(Æi` Æjm � Æim Æj`)W`m =Wij : (7.73)So in three dimensions, having a 2-index antisymmetri tensor is essentially equivalent tohaving a vetor, sine we an map freely bakwards and forwards. (It is essential, of ourse,that Wij itself be antisymmetri in order for this invertible mapping to work.)In higher dimensions, the nature of the mapping is di�erent. For example, in fourdimensions we have a 4-index epsilon tensor, and so from Wij we an make another 2-indexantisymmetri tensor: Zij � "ijk`Wk` : (7.74)This is again invertible, and in fat from (7.59) one an prove thatWij = 14"ijk`Zk` : (7.75)It is not so immediately obvious in four dimensions what the point of mapping from one2-index antisymmetri tensor into the other would be, sine one has not ahieved anyredution of the number of indies. Atually, it turns out that there are important uses forthis proedure, and in fat a speial signi�ane is attahed to 2-index tensors that havethe property of mapping into themselves under this transformation.The mapping proess is known as Hodge Dualisation. To make the ombinatoris workniely, it is better to put in a fatorial oeÆient. The Hodge dual of a rank-2 antisymmetri180



tensor Wij in four dimensions is denoted by W �ij, and de�ned byW �ij = 12!"ijk`Wk` : (7.76)From this, one an show using (7.59) thatWij = 12!"ijk`W �k` : (7.77)If a tensor happens to satisfyWij = �W �ij, it is alled self-dual or anti-self-dual respetively.More generally, if we are in n dimensions and we have a rank-p antisymmetri tensorTi1���ip , then its Hodge dual is a rank-(n� p) tensor with omponents T �i1���in�p given byT �i1���in�p � 1p! "i1���in�pj1���jp Tj1���jp : (7.78)The proedure of making a vetor ~C = ~A � ~B out of two vetors ~A and ~B in threedimensions an now be understood as a speial ase, in whih one takes the Hodge dual ofthe 2-index antisymmetri tensor with omponents AiBj �Aj Bi.Notie, by the way, that one of our familiar onepts in three dimensions is that rotationsour around axes. This is a very speial feature of three dimensions, for preisely thereasons we have been disussing. Think of the angular momentum vetor,~L = ~r � ~p ; (7.79)for example, whih, in omponents, would be writtenLi = "ijk xj pk : (7.80)In a general dimension, we would instead simply view the angular momentum as a 2-indexantisymmetri tensor, Lij = xi pj � xj pi : (7.81)Thus in a general dimension, a rotation ours in a 2-plane, whih is spei�ed as the planein whih the position vetor ~r and the linear momentum vetor ~p lie. It is a \oinidene"of living in three spatial dimensions that instead of saying \a rotation in the (x; y) plane,"we an say \a rotation around the z axis."7.5 Cartesian Tensor CalulusThe basi di�erential operator in vetor and tensor alulus is the gradient operator r.This is the vetor-valued operator whose \omponents" are the set of partial derivativeswith respet to the Cartesian oordinates xi. For brevity, let us de�ne�i � ��xi : (7.82)181



Then we shall have ~r = (�1; �2; : : : ; �n) (7.83)in n dimensions.We an easily see that r is indeed a vetor; the proof is the usual one, of showing thatits omponents transform as a vetor under rotations of the Cartesian oordinates. Thus ina rotated oordinate system x0i, for whih, by de�nition, we have �0i = �=�x0i, we �nd, usingthe hain rule, �0i = �xj�x0i �j : (7.84)Now we have x0i = Mij xj under the oordinate rotations, and so, multiplying by Mik andusing (7.29), we have Mik x0i = xk. Di�erentiating (take are of the index hoies!) we �nd�xj�x0i =Mij , and so we onlude that �0i =Mij �j : (7.85)This proves that �i transforms exatly as a vetor should, under rotations of the Cartesianaxes.It is now straightforward to see that if r ats on any salar �eld �, it will give a vetor,r�. In fat more generally, if r ats on any rank-p tensor T , it will give a rank-(p + 1)tensor S, with omponents given bySij1���jp = �i Tj1���jp : (7.86)The proof is the usual one, of showing that Sij1���jp transforms with the proper tensortransformation law (7.34) under rotations of the Cartesian oordinates. Of ourse, havingestablished that �i Tj1���jp is a tensor, all the usual rules follow. In partiular, for example,it follows that we an take a divergene of the tensor Tj1���jp , by ontrating the index i onthe derivative in (7.86) with one of the indies on Tj1���jp , and thereby get a rank-(p � 1)tensor. (In general, if Tj1���jp has no speial symmetry properties on its indies, there willbe p di�erent divergenes that we an make, depending on whih of the j indies we hooseto ontrat with the i index.)A speial ase of the above is to form the salar quantity �i Vi as the divergene of thevetor Vi.Note that the Laplaian operatorr2 � �i �i = �2�x21 + � � � + �2�x2n (7.87)is manifestly a salar operator, and so if � is a salar, then so is r2�.182



There is a speial signi�ane in tensor alulus to antisymmetrised derivatives of tensors.The most familiar example, in three dimensions, involves the antisymmetrised derivative ofa vetor, �iVj � �jVi. As in our disussion of the vetor produt, it is then onvenient totake the Hodge dual of this, to obtain a vetor. Thus one de�nes the url operation, withthe url of a vetor ~V being another vetor (atually, of ourse, a pseudo-vetor) ~X, givenby ~X � ~r� ~V : (7.88)In omponents, this is just Xi = "ijk �j Vk : (7.89)In index notation one an easily prove various 3-dimensional identities, based on thefat that partial derivatives ommute, �i �j = �j �i, suh as~r� ~r� = 0 ; ~r � (~r� ~V ) = 0 ; (7.90)for any salar � and any vetor ~V . One an also immediately see from (7.60) that~r� (~r� ~V ) = ~r (~r � ~V )�r2 ~V : (7.91)
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