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1 Bessel Fun
tionsIn a stri
tly logi
al approa
h we should perhaps, at this stage, begin on a detailed study ofthe Hypergeometri
 Equation, and its solutions, sin
e this equation en
ompasses as spe
ial
ases many of those that one en
ounters in physi
s. However, su
h a presentation wouldrun the risk of being rather dry and abstra
t. Instead, we shall adopt the approa
h ofbeginning with the Bessel equation, and its solutions. In parti
ular, we shall see how to usethe methods of 
omplex analysis in order to determine properties of the solutions. Manyof the methods that we use will be generalisable later to other examples, in
luding thehypergeometri
 equation.As we saw in part I of the 
ourse, Bessel's equation arises when one uses the method ofseparation of variables to solve an equation su
h as Lapla
e's equation in 
ylindri
al polar
oordinates. Spe
i�
ally, it is the radial fun
tions that satisfy the Bessel equation. Afterappropriate 
hanges of variable, this equation 
an be 
ast in the formz2 y00 + z y0 + (z2 � �2) y = 0 ; (1.1)where y is a fun
tion of z, and � is a 
onstant whi
h may be integer on non-integer.1.1 Jn(z) Bessel Fun
tion of Integer Order nConsider �rst the 
ase when � = n, where n is an integer (whi
h 
an be positive, negativeor zero). We 
an give the following 
onstru
tion of the Bessel fun
tion Jn(z), whi
h satis�es(1.1) with � = n. We de�ne Jn(z) by means of the expansione 12 z(t�t�1) = 1Xn=�1 tn Jn(z) : (1.2)This is known as a generating fun
tion for the Bessel fun
tions. In prin
iple one 
ouldexpand the left-hand side as a Laurent series in t, and by pi
king out all the terms propor-tional to tn, one reads o� the 
orresponding Bessel fun
tion Jn(z). Of 
ourse there will bein�nitely many terms in this expansion, sin
e ea
h power (t� t�1)N in the Taylor expansionof e 12 z(t�t�1) 
ontains all powers of t from t�N to tN .Let us begin by verifying that (1.2) does indeed give us a 
onstru
tion of solutions ofthe Bessel equation. Thus we wish to verify that Jn(z) de�ned by (1.2) does indeed satisfyz2 J 00n + z J 0n + (z2 � n2)Jn = 0 : (1.3)
3



To do this, 
onsider1Xn=�1�z2 J 00n + z J 0n + (z2 � n2)Jn� tn= 1Xn=�1�z2 d2dz2 + z ddz + z2 � t ddt t ddt� tn Jn= �z2 d2dz2 + z ddz + z2 � t ddt t ddt� e 12 z(t�t�1) ;= �14z2 (t� t�1)2 + 12z (t� t�1) + z2 � 14z t�2 (�2t+ 2t3 + z + 2z t2 + z t4)� e 12 z(t�t�1)= 0 : (1.4)Note that in the �rst line, we have used the fa
t that n2 tn 
an be written as t(d=dt)t(d=dt) tn.The next step is to observe that (1.2) 
an be turned into an expression for a singleBessel fun
tion, say Jm(z). All we need to do is to multiply (1.2) by t�m�1, and integrateit around a 
losed 
ontour C en
ir
ling the origin. By the theorem of residues, we have12� i IC tn�m�1 dt = Æmn ; (1.5)where the Krone
ker delta fun
tion Æmn as usual has the meaning that Æmn = 0 unlessm = n, for whi
h Æmm = 1. Thus from (1.2) we obtain the result thatJn(z) = 12� i IC t�n�1 e 12 z(t�t�1) dt ; (1.6)where C is a 
losed 
ontour that en
ir
les the origin anti
lo
kwise. We 
an, for example,take C to be C0, the unit 
ir
le, jtj = 1. This has furnished us with an integral representationfor the Bessel fun
tion Jn(z). It is evident that it is analyti
 for all z in the �nite 
omplexplane. The Jn fun
tions are sometimes 
alled Bessel Fun
tions of the First Kind. For now,we are assuming that n is an integer.We 
an express Jn(z) as a power series in z in the following way. Introdu
e a newintegration variable w, de�ned by t = 2w=z; thenJn(z) = 12� i �12z�n IC w�n�1 ew� 14 z2 w�1 dw ; (1.7)where again we may take the integration 
ontour to be the unit 
ir
le, jwj = 1. The fa
tore� 14 z2 w�1 
an be expanded in a power series,e� 14 z2 w�1 = 1Xr=0 (�1)rr! �12z�2r w�r ; (1.8)sin
e this is uniformly 
onvergent on the 
ir
le jwj = 1. Thus we obtainJn(z) = 12� i 1Xr=0 (�1)rr! �12z�n+2r IC w�n�r�1 ew dw : (1.9)4



As we saw in part I of the 
ourse, the residue R at an N 'th-order pole z = z0 of a fun
tionf(z) is R = 1(N � 1)! h dN�1dzN�1 �(z � z0)N f(z)�iz=z0 : (1.10)Therefore the residue of the integrand in (1.9) at w = 0 is given by di�erentiating ew (n+r)times, setting w = 0, and dividing by (n + r)!, when n + r is a positive integer or zero.When n+r is a negative integer (re
all that n 
an be positive, negative or zero), the residueis zero.Consequently, we �nd that if n is a positive integer or zero, (1.9) givesJn(z) = 1Xr=0 (�1)r �12z�n+2rr! (n+ r)! : (1.11)On the other hand if n is a negative integer, n = �m, thenJn(z) = 1Xr=m (�1)r �12z�2r�mr! (r �m)! = 1Xs=0 (�1)m+s �12z�m+2ss! (m+ s)! ; (1.12)where we set r = m+s in the se
ond summation. Evidently, therefore, we have the relationJ�n(z) = (�1)n Jn(z) ; (1.13)where n is any integer.Noti
e that by having a variety of ways of representing the Bessel fun
tions available inthe armoury, we 
an pi
k whi
hever is most 
onvenient for proving a parti
ular result. Infa
t the property (1.13) 
an be seen very easily dire
tly from (1.2). If we send t �! �1=tthen the e�e
t on the right-hand side is to send Jn(z) �! (�1)n J�n(z), while the left-handside is left un
hanged.Bessel fun
tions have many properties that are analogous to those of trigonometri
fun
tions. Re
all, for example, the addition formulae su
h as sin(x + y) = sinx 
os y +
os x sin y. The analogue for the Jn Bessel fun
tions isJn(x+ y) = 1Xm=�1 Jm(x)Jn�m(y) : (1.14)We 
an again prove this very easily from the generating fun
tion (1.2). We simply observethat from the elementary properties of the exponential fun
tion, it follows thate 12 (x+y)(t�t�1) = e 12x (t�t�1) e 12 y (t�t�1) : (1.15)From (1.2) this implies1Xn=�1 tn Jn(x+ y) = � 1Xp=�1 tp Jp(x)�� 1Xq=�1 tq Jq(y)� : (1.16)5



Pi
king out all the terms asso
iated with p+ q = n in the right-hand side, and equating tothe term in tn on the left-hand side, equation (1.14) follows.Another integral representation for the Bessel fun
tion Jn(z) may be obtained as follows.Starting from (1.6), we may write the 
omplex integration variable t, whi
h is taken to runaround the unit 
ir
le, as t = ei �. Thus we getJn(z) = 12� Z ��� e�in�+i z sin � d�: (1.17)By dividing the integration range into two pie
es, namely �� � � � 0 and 0 � � � �, andthen sending � �! �� in the �rst of these, we getJn(z) = 12� Z �0 ein ��i z sin � d� + 12� Z �0 e�in�+i z sin � d� ; (1.18)and hen
e we arrive at the expression, known as Bessel's integral for Jn(z):Jn(z) = 1� Z �0 
os(n � � z sin �) d� : (1.19)To give some idea of what the Bessel fun
tions Jn(z) look like, we give plots below, inFigures 1, 2, 3 and 4, for J0(z), J1(z), J5(z) and J10(z). Like the trigonometri
 fun
tionsthey are os
illatory, although they are not periodi
 as su
h sin
e the interval betweensu

essive zeros 
hanges with z. As we shall see later, at large z they do asymptoti
allyapproa
h a de�nite period. It is also evident that their magnitudes fall o�, in a rather mildway, as z in
reases.
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Figure 1: The J0(z) Bessel Fun
tion
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Figure 2: The J1(z) Bessel Fun
tion
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Figure 3: The J5(z) Bessel Fun
tion1.2 J�(z) Bessel Fun
tion of Non-integer Order �Until now, we have been assuming that the order n of Jn(z) is an integer. Staying with thisassumption for just a moment longer, we may note from the integral representation (1.7)that we 
an dire
tly substitute it into the Bessel equation (1.3), to obtainJ 00n + 1z J 0n + �1� n2z2 �Jn = 12� i �12z�n IC w�n�1 h1� n+ 1w + z24w2 i ew� 14 z2 w�1 dw ;= � 12� i �12z�n IC ddw hw�n�1 ew� 14 z2 w�1i dw ;= 0 : (1.20)This last step follows from the fa
t that w�n�1 ew� 14 z2 w�1 is single valued, and so it returnsto its original value after 
ompleting the trip around the 
losed 
ontour C, whi
h was takento be the unit 
ir
le C0. This gives a dire
t proof that the integral repsesentation (1.7) for7
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Figure 4: The J10(z) Bessel Fun
tionthe Bessel fun
tion of integral order satis�es Bessel's equation.Now, a straightforward modi�
ation allows us to adopt (1.7) as an integral representationfor the Bessel fun
tion J�(z), where now � is not restri
ted to being an integer. It is evidentthat a manipulation identi
al to (1.20) 
an be 
arried out for J�(z) de�ned byJ�(z) = z�2�+1 � i ZC w���1 ew� 14 z2 w�1 dw ; (1.21)provided that we make an appropriate di�erent 
hoi
e for the 
ontour C. (We shall keepthe same symbol C, but it will now mean something di�erent.) Thus we substitute (1.21)into (1.1), dedu
ing that J�(z) does indeed satisfy this equation as long asZC ddw hw���1 ew� 14 z2 w�1i dw = 0 : (1.22)This will be true provided that the quantityw���1 ew� 14 z2 w�1 (1.23)returns to its initial value after following round from the beginning to the end of the pathdes
ribed by C. Clearly, when � is not an integer, we 
annot take C to be the unit 
ir
leany more. Instead, we 
an take C to be very like the Hankel 
ontour that we used in partI of the 
ourse, only now re
e
ted a
ross the imaginary axis. Thus we take a 
ontour thatstarts at �1 just below the real axis, loops anti
lo
kwise around the origin, and exits to thewest again just above the real axis; see Figure 7 below . At both the starting and �nishingpoints, therefore, the real part of w is �1, and so the ew fa
tor ensures that (1.23) vanishesat both ends. To be pre
ise, we take jargwj � � on the 
ontour.8



Figure 5: The 
ontour of integration for the integral (1.21) for J�(z)This integral representation for J�(z) 
an be expressed as a power series. We may notethat the integral itself in (1.21) de�nes an analyti
 fun
tion z, and so it must admit aTaylor expansion. In fa
t, the integral has a series expansion in powers of q � z2, whi
h 
anbe obtained by di�erentiating under the integral sign, to 
onstru
t the Taylor expansion.De�nining h(q) � ZC w���1 ew� 14 q w�1 dw ; (1.24)we 
onstru
t the series expansionh(q) = h(0) + q h0(0) + 12q2 h00(0) + 16q3 h000(0) + � � � = 1Xr=0 qrr! h(r)(0) ;= 1Xr=0 (�q)r4r r! ZC w���r�1 ew dw ;= 2� i 1Xr=0 (�q)r4r r! �(� + r + 1) : (1.25)This last result 
omes from the 
ontour-integral expression for the Gamma fun
tion thatwe derived in part I of the 
ourse, namely1�(z) = � 12� i Z
 e�t (�t)�z dt ; (1.26)where 
 denotes the Hankel 
ontour, whi
h runs from +1 just above the real axis, swingsin around the origin, and goes out east again just below the real axis. (This is just the9



re
e
tion of our 
urrent 
ontour C a
ross the imaginary axis.) Thus we arrive at the resultthat J�(z) has the series expansionJ�(z) = 1Xr=0 (�1)r z�+2r2�+2r r! �(� + r + 1) : (1.27)It is easy to see that this expansion agrees with the one that we derived in (1.11), in the
ase that � is a non-negative integer. It also 
oin
ides with (1.12) in the 
ase that � is anegative integer. In general, for arbitrary � we take (1.21) as the integral representationde�ning J�(z), and (1.27) as the series representation for J�(z).Noti
e that sin
e J�(z) satis�es Bessel's equation (1.1), and this equation is invariantunder sending � �! ��, it follows that J�(z) and J��(z) generi
ally give us the two linearly-independent solutions of the Bessel equation. This argument would break down, of 
ourse,if it were the 
ase that J��(z) were simply a 
onstant multiple of J�(z). We know that thisis pre
isely what does happen if � is an integer, sin
e then we have the relation (1.13) whi
htells us that J�n(z) = (�1)n Jn(z). This is, however, a pe
uliarity of integer values for �.When � 6= integer, it is 
lear from (1.27) that J��(z) 
annot be a 
onstant multiple ofJ�(z). (The powers of z in the expansions of J�(z) and J��(z) will be 
ompletely di�erent.)Thus when � 6= integer, the general solution of the Bessel equation (1.1) is given by�J�(z) + � J��(z) ; (1.28)where � and � are 
onstants. We shall see later how to obtain the se
ond independentsolution to (1.1) when � is an integer.Here are a 
ouple of sample plots of Bessel fun
tions J�(z) with non-integer order �.We present the 
ases � = 13 and � = �13 , in Figures 5 and 6 below.We may generalise the Bessel integral (1.19) for the integer-order Bessel fun
tions to the
ase where the order is non-integral. First, we note that by performing the transformationw = 12z t, we 
an 
ast the integral representation (1.21) into the formJ�(z) = 12� i ZC t���1 e 12 z(t�t�1) dt : (1.29)This will be an analyti
 fun
tion of z provided that Re(z t) is negative when t heads ofto �1 at the beginning and end of the 
ontour. We shall deform the 
ontour so that it
onsists of a line running from �1 to �1 just below the real axis, then a unit 
ir
le runninganti
lo
kwise around the origin, and �nally a line running from �1 to �1 just above the10
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Figure 6: The J 13 (z) Bessel Fun
tion
5 10 15 20 25 30

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 7: The J� 13 (z) Bessel Fun
tionreal axis. (See Figure 8 below.) Initially we shall take z to be real and positive, but byanalyti
 
ontinuation we may then allow z to be any 
omplex number with Re(z) > 0.The part of the 
ontour 
omprising the unit 
ir
le 
an be handled pre
isely as in the
ase of the integer-order result (1.19). The two line integrals give additional 
ontributionshe(�+1) � i2� i � e�(�+1) � i2� i i Z 11 x���1 e 12 z(�x+x�1) dx ; (1.30)where we have written t = e�i� x for the ingoing and outgoing pie
es respe
tively. Thuswriting x = e�, we arrive at the result, due to S
hl�a
i, thatJ�(z) = 1� Z �0 
os(� � � z sin �) d� � sin ��� Z 10 e�� ��z sinh � d� : (1.31)11



Figure 8: The deformed 
ontour for deriving S
hl�a
i's integralNoti
e that in the spe
ial 
ase where � is an integer, this redu
es immediately to the previousresult (1.19).1.3 Re
urren
e Formulae for the Bessel Fun
tionsNoti
e that from the integral representation (1.21) for the Bessel fun
tion J�(z), we 
anderive a simple expression for obtaining J�+1(z) in terms of J�(z). To do this, multiply(1.21) by z�� and di�erentiate with respe
t to z, to getddz�z�� J�(z)� = 12�+1 � i ddz ZC w���1 ew� 14 z2 w�1 dw ;= � z2�+2 � i ZC w���2 ew� 14 z2 w�1 dw ;= �z�� J�+1(z) : (1.32)In other words, we have J�+1(z) = �z� ddz�z�� J�(z)� ; (1.33)whi
h 
an trivially be written also asJ�+1(z) = �z�+1 dz dz�z�� J�(z)� ; (1.34)
12



Iterating (1.34) on
e, we getJ�+2(z) = �z�+2 dz dz�z�� J�+1(z)�= z�+2 dz dz� dz dz�z�� J�(z)�� : (1.35)Clearly we 
an repeat this as many times as we wish, to obtain the re
urren
e formulaJ�+r(z) = (�1)rz�+r h dz dz ir �z�� J�(z)� ; (1.36)where r is any non-negative integer.Another re
urren
e formula 
an be obtained by 
onsidering J�+1(z) + J��1(z), whi
h,from (1.21), 
an be written asJ�+1(z) + J��1(z) = z�2�+1 � i ZC(12z w�1 + 2w z�1)w���1 ew� 14 z2 w�1 dw ;= 2z z�2�+1 � i ZC w�� �1 + z24w2� ew� 14 z2 w�1 dw ;= 2z z�2�+1 � i ZC w�� ddw ew� 14 z2 w�1 dw ;= 2�z z�2�+1 � i ZC w���1 ew� 14 z2 w�1 dw ; (1.37)where in the last line we integrated by parts, and made use of the fa
t that the \boundaryterm" in the integration by parts vanishes. (This is the same property that we used previ-ously in order to show that J�(z) de�ned by (1.21) satis�ed the Bessel equation.) Thus wehave obtained the re
urren
e formulaJ�+1(z) + J��1(z) = 2�z J�(z) : (1.38)1.4 Bessel Fun
tions of Half-integer OrderThe Bessel fun
tions J�(z) take on a parti
ularly simple form when � is half an odd integer.Consider the 
ase when � = 12 . In general we have the series expansion (1.27), namelyJ�(z) = 1Xr=0 (�1)r z�+2r2�+2r r! �(� + r + 1) : (1.39)Setting � = 12 , we may observe �rst that�(12 + r + 1) = (12 + r) �(12 + r) = (12 + r)(12 + r � 1) �(12 + r � 1) ;= (12 + r)(12 + r � 1) � � � 12 � �(12 ) ;= 2�r�1 (2r + 1)(2r � 1)(2r � 3) � � � 3 � 1 � �(12 ) : (1.40)13



Furthermore, we may writer! = 2�r (2r) (2r � 2)(2r � 4) � � � 4 � 2 : (1.41)Combined with the fa
t that �(12) = p�, we therefore have thatr! �(12 + r + 1) = 2�2r�1p� (2r + 1)! : (1.42)Substituting into (1.39), we therefore obtainJ 12 (z) = r2z� 1Xr=0 (�1)r z2r(2r + 1)! ; (1.43)when
e J 12 (z) = r 2� z sin z : (1.44)From our previous re
urren
e formula (1.36), it then immediately follows thatJr+ 12 (z) = r 2� zr+ 12 h dz dz ir �sin zz � ;= 1p� (2z)r+ 12 h ddz2 ir �sin zz � ; (1.45)where r is any non-negative integer. It is 
lear after a moment's thought that this meansthat Jr+ 12 (z) = Pr(z) sin z +Qr(z) 
os z ; (1.46)where Pr(z) and Qr(z) are polynomials in z� 12 .1.5 The Se
ond Solution of Bessel's EquationWe saw previously that if � is not an integer, the Bessel fun
tions J�(z) and J��(z) arelinearly independent, and both solve the Bessel equation (1.1). Being a se
ond-order di�er-ential equation, the Bessel equation has exa
tly two linearly independent solutions, and sothey may be taken to be J�(z) and J��(z) when � is non-integral.When � is an integer n the above reasoning fails be
ause, as we saw in (1.13), Jn(z) andJ�n(z) are now linearly dependent; Jn(z) = (�1)n J�n(z). As is often the 
ase when the\se
ond solution" of a di�erential degenerates for some spe
ial values of the parameters,one 
an in fa
t still extra
t the se
ond solution by taking an appropriately res
aled limit.In the present 
ase, we do this by a 
onstru
tion in whi
h we take the di�eren
e betweenthe J�(z) and J��(z) solutions, divide by a quantity that vanishes appropriately at � =integer, and then take the limit where � tends to the integer n. The idea is that the14



vanishing denominator s
ales up the numerator that is otherwise tending to zero, so that a�nite and non-zero result is obtained.To be pre
ise this se
ond solution, known, not surprisingly, as the Bessel fun
tion of these
ond kind, and denoted by Y�(z), is de�ned byY�(z) = J�(z) 
os �� � J��(z)sin �� : (1.47)First, note that for a generi
 (non-integer) value of z, Y�(z) is just a 
ertain linear 
ombi-nation of J�(z) and J��(z), with the 
oeÆ
ients of both terms being �nite and non-zero.Thus when � is non-integral, Y�(z) is a perfe
tly good 
hoi
e for the se
ond solution of theBessel equation.1Now, 
onsider what happens when � is taken to be an integer, n. The numeratorbe
omes pre
isely the 
ombination (�1)n Jn(z) � J�n(z) that vanishes by virtue of therelation (1.13). However, as promised, the denominator vanishes too. We end up, as � issent to n, with a \zero divided by zero" expression that a
tually has a regular limit. Of
ourse given that this limit exists, whi
h we shall show in a moment, it follows that Yn(z)solves the Bessel equation, sin
e Y�(z) solves it for all non-integer �, and this will 
ontinueto be true as � approa
hes the integer n. So it remains to show that the limit does indeedexist, and that the resulting fun
tion Yn(z) is linearly independent of Jn(z).We 
an show both of these properties together, in fa
t. Re
all that the Wronskian oftwo solutions y1 and y2 of a se
ond-order linear di�erential equation is de�ned by�(y1; y2) � y1 y02 � y2 y01 : (1.48)Re
all also that the Wronskian of the two solutions is non-vanishing if and only if thesolutions are linearly independent.For the Bessel equation, ifz2 y001 + z y01 + (z2 � �2) y1 = 0 ;z2 y002 + z y02 + (z2 � �2) y2 = 0 ; (1.49)then multiplying the se
ond equation by y1 and subtra
ting the �rst equation multipliedby y2 from it, we get z2 (y1 y002 � y2 y001) + z (y1 y02 � y2 y01) = 0 ; (1.50)when
e z�0 +� = 0 : (1.51)1Sometimes Y�(z) is known as the Neumann fun
tion, and is denoted instead by N�(z).15



This 
an be immediately solved for the Wronskian, giving log� + log z = 
onstant, or inother words � = 
z ; (1.52)where 
 is a 
onstant. So the question of linear independen
e 
omes down to whether in aparti
ular 
ase the 
onstant 
 turns out to be zero or not.Let us �rst 
onsider the Wronskian of J�(z) and J��(z). We expe
t to �nd that it isnon-zero when � is not an integer, but that it be
omes zero when � is an integer. Let's see ifthis is what happens. Sin
e we have established the result (1.52), we have only to determinethe 
onstant 
 (whi
h we expe
t to be dependent on �, but, of 
ourse, independent of z.)We 
an �x 
 for the 
ase y1 = J�(z), y2 = J��(z) by looking at any 
onvenient range ofthe 
oordinate z; the most 
onvenient thing is to look at the pla
e where z is very small,sin
e this allows us to use just the leading-order terms in the series expansions of the Besselfun
tions.We have from (1.27) thatJ�(z) = 2���(1 + �) z� +O(z�+2) ;J��(z) = 2��(1� �) z�� +O(z��+2) ; (1.53)Therefore, substituting into (1.48), we �nd that�(J� ; J��) = � 2�z �(1 + �)�(1� �) +O(1) : (1.54)Of 
ourse sin
e we know that J�(z) and J��(z) satisfy the Bessel equation, and that �must be of the form (1.52) for any two solutions, this means that the higher-order termsrepresented by O(1) are a
tually zero. The point is, though, that we 
an be sure thatonly the leading-order terms that we displayed expli
itly in (1.53) 
ontribute to the O(1=z)result. (The higher terms from (1.53) would obviously 
ontribute to � at orders zs withs � 0.)Now, we use some standard properties of the Gamma fun
tion that were proved in PartI of the 
ourse, namelyx�(x) = �(x+ 1) ; �(x) �(1� x) = �sin�x : (1.55)Putting these together, we learn that �(1+�) �(1��) = � �= sin(� �), and so (1.54) be
omes�(J� ; J��) = �2 sin ��� z : (1.56)16



So, 
omparing with (1.52), we have 
 = �2 sin ��� : (1.57)Thus we have found the expe
ted result, namely that J� and J�� are linearly independentfor all � ex
ept when � is an integer.Now 
onsider the Wronskian �(J� ; Y�) of J� and Y� , de�ned in (1.47). Clearly sin
e�(J� ; J�) is always zero, this will simply be given by the 
ontribution from the se
ond termin Y� : �(J� ; Y�) = � 1sin �� �(J� ; J��) = 2� z : (1.58)In the �nal stage here, we have substituted our previous result for �(J� ; J��).Our expression (1.58) shows that J�(z) and Y�(z) are linearly-independent for all valuesof �, integer and non-integer. This is what we wanted to show. Also, the fa
t that theWronskian in (1.58) has turned out to be a �nite and non-zero 
onstant multiple of 1=zshows that our limiting pro
edure to 
onstru
t Y�(z) at integer � is a good one; it hasprodu
ed a fun
tion that has neither diverged nor vanished.Let us investigate the properties of Y�(z) a little further. For now, we shall restri
tattention to looking at the behaviour near z = 0. We have already seen how the J�(z)Bessel fun
tion behaves, in the power-series expansion (1.27). Writing out the �rst fewterms for J�(z), we see that it isJ�(z) = z�2� �(� + 1) h1� z24(� + 1) + z442 (� + 1)(� + 2) � z643 (� + 1)(� + 2)(� + 3) + � � � i :(1.59)Now, in Part I of the 
ourse, we dis
ussed how one in general 
onstru
ts the se
ondindependent solution of a se
ond-order linear ODE in terms of a given original solution. Inparti
ular, we saw that given a solution y1(z), and Wronskian �, then the se
ond solutiony2(z) is obtained as y2(z) = y1(z) Z z �(t)y1(t)2 dt : (1.60)Of 
ourse if one takes di�erent values for the 
onstant lower limit of integration here, onegets di�erent 
onstant multiples of the original solution y1(z) added to the se
ond solutiony2(z). This is to be expe
ted; if y2(z) is a solution linearly independent of y1(z), then so isy2(z) + � y1(z) for any 
onstant �.From this dis
ussion, it follows that with an appropriate 
hoi
e of the lower limit ofintegration, we must have thatY�(z) = 2� J�(z) Z z 1t J�(t)2 dt : (1.61)17



Here, we have substituted the result (1.58) for the Wronskian of J�(z) with Y�(z). Now, wemay take the series expansion for J�(z) given in (1.59), and substitute it into (1.61):Y�(z) = 22�+1 �(� + 1)2 J�(z)� Z z t�2��1 h1+ t22(� + 1) + (2� + 5) t416(� + 1)2 (� + 2) + � � � i : (1.62)For generi
 (i.e. non-integer) values of �, it is 
lear that term-by-term integration of theintegral in (1.62) will just generate powers of z of the form z�2� , z�2�+2, z�2�+4, et
.. Infa
t, we know that at the end of the day the result must be that the entire expression in(1.62) just produ
es some linear 
ombination of J�(z) and J��(z), sin
e these are the twolinearly independent solutions of Bessel's equation when � is not an integer.However, when � = n = integer, it is evident that there will always be a parti
ular termin the integrand in (1.62) that is of the form t�1. For example, if � = 0 it will be the �rstterm in the square bra
kets that gives t�1. If � = 1, it will be the se
ond term that givest�1, and so on. The point is that whenever � is an integer, we are �nding that the integralin (1.62) yields a logarithm, sin
e Z z t�1 dt = log z : (1.63)Thus we have learned that when � = n is an integer, the se
ond solution Yn(z) alwayshas a logarithmi
 divergen
e as z tends to zero. This logarithmi
 behaviour is in fa
tpre
isely what is expe
ted from a general analysis of the properties of the se
ond solutionof a di�erential equation expanded around a regular singular point (see the dis
ussion inPart 1 of the 
ourse).In order to obtain the full stru
ture of the small-z series expansion for Y�(z), it iseasiest to go ba
k to the original de�nition (1.47). As we have seen above, the nature ofthe expansion will depend signi�
antly on whether or not � is an integer, sin
e there willbe logarithims involved if � is an integer, but not otherwise. In fa
t, we are really onlyinterested in �nding the series expansion when � is an integer, sin
e for non-integer �, Y�(z)is nothing but a non-singular linear 
ombination of J�(z) and J��(z), ea
h of whi
h 
an beexpanded straightforwardly using (1.27).We need, therefore, to study Y�(z) given by (1.47) as � approa
hes an integer n. Wemay write � = n+�, where � will be sent to zero. We 
an assume, without loss of generality,that n is a non-negative integer. We have
os �� = 
os(n+ �)� � (�1)n ;sin �� = sin(n+ �)� � (�1)n sin �� � (�1)n � � : (1.64)18



Therefore from (1.47) we �nd thatYn(z) = 1� � �Jn+�(z)� (�1)n J�n��(z)� ; (1.65)in the limit where � is sent to zero. In other words, we have to pi
k out the O(�) term in(Jn+�(z) � (�1)n J�n��(z)). (We know, of 
ourse, that there is no �-independent term, byvirtue of the relation Jn(z) = (�1)n J�n(z) that we derived earlier.)Some useful lemmata are the following:�z2�n+� = �z2�n e� log( 12 z) = �z2�n (1 + � log z2 + � � �) ;1�(p+ �+ 1) = 1�(p+ 1)�1� �  (p+ 1) + � � � � ; (1.66)1�(q � �+ 1) = �sin(q � �)�� �(�q + �) = (�1)q ��(�q) + � � �where p is a non-negative integer, q is a negative integer, and in all 
ases the terms rep-resented by � � � are of order �2 or higher, and are therefore not needed in our limitingpro
edure. The fun
tion  (z) is the digamma fun
tion, de�ned by (z) � �0(z)�(z) : (1.67)One 
an show that for an integer argument m, it is given by (m) = �
 + m�1Xr=1 1r ; (1.68)where 
 = 0:5772157 : : : is the Euler-Mas
heroni 
onstant, de�ned as the limit when m �!1 of 11 + 12 + 13 + � � �+ 1m � logm: (1.69)Using the lemmata, we �nd thatJn+�(z)� (�1)n J�n��(z)= 1Xr=0 (�1)rr! �z2�n+2r (1 + � log z2 + � � �)(1 � �  (n+ r + 1) + � � �)�(�1)n � n�1Xr=0 (n� r � 1)!r! �z2��n+2r + � � � (1.70)�(�1)n 1Xr=n (�1)rr! �z2��n+2r (1� � log z2 + � � �)(1 + �  (�n+ r + 1) + � � �) ;where the se
ond and third lines 
ome from splitting the r summation for J�n��(z) intothe range where r � n is negative, and the remainder, where r � n � 0. After making a19



shift of the summation variable in the third line, r �! r+n, one immediately sees that, asexpe
ted, all the �-independent terms 
an
el out, and what remains 
an be written asJn+�(z)� (�1)n J�n��(z) = � 1Xr=0 (�1)rr! (n+ r)! �z2�n+2r h2 log z2 �  (n+ r + 1)�  (r + 1)i�� n�1Xr=0 (�1)r (n� r � 1)!r! �z2��n+2r +O(�2) : (1.71)Finally, therefore, we �nd by substituting into (1.65) and sending � to zero that Yn(z)has the series expansionYn(z) = 1� 1Xr=0 (�1)rr! (n+ r)! �z2�n+2r h2 log 12z �  (n+ r + 1)�  (r + 1)i� 1� n�1Xr=0 (�1)r (n� r � 1)!r! �z2��n+2r : (1.72)1.6 Asymptoti
 Expansions of J�(z) and Y�(z)So far, we have studied the expansions for J�(z) and Yn(z), expressed as power series aroundz = 0. The resulting expression (1.27) for J�(z) is 
onvergent for all �nite z, sin
e J�(z)is analyti
 in the �nite 
omplex plane. For Yn(z), the series (1.72) has a bran
h point andpoles at z = 0, as signalled by the o

urren
e of the logarithms and inverse powers of z, butotherwise it is analyti
 in the �nite 
omplex plane. These series are, in parti
ular, usefuland usable for answering all questions about the small-z behaviour of the Bessel fun
tions.We should also like to know how the Bessel fun
tions behave at large values of theirargument z. For example, in a s
attering problem, where z might parameterise the radial
oordinate that measures the distan
e from the s
attering-
entre, one would like to knowhow the s
attered waves depend on z at large distan
e. We shall in fa
t study an exampleof su
h a s
attering problem later.Finding the large-z behaviour of a fun
tion is the kind of problem that we studied atthe end of Part 1 of the 
ourse, under the heading of Asymptoti
 Expansions. In a typi
alexample, and indeed the Bessel fun
tions are no ex
eption, one 
annot obtain 
onvergentpower-series expansions at large z, owing to the fa
t that they have essential singularities atin�nity. Another example of su
h a fun
tion is the exponential ez. Transforming from the
omplex variable z to w = 1=z, we see that in the vi
inity of z =1 the exponential lookslike e1=w with w 
lose to zero. This has a singularity at w = 0 that is \worse" than anypower-law 1=wn, no matter how large n is. This is what is 
alled an essential singularity.We saw in Part I of the 
ourse that in su
h 
ir
umstan
es, when there is an essentialsingularity, one may still be able to 
onstru
t a useful series expansion that approximates20



a fun
tion F (z) at large z. However, it will no longer be a 
onvergent series; instead, it isan asymptoti
 expansion. We refer the reader to Part 1 of the le
ture notes for details. Abrief summary of the idea is as follows.An ordinary 
onvergent power series approximates F (z) to better and better a

ura
y,at �xed z, as more and more terms are in
luded in the sum. Eventually, the agreementbe
omes perfe
t as the number of terms is taken to in�nity. By 
ontrast, an asymptoti
expansion is a
tually divergent; if one sums up all the terms at a �xed value of z, the sumdiverges. However, instead what we do is to look at a �xed number of terms in the series;the �rst N terms, let us say. Then, as z is made larger and larger, the N -term series givesa better and better approximation to F (z), be
ming perfe
t in the limit when z be
omesin�nite. For any given �nite value of z there is a limit to how good an approximation we
an get; beyond a 
ertain point, adding in more terms in the series makes things worse, notbetter. Nonetheless, the asymptoti
 expansion is a very useful approximation that gives allthe required information about the large-z asymptoti
 behaviour of the fun
tion.We have obtained the integral representation (1.29) for the Bessel fun
tion J�(z). Avery useful te
hnique for 
onstru
ting the asymptoti
 expansion of a fun
tion de�ned by anintegral representation is by means of the Method of Steepest Des
ent. This was dis
ussedin detail in Part 1 of the 
ourse, and we shall not present all the details again here. Thegeneral idea, expressed in the notation of variables that we are using in this se
tion, is thatone has an integral representation of the formF (z) = ZC g(t) ez f(t) dt ; (1.73)where f(t) is su
h that Re(z f(t)) goes to �1 at both ends of the range of integration alongthe 
ontour C. The idea is that as z is taken very large, the integrand be
omes dominatedby the point (or points) in the 
omplex t-plane where f(t) is stationary, f 0(t) = 0. Thefun
tion g(t) is assumed to have su
h a form that it varies only slowly in the vi
inity ofthe point, whi
h is at, let us say, t = t0. Then, what one does is to deform the 
ontour sothat it passes through the stationary point at t = t0, and swing it around so that it followsthe path of steepest des
ent as one moves away from t = t0 in either dire
tion along the
ontour. To a good approximation, sin
e one hasf(t) = f(t0) + 12(t� t0)2 f 00(t0) + � � � ; (1.74)the integral is now just dominated by a Gaussian integrand of the forme�12u2 ; (1.75)21



where u is the renamed integration variable after having deformed the 
ontour so that itfollows the path of steepest des
ent. All other fa
tors in the integrand 
an just be takenoutside the integration, with their original argument t repla
ed by the value t0 at thestationary point. If there is more than one stationary point, we just repeat the pro
edureat ea
h, and add up the 
ontributions.Without further ado, let us now use the method of steepest des
ent to 
al
ulate theasymptoti
 behaviour of the Bessel fun
tion J�(z). We have, from (1.29),J�(z) = 12� i ZC t���1 e 12 z(t�t�1) dt ; (1.76)and so 
omparing with (1.73) we havef(t) = 12(t� t�1) : (1.77)This has stationary points at f 0(t) = 12 (1 + t�2) = 0, in other words at t = �i. Note thatwe have f(i) = i, and f(�i) = �i. The �rst thing we do now is to deform the 
ontour C sothat it passes through the points t = �i.Consider the 
ontribution from t = +i �rst. Expanding f(t) in a Taylor series aroundt = +i, we have f(t) = i� i2 (t� i)2 + � � � : (1.78)(The �rst term is just f(i), and of 
ourse there is no linear term sin
e f 0(i) = 0.) To deformthe 
ontour so that it follows the path of steepest des
ent, it is useful to introdu
e a newintegration 
oordinate u in pla
e of t, whi
h will be real along the steepest-des
ent path.We do this by de�ning it to be su
h that� i2 (t� i)2 = �u22z : (1.79)(Take z to be real and positive for now.) Thus we have(t� i)2 = u2z e� 12 i� : (1.80)Taking the square root, we get t� i = � upz e� 14 i� : (1.81)We have 
hosen the square root with the minus sign here be
ause we want the 
ontour torun in the natural anti
lo
kwise dire
tion as u runs from negative to positive values. Thusfor negative u, the 
ontour approa
hes t = i from the south-east, and as u goes positive it22



leaves t = i in a north-westerly dire
tion (the slope of the line being pre
isely �1). Notethat to 
hange integration variable from t to u, we shall havedt = dtdu du = � 1pz e� 14 i� : (1.82)Let us 
all I+ the 
ontribution to J�(z) from this stationary point at t = +i. Thus from(1.76) we shall have I+ � � 12� i �e 12 i�����1 1pz e� 14 i� ei z Z e� 12u2 du : (1.83)The fa
tors sitting out at the front 
ome from taking t���1 outside the integral, settingt = i = e 12 i� as we do so; making the transformation from dt to du using (1.82); and takingout the fa
tor ez f(i) = ei z that 
omes fromez f(t) � ez f(t0)� 12u2 : (1.84)The integration over u 
an be ex
ellently approximated by allowing the limits to be �1and +1, sin
e we are assuming that z is large. (See (1.79); when z is large, u 
an be largewhile t is still rather 
lose to t = i.) Thus the integral is just a Gaussian, whi
h gives afa
tor of p2�. Putting it all together, we therefore haveI+ � 1p2� z ei(z� 12� �� 14�) : (1.85)Now we 
onsider the 
ontribution I� to J�(z) from the other stationary point, at t = �i.Expanding around this point we havef(t) = �i + i2 (t+ i)2 + � � � ; (1.86)and so we 
hoose our real integration variable u that parameterises the path of steepestdes
ent to be su
h that (t+ i)2 = u2z e 12 i� : (1.87)This time, the square root will be t+ i = upz e 14 i� ; (1.88)so that the 
ontour 
omes in from the south-west, and head onwards to the north-east, as itshould. The slope here is pre
isely +1. Thus we �nd by a similar 
al
ulation to the abovethat I� � 1p2� z ei(�z+ 12� �+ 14�) : (1.89)23



t = i

t = -i

Figure 9: The deformed Bessel 
ontour that follows the paths of steepest des
ent at t = �i.The deformed 
ontour that we have used in the steepest-des
ent integrals is depi
ted inFigure 9. Noti
e that the 
ontour is running at pre
isely the 45-degree angles implied by(1.81) and (1.88) as it passes through the points t = +i and t = �i respe
tively.Finally, we put the two results together, J�(z) = I+ + I�, givingJ�(z) � r 2� z 
os(z � 12� � � 14�) : (1.90)This is our asymptoti
 formula for the large-z behaviour of the Bessel fun
tion J�(z).Noti
e that this result �ts very ni
ely with what we saw in the various graphs of Besselfun
tions, in Figures 1 to 6. One 
an see from the plots that the intervals between su

essivezeros seem to be settling down to equal steps, pre
isely as is implied by the asymptoti
ally
osine form appearing in (1.90). Furthermore, one 
an see from the graphs that the am-plitude of the os
illation is falling o� in a rather mild way as z gets larger. This also isunderstandable from the asymptoti
 expression (1.90), whi
h has a 1=pz prefa
tor to the
osine fun
tion.The asymptoti
 formula that we have obtained here is the leading term in the fullasymptoti
 expansion. As was dis
ussed in Part 1 of the 
ourse, there is a systemati
pro
edure for 
onstru
ting the expansion to any desired number of terms. Essentially, whatone does is to repla
e the trun
ated Taylor series for f(t) in (1.74) by the full series, or24



at least as many terms as one wishes to work with. The rede�ned integration 
oordinateu is then given by the 
orresponding full expression, rather than the trun
ated one (1.80).Other than that, and the asso
iated 
ompli
ations that now arise from having to invert soas to express dt=du in terms of u, things pro
eed pretty mu
h as before. The result, whi
hwe shall derive later, 
an be shown to beJ�(z) � r 2� z h 
os(z � 12� � � 14�) 1Xr=0 ar z�2r + sin(z � 12� � � 14�) 1Xr=0 br z�2r�1i ; (1.91)where a0 = 1 andar = (�1)r(2r)! 26r �(4�2 � 12)(4�2 � 32) � � � (4�2 � (4r � 1)2)� ;br = (�1)r+1(2r + 1)! 26r+3 �(4�2 � 12)(4�2 � 32) � � � (4�2 � (4r + 1)2)� : (1.92)Our result above 
orresponds to the leading-order term with the 
oeÆ
ient a0 = 1 in thisasymptoti
 expansion. In pra
ti
e, (1.90) is 
ommonly quite suÆ
ient.Having struggled to obtain the asymptoti
 form of J�(z), it is, fortunately, now a relativetriviality to get the analogous formula for Y�(z). We need only refer ba
k to the originalde�nition of Y�(z), given in (1.47), and plug in the result (1.90). After an elementary useof the identities for the produ
t of two trigonometri
 fun
tions, we get the result:Y�(z) � r 2� z sin(z � 12� � � 14�) : (1.93)1.7 The Hankel Fun
tions H (1)� (z) and H (2)� (z)We have seen that asymptoti
ally, J�(z) and Y�(z) be
ome very similar to 
ertain 
osineand sine fun
tions. Not surprisingly, perhaps, it turns out that it is often 
onvenient to in-trodu
e 
omplex 
ombinations of J�(z) and Y�(z), whi
h have the property of approa
hing
omplex exponentials of the form e�i z asymptoti
ally. In parti
ular, these are very 
onve-nient 
ombinations to use when 
onsidering solutions of a wave equation. A

ordingly, onede�nes the so-
alled Hankel fun
tions of the �rst and se
ond kind, denoted by H(1)� (z) andH(2)� (z) respe
tively, byH(1)� (z) = J�(z) + iY�(z) ; H(2)� (z) = J�(z)� iY�(z) : (1.94)Clearly, from (1.90) and (1.93), when z is large they have the asymptoti
 behaviourH(1)� (z) � r 2� z ei(z� 12 � �� 14�) ; H(2)� (z) � r 2� z e�i(z� 12 � �� 14�) : (1.95)25



The Hankel fun
tions 
an be obtained elegantly from the 
ontour integral representation(1.29), by making suitable 
hanges to the 
hoi
e of 
ontour. Spe
i�
ally, we 
an show thatthey are given by H(1)� (z) = 1� i ZC1 t���1 e 12 z (t�t�1) dt ;H(2)� (z) = 1� i ZC2 t���1 e 12 z (t�t�1) dt ; (1.96)where the 
ontours C1 and C2 are 
hosen as follows. The 
ontour C2 starts out like theoriginal 
ontour in Figure 7, just below the real axis out west at t = �1. It heads in andswings half way around the origin, and then dives dire
tly in to the origin along the positivereal axis. The 
ontour C1 is the re
e
tion of this a
ross the real axis; it 
omes out from theorigin, swings up and around, and heads o� to the west, just above the real axis, eventuallyrea
hing t = �1. The two 
ontours are depi
ted in Figure 10 below.
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Figure 10: The 
ontours C1 and C2 for the Hankel fun
tions H(1)� (z) and H(2)� (z).The reason why su
h 
ontours are allowed is that as t heads in to the origin along the realaxis, the fa
tor e� 12 z t�1 in the integrand goes to zero (when the real part of z is positive.)Thus we again have the situation that when one substitutes into the Bessel equation, the\boundary term" arising from integration by parts vanishes at both ends of the 
ontour, justlike it did in our earlier dis
ussion of the integral representation for J�(z). Thus with eitherof the 
ontours C1 or C2, the integral de�nes a fun
tion that satis�es Bessel's equation.26



Let us now verify that indeed the expressions for H(1)� (z) and H(2)� (z) in (1.96) are inagreement with the de�nitions (1.94). It is 
lear that the sum of the 
ontours C1 and C2 isequivalent, up to allowed deformations, to the 
ontour C used in the integral representation(1.29) for J�(z). Therefore we 
an immediately verify from (1.96) and (1.29) that indeedwe shall have J�(z) = 12(H(1)� (z) +H(2)� (z)) : (1.97)It remains to show from (1.96) thatY�(z) = 12i(H(1)� (z)�H(2)� (z)) ; (1.98)whi
h is what is required by (1.94). To do this, we �rst make the 
hange of integrationvariable t = ei�=s in the expression for H(1)� (z) in (1.96). Note that sin
e the imaginarypart of t is positive on the 
ontour C1, it follows that this maps into a 
ontour for s whereagain its imaginary part is positive.2 In fa
t for this reason, the 
ontour for the transformedintegral using s 
an again be taken to be just C1. The starting point t = 0 be
omes s = �1,while the endpoint t = �1 be
omes s = 0. This reversal of the dire
tion is 
ompensatedby the fa
t that dt=t = �ds=s. The fa
t that the 
ontour has been mapped ba
k onto itselfis 
ru
ial, be
ause it means that we 
an again interpret the integral as giving a Hankelfun
tion of the �rst kind; this time, with order ��. Thus we �nd thatH(1)� (z) = 1� i e�i � � ZC1 s��1 e 12 z (�s�1+s) ds ;= e�i � �H(1)��(z) : (1.99)By a similar argument, in whi
h we 
hange the integration variable in the expressionfor H(2)� (z) in (1.96) by t = e�i�=s, we dedu
e also thatH(2)� (z) = ei � �H(2)��(z) : (1.100)(The 
hange of variable here ensures that t, whose imaginary part is negative on the 
ontourC2, maps into s that also has negative imaginary part. Again, this means that s 
an beintegrated along the same 
ontour as was t.)Having established these two results we 
an now not only express J�(z) in terms ofH(1)� (z) and H(2)� (z) using (1.97), but also J��(z) in terms of H(1)� (z) and H(2)� (z). These2Consider a point on the 
ontour C1 in the 
omplex t plane. Sin
e t lies in the upper half plane, it hasthe form t = r ei �, where 0 < � < �. Therefore s = ei�=t = r�1 ei(���), and so s lies in the upper half planetoo. 27




an then be plugged into the original de�nition of Y�(z) in terms of J�(z) and J��(z) asgiven in (1.47). This givesY�(z) = 12 sin �� � 
os �� (H1� (z) +H(2)� (z))� ei � �H(1)� (z)� e�i � �H(2)� (z)� : (1.101)Colle
ting terms, we see that this produ
es pre
isely the expression (1.98). This 
ompletesthe demonstration that the original de�nitions (1.94) of the Hankel fun
tions agree pre
iselywith the integral representations given in (1.96).Noti
e that we 
an easily repeat the previous derivation of the asymptoti
 behaviourof the J�(z) Bessel fun
tion, for the 
ase of the Hankel fun
tions H(1)� (z) and H(2)� (z). Infa
t, we have already obtained all the ne
essary results in se
tion 1.6. When we appliedthe method of steepest des
ent there, we found that the 
ontour C passed through twostationary points, at t = +i and t = �i, and so we obtained two 
ontributions whi
h, whenadded, gave the asymptoti
 form of J�(z). For the Hankel fun
tions we have the sameintegrand (multiplied by a fa
tor of 2), but now with the 
ontour C1 or C2. In fa
t inthe method of steepest des
ent the 
ontour C1 will be deformed to one that passes justthrough the single stationary point at t = +i. Likewise, C2 will be deformed to a 
ontourpassing just through the t = �i stationary point. Thus the asymptoti
 forms of H(1)� (z) andH(2)� (z) will be pre
isely equal to 2I+ and 2I� respe
tively, where I� are the 
ontributions
oming from the steepest-des
ent integrations around t = �i respe
tively in se
tion 1.6.Sure enough, we see that the asymptoti
 forms of H(1)� (z) and H(2)� (z) given in (1.95) arepre
isely in agreement with 2I+ and 2I� respe
tively, where I� were obtained in (1.85) and(1.89).1.8 Orthogonality of Bessel fun
tionsIf the Bessel equation (1.1) is divided by z, it assumes the self-adjoint form(z y0)0 + �z � �2z � y = 0 : (1.102)From the general dis
ussion of Sturm-Liouville problems (see Part 1 of the le
ture 
ourse),this means that, with respe
t to suitable boundary 
onditions, the Bessel fun
tions willsatisfy orthogonality relations. These will be useful, for example, when we analyse problemsthat involve solving Lapla
e's equation or the wave equation in situations with 
ylindri
alsymmetry, where Bessel fun
tions arise in the solutions.Re
all, for example, that Lapla
e's equation in 
ylindri
al polar 
oordinates (�; �; z) is1� ����� � �� �+ 1�2 �2 ��2 + �2 �z2 = 0 : (1.103)28



Separating variables by writing  = R(�)�(�)Z(z), we getd2Zdz2 � k2 Z = 0 ; d2�d�2 + �2 � = 0 ; (1.104)d2Rd�2 + 1� dRd� + �k2 � �2�2 �R = 0 ; (1.105)where k2 and �2 are separation 
onstants. Res
aling the radial 
oordinate by de�ningx = k �, and renaming R as y, the last equation takes the standard Bessel formx2 d2ydx2 + x dydx + (x2 � �2) y = 0 : (1.106)Thus the radial fun
tions R(�) are of the formR(�) = J�(k �) or Y�(k �) : (1.107)In a typi
al ele
trostati
s problem, the potential  will be required to be regular onthe axis at � = 0. For now, 
onsider an example where in addition  = 0 on a 
ylindri
alsurfa
e at some radius � = a. This implies that the general solution of Lapla
e's equationwill be expressed in terms of the J�(z) and Y�(z) Bessel fun
tions.3 The requirement ofregularity at � = 0 implies that the Y�(z) Bessel fun
tions are ex
luded (as indeed, if � isnot an integer, are the J�(z) Bessel fun
tions for � < 0). So for now, let us just 
onsiderJ�(z) as the expansion fun
tions.We have seen from the plots of the Bessel fun
tions, and from their asymptoti
 be-haviour, that J�(z) has a dis
rete in�nite set of zeros, at points on the real z axis thatasymptoti
ally approa
h an equal spa
ing. Let us say that the m'th zero of J�(z) o

urs atz = ��m ; so J�(��m) = 0 : (1.108)So m = 1 is the lo
ation of the �rst zero, m = 2 is the lo
ation of the se
ond, and so on,as z in
reases from 0. They o

ur at de�nite values of ��m, though it is not easy to giveexpli
it expressions for ��m.If we are wanting to impose the requirement that the potential  vanishes on a 
ylindri
alsurfa
e at � = a, then we shall want to expand  in terms of Bessel fun
tions J�(k �) forwhi
h k a is equal to one of the quantities ��m de�ned above. In other words, this determines3If the boundary 
onditions were di�erent, we 
ould instead have a situation where the separation 
onstantk above were imaginary, in whi
h 
ase we would be dealing with Bessel fun
tions of the form J�(i z), et
.Theseare given di�erent names (just like hyperboli
 as opposed to trigonometri
 fun
tions), and we shall dis
ussthem later. Like the hyperboli
 fun
tions, they have real-exponential rather than os
illatory behaviour.29



the set of values for the separation 
onstant k that 
an arise in this boundary-value problem.Thus we shall 
onsider the Bessel fun
tion expressionsJ�(��m �=a) ; (1.109)these will form our expansion fu
tions for the radial fun
tion R(�). Substituting su
h anR(�) into (1.105), and multiplying by �, we get� d2d�2 J�(��m �=a) + dd� J�(��m �=a) + ��2�m �a2 � �2� �J�(��m �=a) = 0 : (1.110)Now we follow the usual story for proving orthogonality, of muliplying (1.110) byJ�(��n �=a), and on the other hand writing the equivalent equation to (1.110) but withm repla
ed by n, multiplying it by J�(��m �=a), and subtra
ting the latter from the former.This gives J�(��n �=a) dd��� dd�J�(��m �=a)�� J�(��m �=a) dd��� dd�J�(��n �=a)�= �2�n � �2�ma2 � J�(��m �=a)J�(��n �=a) : (1.111)Next, we integrate this from � = 0 to � = a. On the left-hand side we integrate by parts,�nding that there is now a 
an
ellation of the resulting two integrands, leaving only the\boundary terms." Thus we have���� J�(��n �=a) dd�J�(��m �=a)���a0 � ���� J�(��m �=a) dd�J�(��n �=a)���a0= �2�n � �2�ma2 Z a0 J�(��m �=a)J�(��n �=a) � d� : (1.112)Re
alling from (1.27) that near � = 0, J�(��n �=a) is proportional to �� , we see thatwith our assumption that � � 0 the lower limits on the left-hand side of (1.112) will givezero. Furthermore, the upper limits will also give zero, sin
e by 
onstru
tion J�(��m) = 0.Thus we arrive at the 
on
lusion that for m 6= n (whi
h implies ��m 6= ��n), we shall haveZ a0 J�(��m �=a)J�(��n �=a) � d� = 0 : (1.113)Having established orthogonality whenm 6= n, it remains to determine the normalisationof the integral that we get when instead we take m = n. To do this, let x = ��m �=a, sothat Z a0 J�(��n �=a)2 � d� = a2�2�n Z ��n0 J�(x)2 x dx : (1.114)30



To evaluate the integral on the right-hand side, we integrate by parts, by writing J�(x)2 x =12d=dx(x2 J�(x)2)� 12x2 d=dx(J�(x)2), so thatZ x2x1 J�(x)2 x dx = h12x2 J2� ix2x1 � Z x2x1 x2 J� J 0� dx : (1.115)We have also allowed rather more general upper and lower limits of integration x1 and x2here, sin
e then the resulting formula will be of wider appli
ability. Now use the Besselequation (1.1) to write x2 J� as �2 J� � xJ 0� � x2 J 00� , so that we getZ x2x1 J�(x)2 x dx = h12x2 J2� ix2x1 � Z x2x1 ��2 J� J 0� � xJ 0�2 � x2 J 0� J 00� �dx ;= h12x2 J2� ix2x1 � Z x2x1 �12�2 (J2� )0 � 12(x2 J 0�2)0�dx= 12hx2 J2� � �2 J2� + x2 J 0�2ix2x1 : (1.116)In our spe
i�
 
ase we have integration limits x1 = 0, x2 = ��n. Therefore the �rst twoterms in the �nal line vanish at both our endpoints (re
all that ��n are pre
isely the valuesof argument for whi
h J�(��n) = 0). For the �nal term, we use (1.33), expanded out togive J 0�(z) = �z J�(z)� J�+1(z) : (1.117)Thus, with our assumption that � � 0 we see that x2 J 0�2 will vanish at x = 0. Also, from(1.117) we see that J 0�(��n) = �J�+1(��n), and soZ ��n0 J�(x)2 x dx = 12�2�n J�+1(��n)2 ; (1.118)implying �nally thatZ a0 J�(��m �=a)J�(��n �=a) � d� = 12a2 J�+1(��n)2 Æmn : (1.119)With this orthogonality relation, it is now a simple matter to determine the 
oeÆ
ientsin an expansion for solutions of Lapla
e's equation, expressed in terms of the J� Besselfun
tions, so as to mat
h a given boundary 
ondition. The essential point is that, just likea Fourier series, a suitable fun
tion 
an be expanded as a Fourier-Bessel series, i.e. a sumover a 
omplete set of Bessel fun
tions. Spe
i�
ally, in the present 
ase we 
an expand anywell-behaved fun
tion f(�) that is regular at � = 0 and that vanishes at � = a as a sum ofthe form f(�) = 1Xn=1 
n J�(��n �=a) : (1.120)Multiplying by J�(��m �=a) � and integrating, the orthogonality relation (1.119) gives usZ a0 f(�)J�(��m �=a) � d� = 12a2 J�+1(��m)2 
m ; (1.121)31



thus determining the expansion 
oeÆ
ients 
m.Consider the following example. A 
ondu
ting 
ylinder of height h and radius a is heldat zero potential. A 
at 
ondu
tor 
loses o� the 
ylinder at z = 0, and is also at zeropotential. The top fa
e, at z = h, is held at some spe
i�ed potential (�; �; h) = 	(�; �) : (1.122)The problem is to determine the potential everywhere inside the 
avity.From (1.104) we see that the z dependen
e and � dependen
e of the separation fun
tionsZ(z) and �(�) will be Z(z) � sinhkz ; 
osh kz ;�(�) � 
os �� ; sin �� : (1.123)The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall haveonly the sinhkz solution. The periodi
ity in � means that � must be an integer.Thus the general solution of Lapla
e's equation for this problem will be (�; �; z) = 1Xm=0 1Xn=1Jm(�mn �=a) (amn sinm�+ bmn sinm�) sinh(�mn z=a) : (1.124)The expansion 
oeÆ
ients amn and bmn are determined by mat
hing this solution to thespe
i�ed boundary 
ondition (1.122) at z = h. Thus we have	(�; �) = 1Xm=0 1Xn=1Jm(�mn �=a) (amn sinm�+ bmn sinm�) sinh(�mn h=a) : (1.125)The orthogonality relation (1.119) for the Bessel fun
tions, together with the standardorthogonality for the trigonometri
 fun
tions, means that all we need to do is to multiply(1.125) by Jp(�pq �=a) sin p� or Jp(�pq �=a) sinp� and integrate over � and � in order toread o� the integrals that determine the individual 
oeÆ
ients apq and bpq. It is easy to seethat the result isapq = 2� a2 sinh(�pqh=a)Jp+1(�pq)2 Z 2�0 d� Z a0 � d�	(�; �)Jp(�pq �=a) sin p� ;(1.126)bpq = 2� a2 sinh(�pqh=a)Jp+1(�pq)2 Z 2�0 d� Z a0 � d�	(�; �)Jp(�pq �=a) 
os p� :In this se
tion, we have seen how to make an expansion of solutions of Lapla
e's equationor the wave equation in terms of the Bessel fun
tions J� , appropriate to a system with
ylindri
al symmetry. Furthermore, we made the assumption that the �eld we were solving32



for (for example, the ele
trostati
 potential) was required to be non-singular on the axisof symmetry, and vanishing at radius � = a. Another example where su
h boundary
onditions would be appropriate is a stre
hed membrane forming a 
ir
ular drum, for whi
hthe os
illations would vanish on the rim of the drum, and, of 
ourse, they would be non-singular in the middle of the membrane.In di�erent 
ir
umstan
es one might want to 
onsider a situation with a di�erent bound-ary 
ondition at � = a. For example, in an ele
trostati
s problem one might require thatthe ele
tri
 �eld, rather than the potential, vanish at � = a. In this 
ase one would insteadwant to impose that the derivative of the potential vanish at � = a. This example 
ouldbe handled by a very similar method to the one we used, and only some of the �ne detailswould 
hange. Essentially, one would now be 
hanging the boundary 
onditions in theSturm-Liouville problem (see the le
ture notes for Part 1 of the 
ourse). Again we wouldbe working with orthogonal sets of Bessel eigenfun
tions but now in (1.112) the boundaryterms that arise from integration by parts when proving orthogonality would vanish forslightly di�erent reasons. For example, if we require � =�� = 0 at � = a, then we would
hange our 
hoi
e of the 
onstants ��� so that instead of being de�ned as the zeros of J�(z),they would instead be de�ned as the zeros of J 0�(z). With appropriate su
h 
hanges, thedis
ussion would then go through in a very similar vein.Another modi�
ation that might arise in a slightly di�erent kind of problem is that wemight need also to make use of the \se
ond solution" of the Bessel equation. The generalseries expansion after separating variables in Lapla
e's equation or the wave equation wouldinvolve both the J� and the J�� (or Y� , if � is an integer) Bessel fun
tions. In other words,Bessel fun
tions that are singular at � = 0 might be needed too. This 
ould happen eitherbe
ause one for some reason needed to allow the �eld  to be singular there, or else be
ause� = 0 might not be within the region under 
onsideration. An example would be if wewere solving an ele
trostati
s problem in the region between two 
on
entri
 
ylinders ofradii a and b. Now, we would in general need the se
ond-solution Bessel fun
tions as well.Again, it is not too mu
h of an extension of the methods developed already in this se
tionto 
ope with su
h a 
ir
umstan
e. One would need to establish appropriate orthogonalityproperties for the extended set of Bessel fun
tions, and to establish normalisation resultsanalogous to (1.116).Going through the details of su
h modi�
ations and generalisations would really be\more of the same." There are more interesting things to pursue, so let's move on.33



1.9 Modi�ed Bessel Fun
tions of the First and Se
ond KindA familiar feature of the equation for simple harmoni
 motion, y00(z) + !2 y(z) = 0 is thatits os
illatory solutions sin!z and 
os!z be
ome instead the non-os
illatory hyperboli
fun
tions sinh!z and 
osh!z if the sign of the !2 term is reversed, to give y00(z)�!2 y(z) =0. Of 
ourse another way of a
hieving this sign reversal is by sending z �! i z in the originalsimple harmoni
 equation, and hen
e also in its solutions. One has the familiar relationsthat sin iz = i sinh z ; 
os iz = 
osh z : (1.127)The di�erential equation with the hyperboli
 fun
tions as solutions also 
ommonly arises inphysi
s. For example, in a solution by separation of variables, it might be that a separation
onstant has one sign for 
ertain types of boundary 
ondition, and the opposite sign forother types of boundary 
ondition. And this sign 
hange 
ould pre
isely manifest itself intaking us from trigonometri
 to hyperboli
 fun
tions.The story is very similar for the Bessel fun
tions. We have seen that the solutions J�(z)and Y�(z) of Bessel's equation z2 y00 + z y0 + (z2 � �2) y = 0 (1.128)are os
illatory (for real z), at least when jzj is large enough. If we now make the repla
ementz �! i z, then the equation takes the form, known as the Modi�ed Bessel Equation,z2 y00 + z y0 � (z2 + �2) y = 0 : (1.129)Clearly its solutions will follow from those of (1.128) by making the repla
ement z �! i zin the arguments of J�(z) and Y�(z).A
tually, our use of the word \
learly" here was perhaps a little optimisti
. The problemis that although the basi
 fa
ts are 
lear, there is a lot of 
onfusion 
aused by di�erentnotations in the literature. Let's make an un
ontroversial de�nition �rst. All authors agreeto de�ne a \modi�ed Bessel fun
tion of the �rst kind," 
alled I�(z), as followsI�(z) � e� 12� � i J�(z e 12� i) : (1.130)The 
ontroversy 
omes with the 
hoi
e of de�nition for the \modi�ed Bessel fun
tion of these
ond kind," 
alled4 K�(z). Here, we shall de�ne K�(z) as follows:K�(z) � 12� e 12 (�+1) � iH(1)� (z e 12� i) ; (1.131)4It seems that everybody agrees on its name, and its symbol, if not its de�nition. It's not 
lear whetherone should regard that as a good thing or a bad thing!34



where H(1)� (z) is the �rst Hankel fun
tion, introdu
ed earlier. From our previous de�nitions,it follows that alternative (equivalent) ways of writing K�(z) areK�(z) = 12� e 12 (�+1)� i �J�(z e 12� i) + iY�(z e 12� i)� ;= � (I��(z)� I�(z))2 sin �� : (1.132)Obviously, from our previous dis
ussions for J�(z) and Y�(z), it is the 
ase that I�(z) andK�(z) 
onstitute two linearly-independent solutions of the modi�ed Bessel equation.We shall sti
k with these de�nitions. Just as a parentheti
 remark, we may note that the
hief \rival" to this de�nition is one where our K�(z) is multiplied by a fa
tor of 
os ��. Thelogi
 for this extra fa
tor is that then, the I� and theK� modi�ed Bessel fun
tions will satisfyidenti
al re
urren
e relations. Without the 
os ��, there will be slightly di�erent formulaefor I� and K� . The pri
e to be paid, however, for making them uniform in this respe
t isthat the 
os �� fa
tor will kill o� the K� fun
tion 
ompletely if � is half an odd integer. Forthat reason, the \rival" de�nition has fallen into disfavour. Another reason for preferringthe de�nition we are using here is that it is the one used in the algebrai
 
omputing languageMathemati
a, whi
h is an immensely powerful tool for analyti
 mathemati
al 
omputation.Having settled on the notation, now let us move on to the more substantial items onthe agenda. First, we 
an immediately write down a power-series expansion for I�(z), validfor small z, by substituting the de�nition (1.130) into (1.27), to getI�(z) = 1Xr=0 1r! �(� + r + 1) �z2��+2r : (1.133)Noti
e how the phase fa
tor in (1.130) has pre
isely removed the phase fa
tor arising fromrepla
ing z by z e 12� i in (1.27), and furthermore, how the (�1)r fa
tor is also removed.Re
all that we had previously determined that the series expansion (1.27) is 
onvergentin the entire �nite 
omplex plane. Sin
e all we have really done is to rotate z through 90degrees, it follows that the series expansion (1.133) is also 
onvergent in the entire �nite
omplex plane. This does not, however, ne
essarily mean that it will remain small! Indeed,it is obvious from (1.133) that if we take z to be real and positive, then the series for I�(z)is a sum of positive terms. Therefore, if we take z to be very large and positive, then itfollows that I�(z) will get very large. (This does not 
ontradi
t the 
onvergen
e of theseries. Think of the series for ez , ez = 1Xr=0 1r! zr : (1.134)Again, for real positive z this is the sum of positive terms, and again it follows that for large35



positive z it gets very large. But we know from kindergarten that the series 
onverges forall �nite z.) Keep this fa
t in mind as we move on to the next stage in the development.In a moment, we shall present an extremely useful integral representation for K�(z).Before doing so, we shall establish a property of K�(z) whi
h 
hara
terises it as being quitedistin
t in its behaviour from I�(z). We saw in (1.95) how the Hankel fun
tion H(1)� (z)behaves at large values of jzj. It follows, given the de�nition (1.131) for K�(z), that at largez we shall have that K�(z) � r �2z e�z : (1.135)Noti
e again how all the phase fa
tors have ni
ely 
an
elled, upon substitution of (1.131)into (1.95). The key point to noti
e from this is that as z tends to +1, K�(z) tends tozero.Now, we 
an present the integral representation for K�(z). It isK�(z) = p��(� + 12) �z2�� Z 11 e�z x (x2 � 1)�� 12 dx ; � > �12 ; �12� < arg z < 12� :(1.136)The proof that this integral really does give K�(z) 
onsists of three parts. First, we provethat it satis�es the modi�ed Bessel equation, whi
h shows that it must be some linear
ombination of K�(z) and I�(z). Next, we prove that in fa
t it is purely a multiple ofK�(z), with no 
ontamination from I�(z). Finally, we test its normalisation, to show thatit is exa
tly K�(z), and not some 
onstant multiple of it.To prove that the integral in (1.136) indeed de�nes a solution of the modi�ed Besselequation, we simply substitute it in. The easiest way to do this is to de�nef(z; x) � z� e�z x (x2 � 1)�� 12 : (1.137)This is the \beef" of what appears on the right-hand side of (1.136) before integration,with all the multipli
ative 
onstant fa
tors dropped. Now substitute this into the modi�edBessel equation (1.129), givingz2 f 00 + z f 0 � (z2 + �2) f = z�+1 e�z x (x2 � 1)�� 12 (z x2 � z � (2� + 1)x) ; (1.138)(where a prime means a derivative with respe
t to z, of 
ourse). Now observe that theright-hand side here 
an be written as a total derivative with respe
t to x, and so:z2 f 00 + z f 0 � (z2 + �2) f = ddx hz�+1 e�z x (x2 � 1)�+ 12 i : (1.139)Now integrate this equation with respe
t to x, evaluated between the limits x = 1 andx = 1, and re
all that, from (1.136), we are hoping to show that the integral of the left-hand side of (1.139) is zero. This is exa
tly what we �nd; the integral of the right-hand side36



of (1.136) gives hz�+1 e�z x (x2 � 1)�+ 12 i11 ; (1.140)and this vanishes at both limits provided that � > �12 , and Re(z) > 0. Thus it is establishedthat (1.136) de�nes a fun
tion that satis�es the modi�ed Bessel equation. It follows that itmust be some linear 
ombination of the two independent solutions K�(z) and I�(z).Next, we want to show that there is no \
ontamination" from I�(z). This is simple,sin
e we have seen that K�(z) and I�(z) have diametri
ally opposite behaviours for largepositive z; I�(z) diverges, whilst K�(z) goes to zero. Now, it is manifest from (1.136) thatthis integral de�nes a fun
tion that tends to zero as z tends to positive in�nity, be
ause ofthe fa
tor e�z x in the integrand. Therefore it must be that the integral is produ
ing purelyK�(z), with no admixture of I�(z). (Even a tiny admixture of the form K�(z) + � I�(z), nomatter how small � was, would eventually have to diverge for suÆ
iently large z. Thus wededu
e that � must be rigorously zero.)Finally, we need to 
he
k that the normalisation of the integral (1.136) is 
orre
t, so thatit is produ
ing exa
tly K�(z),, and not some multiple of it. This 
an be �xed by lookingat a spe
ial 
ase, sin
e only one 
onstant mulipli
ation fa
tor needs to be determined. This
an be done by looking at large z, and 
omparing with (1.135). To do this, it is better �rstto make a 
hange of integration variable in (1.136); we let x = 1 + t=z. This givesK�(z) = r �2z e�z�(� + 12) Z 10 e�t t�� 12 �1 + t2z��� 12 dt : (1.141)At large z we 
an negle
t the t=(2z) term in the integrand, sin
e by the time t be
omeslarge enough for t=(2z) to outweigh 1, the e�t fa
tor in the integrand will have rendered the
ontribution from this portion of the integration range insigni�
ant. Thus approximatelywe shall have K�(z) � r �2z e�z�(� + 12) Z 10 e�t t�� 12 dt ; (1.142)at large z. The integral now just gives �(� + 12), and so we �nd thatK�(z) � r �2z e�z : (1.143)This is exa
tly the same as the normalisation in (1.135). We have thus 
ompleted thedemonstration that (1.136) gives pre
isely the K�(z) modi�ed Bessel fun
tion.The main reason for pursuing this rather lengthy derivation is that the integral rep-resentation (1.136) for K�(z) provides us with a very simple way to obtain asymptoti
expansions for not only K�(z) itself, but also I�(z), J�(z) and Y�(z), to arbitrary order.37



More pre
isely, it is the integral expression (1.141) that we shall use. All we have to dois to make a binomial expansion of the fa
tor (1 + t=(2z))�� 12 in the integrand of (1.141),and then integrate term by term. (Re
all from Part 1 of the 
ourse that one is allowed tointegrate term by term in an asymptoti
 expansion.)Making the binomial expanion, we �nd that (1.141) givesK�(z) � r �2z e�z�(� + 12) 1Xr=0 �(� + 12) (2z)�rr! �(� � r) Z 10 e�t t�+r� 12 dt ;= r �2z e�z 1Xr=0 �(� + r + 12)r! �(� � r + 12) (2z)r (1.144)Using elementary properties of the Gamma fun
tion, one 
an see that this gives us theasymptoti
 seriesK�(z) � r �2z e�z h1 + (4�2 � 12)1! 8z + (4�2 � 12)(4�2 � 32)2! (8z)2 + � � � i : (1.145)Our derivation of this series was based on the use of the integral representation (1.136),whi
h is 
onvergent for �12� < arg z < 12�. But a
tually, the asymptoti
 expansion we havearrived at 
an be shown to be valid for the wider range of arguments �32� < arg z < 32�.(Re
all that K�(z) has a bran
h point at z = 0, as demonstrated by the z� fa
tor in itspower-series expansion around z = 0. Therefore, for generi
 �, the range �32� < arg z < 32�sill 
overs a lot less than the full range of phases for z that one needs to 
onsider, eventhough it is more than a 
omplete 
ir
ulit around the origina of the 
omplex plane.)We have arrived at the result for the 
omplete asymptoti
 expansion of K�(z). Theleading-order term is the one we found in (1.135), whi
h 
ame, originally, from our steepest-des
ent analysis of the integral represenations for J�(z) and the Hankel fun
tions. In fa
tthe asynptoti
 expansions for all the assorted Bessel fun
tions 
an easily be given in termsof the result (1.145). First, let us write it asK�(z) = r �2z e�z �P�(i z) + iQ�(i z)� ; (1.146)whereP�(z) � 1� (4�2 � 12)(4�2 � 32)2! (8z)2 + (4�2 � 12)(4�2 � 32)(4�2 � 52)(4�2 � 72)4! (8z)4 + � � �Q�(z) � (4�2 � 12)1! (8z) � (4�2 � 12)(4�2 � 32)(4�2 � 52)3! (8z)3 + � � � : (1.147)From the original de�nition (1.131) of K�(z) in terms of H(1)� (z), it then follows thatH(1)� (z) = r 2� z ei (z� 12� �� 14�) �P�(z) + iQ�(z)� ; �� < arg z < 2� : (1.148)38



The se
ond Hankel fun
tion is the 
omplex 
onjugate of the �rst, soH(2)� (z) = r 2� z e�i (z� 12� �� 14�) �P�(z)� iQ�(z)� ; �2� < arg z < � : (1.149)Next, sin
e J�(z) is the real part of H(1)� (z) we shall haveJ�(z) = r 2� z �P�(z) 
os(z� 12� �� 14�)�Q�(z) sin(z� 12� �� 14�)� ; �� < arg z < � :(1.150)On the other hand Y�(z) is the imaginary part of H(1)� (z), and soY�(z) =r 2� z �P�(z) sin(z� 12� �� 14�)+Q�(z) 
os(z� 12� �� 14�)� ; �� < arg z < � :(1.151)Finally, sin
e I�(z) is de�ned in terms of J�(z) by (1.130), we 
an obtain its asymptoti
expansion from (1.150), givingI�(z) = ezp2� z �P�(i z)� iQ�(i z)� ; �12� < arg z < 12� : (1.152)1.10 A S
attering Cal
ulationThe spe
ial fun
tions of mathemati
s, su
h as the Bessel fun
tions, typi
ally arise whensolving Lapla
e's equation, the S
hr�odinger equation or the wave equation by the methodof separation of variables. One 
lass of physi
al problem in parti
ular where they 
an arise isin the study of s
attering. A typi
al situation is that one sits at a large distan
e (e�e
tively,at in�nite distan
e) from some parti
le or obje
t, and sends in waves, whi
h are s
atteredo� the obje
t. One then looks at what 
omes ba
k, from one's vantage point at in�nity.To 
al
ulate this s
attering pro
ess, one solves the wave equation (or maybe S
hr�odingerequation) des
ribing the propagation of the waves under the in
uen
e of the s
atteringobje
t, and imposes appropriate boundary 
onditions at the s
attering 
entre, as di
tatedby the physi
s of the problem. Essentially what one then obtains is an expression for theoutgoing and ingoing waves at in�nity that result from having sent in an initial wave.Let us 
onsider a ni
e example of a s
attering problem where we 
an use some of theBessel-fun
tion te
hnology that we have been studying. The example is not a traditionalone, but it has the merit of being simple, and maybe even a bit more interesting thanthe \old faithfuls." We shall 
onsider a bla
k hole in �ve spa
etime dimensions. As faras the relevant equations are 
on
erned, all that we need to know is that spin-0 �elds �propagating in the ba
kground geometry of this bla
k hole satisfy the equationd2�dr2 + 3r d�dr + h!2 + !2 � `(`+ 2)r2 i� = 0 : (1.153)39



Here r is the radial 
oordinate, the bla
k hole event horizon is lo
ated at r = 0, and we shallsit safely out at in�nite distan
e from it, at r =1. The 
onstant ! is the frequen
y of thewave, and ` is the angular quantum number analogous to the usual ` of quantum me
hani
sin four spa
etime dimensions. (The 
entrifugal potential inD spa
etime dimensions is of theform `(`+D� 3)=r2, whi
h explains the `(`+2) fa
tor here. The fa
tor of 3=r multiplyingd�=dr is aonther tell-tale sign that we are in D = 5 dimensions; it would be (D � 2)=r ingeneral.) The equation (1.153) has 
ome from making a rather standard sort of separationof variables, writing the original s
alar wavefun
tion � as� = �(r)Y` e�i! t ; (1.154)where the Y` represent spheri
al harmoni
s analogous to the familiar Y`m(�; '), but nowthey are de�ned on a 3-sphere rather than a 2-sphere.If we now let � =  =r, the equation (1.153) be
omesr2 d2 dr2 + r d dr + h!2 r2 + (!2 � (`+ 1)2i� = 0 : (1.155)Introdu
ing a new radial 
oordinate z = ! r, and de�ning�2 = (`+ 1)2 � !2 ; (1.156)the equation be
omes pre
isely Bessel's equationz2  00 + z  0 + (z2 � �2) = 0 : (1.157)Thus the solutions for � are � = �r J�(! r) + �r J��(! r) : (1.158)Now, we want to study what happens when we send in a wave from in�nity, and to seewhat 
omes ba
k at us from the bla
k-hole \s
atterer." We know the general solution for thewaves, so now we must impose the appropriate boundary 
onditions. In fa
t the boundary
onditions are very simple here. To make an analogy that will be understood by anyone whohas ever had to deal with the problem of 
o
kroa
hes in the kit
hen, a bla
k hole works justlike the \Roa
h Motel" that you 
an buy in the stores. This useful devi
e enti
es 
o
kroa
hesinto it, whereupon they eat an attra
tive-tasting poison and die. The advertising sloganfor the Roa
h Motel is \They 
he
k in, but they don't 
he
k out!" A bla
k hole worksin just the same way. Imagine ingoing waves, represented by 
o
kroa
hes walking radiallyinwards along the dire
tion of de
reasing r, and outgoing waves represented by 
o
kroa
hes40



walking radially outwards, with r in
reasing. The bla
k-hole boundary 
ondition is that atthe horizon (r = 0), there are only ingoing waves, but no outgoing waves; \they 
he
k in,but they don't 
he
k out."How do we re
ognise a wave that is ingoing and one that is outgoing? Sin
e the timedependen
e of the wave is of the form e�i! t, as in (1.154), it follows that an ingoing waveis one whose phase in
reases as r de
reases. For example,� � e�i! t�i! r (1.159)is an ingoing wave, sin
e to sit �xed on a given wavefront one has to go to smaller valuesof r as t gets bigger. Conversely, an example of an outgoing wave would be� � e�i! t+i! r : (1.160)Sin
e we have to impose the boundary 
ondition on the waves at r = 0, let us look atthat region �rst. From (1.27), we know that for very small z we shall haveJ�(z) � 1�(� + 1) �z2�� : (1.161)Thus from (1.158), we see that the r-dependen
e of the s
alar waves will be of the generalform r��, with � given by (1.156). If � is real, the solutions are in fa
t not wavelike atall. To have waves, we shall need the frequen
y ! to be suÆ
iently large that � be
omesimaginary, i.e. ! > `+ 1. Let us therefore assume that this is the 
ase, and de�ne � = i q,with q � q!2 � (`+ 1)2 ; with ! > `+ 1 : (1.162)Thus we shall have� � �r �(1 + i q)ei q log(! r=2) + �r �(1� i q)e�i q log(! r=2) (1.163)near r = 0. (We have used that xy = ey log x here.)We saw previously that an outgoing wave is one whose phase in
reases as r in
reases.This means that the �rst term in (1.163) is outgoing, while the se
ond term is ingoing. Thebla
k-hole boundary 
ondition tells us therefore that� = 0 ; (1.164)whi
h means that the physi
al wave solutions (1.158) are� = �r J�i q(! r) : (1.165)41



Now, we look in the asymptoti
 region near r = 1. For this, we use the asymptoti
expansion (1.90), whi
h is J�(z) � r 2� z 
os(z � 12� � � 14�) : (1.166)(This leading-order term is good enough here.) From (1.165), we therefore have� � �r r 2� ! r 
os(! r + 12q � i� 14�) ;� �2r r 2� ! r e 12 q � e 14 i� he�i! r � i e�� q ei! ri : (1.167)We re
ognise the �rst term in the square bra
ket as an ingoing wave, and the se
ond termas an outgoing wave.The prefa
tor in front of the square bra
ket in (1.167) is unimportant for our immediatepurposes, sin
e it is a 
ommon fa
tor in both terms. The key point is that we have foundthat waves out at in�nity have the general stru
ture � e�i! r + S0 ei! r ; (1.168)with S0 = �i e�� q. So sending in a wave of unit strength, we get ba
k a wave with strengthS0. Thus S0 tells us how mu
h 
omes ba
k, as a fra
tion of what is sent in. The quantityS0 is 
alled the S Matrix. We 
an use it to 
al
ulate the Absorption Probability P , whi
hwill in general be given by P = 1 � jS0j2. Thus for this bla
k hole s
attering problem, theabsorption probability is given byP = 1� e�2� q = 1� e�2�p!2�(`+1)2 ; ! > `+ 1 : (1.169)On the other hand, when ! � `+ 1, there is no absorption at all sin
e there is no wavelikebehaviour at the horizon, and so P = 0. This mat
hes on smoothly to the result in (1.169).As the frequen
y of the waves gets larger and larger, the s
attering tends exponentially tozero, and a

ordingly the absorption probability tends to 1. The bla
k hole is behavingmore and more like a \sink," with everything that is sent in just disappearing behind thehorizon, and no ba
ks
atter 
oming ba
k to the asymptoti
 region near r =1.One 
an 
onsider many other physi
al s
attering pro
esses, and analyse them in a similarway. The general prin
iples will always be the same, although the details, su
h as theboundary 
onditions, will depend on the physi
al problem one is 
onsidering. But always,the idea is to send in waves from in�nity, impose appropriate boundary 
onditions at thes
attering 
entre, and then look at the ratio between ingoing and outgoing wave 
omponentsat in�nity. 42



Noti
e that both in the solution of potential-theory problems, and in s
attering 
al
u-lations, an absolutely 
ru
ial point is that one needs to know how a spe
i�
 solution ofthe Bessel equation behaves in di�erent regions. For example, in the s
attering 
al
ulationwe needed to know the asymptoti
 behaviour at large z for the solution that had a givenbehaviour near z = 0. It would not be good enough simply to know that for small z thetwo solutions of Bessel's equation look likeu1 � z� ; u2 � z�� ; (1.170)(see (1.161)), and that for large z the two solutions look likev1 � z� 12 
os z ; v2 � z� 12 sin z ; (1.171)(see (1.166)). (These asymptoti
 forms 
ould, for example, be obtained dire
tly from theBessel equation, by taking z to be small or large respe
tively.) The 
ru
ial point is thatone needs to know exa
tly what the relation between the small-z and large-z forms of aspe
i�
 solution are; in parti
ular, one needs to know exa
tly what the 
onstants ai and biare in the relation v1 = a1 u1 + b1 u2 and v2 = a2 u1 + b2 u2. This is pre
isely the sort ofinformation that we have been able to obtain as a result of having integral representationsfor the Bessel fun
tions.2 Hypergeometri
 and Con
uent Hypergeometri
 Fun
tions2.1 Hypergeometri
 Fun
tionsLet us begin by 
onsidering the following power series,y(z) = 1 + a b
 z1! + a(a+ 1) b(b+ 1)
(
+ 1) z22! + a(a+ 1)(a + 2) b(b+ 1)(b + 2)
(
 + 1)(
 + 2) z33! + � � � (2.1)whi
h 
an be 
onveniently written asy(z) = 1Xn=0 (a)n (b)n(
)n znn! ; (2.2)where we de�ne the Po
hhammer symbol (a)n by(a)n � �(a+ n)�(a) = a(a+ 1)(a + 2) � � � (a+ n� 1) : (2.3)(Note that (a)0 = 1.) The fun
tion de�ned by this power series is 
alled the Hypergeometri
Fun
tion 2F1(a; b; 
; z); thus 2F1(a; b; 
; z) = 1Xn=0 (a)n (b)n(
)n znn! : (2.4)43



It is, apparently, 
alled the hypergeometri
 fun
tion be
ause it is a natural generalisationof the fun
tion 1=(1� z) that gives the geometri
 series 1 + z + z2+ z3 + � � �. The notationwith the subs
ripts 2 and 1 on the 2F1 signi�es that the series expansion has 2 Po
hhammersymbols in the numerator, and 1 in the denominator. The use of semi
olons as delimitersfor the 
 parameter is 
onventional too. Noti
e that be
ause of the fa
t that �(x) is in�nitewhen x = 0 or a negative integer, the parameter 
 must not be zero or a negative integer.On the other hand, if a or b is zero or a negative integer, then the series terminates andbe
omes just a �nite polynomial. Note also that 2F1(a; b; 
; z) is equal to 2F1(b; a; 
; z).It is easy to see that the hypergeometri
 fun
tion satis�es the Hypergeometri
 Equationz(1 � z) y00(z) + [
� (a+ b+ 1) z)℄ y0(z)� a b y(z) = 0 : (2.5)We 
an 
he
k this by simply plugging (2.4) into (2.5), and shifting the summation variablesin ea
h term as ne
essary so as to get z-dependen
e zn for ea
h term. In other words, just
he
k that the 
oeÆ
ient of ea
h power of z vanishes. To do this, it is useful to observethat the Po
hhammer symbol satis�es the relation(a)n+1 = �(a+ n+ 1)�(a) = (a+ n) �(a+ n)�(a) ;= (a+ n) (a)n : (2.6)We dis
ussed the hypergeometri
 equation a little in Part 1 of the 
ourse. Dividing (2.5)by z(1� z), we see that the 
oeÆ
ient of y0(z) then has �rst-order poles 1=z and 1=(1� z),as does the 
oeÆ
ient of y(z) (sin
e z�1 (1 � z)�1 = z�1 + (1 � z)�1). Re
alling that thedi�erential equation y00(z) + p(z) y0(z) + q(z) y(z) = 0 (2.7)has a regular singular point at z = z0 if p(z) and/or q(z) diverge there, but (z � z0) p(z)and (z � z0)2 q(z) are �nite, we see that the hypergeometri
 equation has regular singularpoints at z = 0 and z = 1. Furthermore, if we let z = 1=w, we �nd that the transformedequation is (w � 1) d2ydw2 + [2� 
+ (a+ b� 1)w�1℄ dydw � a bw2 y = 0 ; (2.8)and therefore w = 0, 
orresponding to z = 1, is also a regular singular point. Thus thehypergeometri
 equation is non-singular everywhere ex
ept at three regular singular points,lo
ated at z = 0, 1 and1. Any se
ond-order linear ordinary di�erential equation with threeregular singular points 
an be transformed into the 
anoni
al form of the hypergeometri
equation, by making appropriate 
hages of variable, and so it en
ompasses a rather broad
lass of di�erential equations, in
luding many that one en
ounters in physi
s.44



It is a standard result in the theory of di�erential equations, whi
h we dis
ussed in Part 1,that at least one of the two solutions of a se
ond-order ODE (ordinary di�erential equation)
an be obtained as an expansion around a regular singular point z0 of the equation, in theform y = (z � z0)s 1Xn=0 an (z � z0)n ; (2.9)where s is a root of a 
ertain se
ond-order polynomial equation 
alled the indi
ial equation.5Furthermore, in a situation where the fun
tion q(z) in (2.7) a
tually happens not to have ase
ond-order pole 
ontribution at the regular singular point, one root of the indi
ial equationis s = 0. This is the 
ase at z = 0 in the hypergeometri
 equation, and so we know thatthere should 
ertainly exist one solution that is a pure analyti
 power series when expandedaround the point z = 0. This is exa
tly what we have in (2.4); a pure analyti
 power-seriessolution to the hypergeometri
 equation.Another standard result from the theory of ODEs is that the radius of 
onvergen
e ofthis power series solution will be equal to the distan
e from the expansion point, z = 0, tothe next nearest singular point of the equation. In the 
ase of the hypergeometri
 equation,this will be the regular singular point at z = 1. Thus we learn that the power series (2.4)is 
onvergent in the disk jzj < 1. This 
an easily be veri�ed by applying the ratio test for
onvergen
e of a series. We take the ratio R of the (n+1)'th term divided by the n'th term.If the modulus of this ratio is less than 1 in the limit as n tends to in�nity, then the series
onverges absolutely; if it is greater than 1 it diverges, and if it equals 1, a more deli
ateanalysis is needed. In our 
ase, from (2.4), we haveR = (a)n+1 (b)n+1(
)n+1 (n+ 1)! (
)n n!(a)n (b)n z = (n+ 1) (n+ 
)(n+ a) (n+ b) z (2.10)in the limit when n �!1, implying that we get jRj = jzj. Thus the series indeed 
onvergesfor jzj < 1, and diverges for jzj > 1.The hypergeometri
 equation, being of se
ond order, must have two linearly-independentsolutions. We may, in general, obtain the se
ond solution as follows. Make the substitutiony(z) = z1�
w(z) in the hypergeometri
 equation (2.5). After a 
ouple of lines of simplealgebra, one �nds that w(z) satis�esz (1� z)w00 + [2� 
� (a+ b� 2
+ 3) z℄w0 � (a� 
+ 1)(b � 
+ 1)w = 0 : (2.11)5Generi
ally, if the two roots s1 and s2 of the indi
ial equation do not di�er by an integer, then bothsolutions 
an be obtained in the form (2.9). But more often than not, life being what it is, it turns out that
ases of parti
ular interest 
orrespond to the situation where s1 � s2 is and integer.45



This 
an be re
ognised as the hypergeometri
 equation again, but now with the parameters(a� 
+ 1; b� 
+ 1; 2� 
) instead of (a; b; 
). Thus we see thaty2 = z1�
 2F1(a� 
+ 1; b� 
+ 1; 2� 
; z) (2.12)is another solution of the hypergeometri
 equation. It is obvious that if 
 is not an integer,this solution is linearly independent of the original solution 2F1(a; b; 
; z), sin
e (2.12) isa then a power series in non-integer powers of z whereas 2F1(a; b; 
; z) is a power seriesin integer powers of z. If 
 is an integer then one 
an show that (2.12) is in general thesame solution as 2F1(a; b; 
; z) (ex
ept for spe
ial values of the parameters a and b). Thesituation is very reminis
ent of the Bessel equation, where J��(z) provides a solution thatis independent of J�(z), ex
ept when � is an integer. As in that 
ase, it turns out here thatin su
h a \degenerate" situation, the se
ond independent solution will in
lude logarithmterms.We may 
onstru
t an integral representation for the hypergeometri
 fun
tion as follows.We begin by introdu
ing the Beta Fun
tion B(p; q), de�ned as6B(p; q) � �(p) �(q)�(p+ q) : (2.13)Clearly B(p; q) = B(q; p). Now 
onsider the following expression for �(p) �(q), whi
h isobtained just by taking the produ
t of two standard integral representations for the Gammafun
tion: �(p) �(q) = Z 10 e�u up�1 du Z 10 e�v vq�1 dv : (2.14)Now let u = x2, v = y2 and then 
hange to polar 
oordinates; x = r 
os �, y = r sin �;�(p) �(q) = 4 Z 10 dx Z 10 dy e�x2�y2 x2p�1 y2q�1= 4 Z 10 dr Z 12�0 d� e�r2 r2p+2q�1 (
os �)2p�1 (sin �)2q�1= 2 Z 10 d� Z 12�0 d� e�� �p+q�1 (
os �)2p�1 (sin �)2q�1= 2�(p+ q) Z 12�0 d� (
os �)2p�1 (sin �)2q�1 ; (2.15)where in the third line we have 
hanged variable again, from r to � = r2, allowing us tore
ognise a standard integral representation for �(p + q). Finally, the further 
hange ofvariable from � to t = sin2 � yields the result thatB(p; q) = �(p) �(q)�(p+ q) = Z 10 (1� t)p�1 tq�1 dt : (2.16)6An upper-
ase Greek beta is written as B. 46



Using the Beta fun
tion, we 
an therefore write the ratio (b)n=(
)n in the power seriesfor the hypergeometri
 fun
tion as(b)n(
)n = B(b+ n; 
� b)B(b; 
� b) = 1B(b; 
� b) Z 10 (1� t)
�b�1 tb+n�1 dt : (2.17)Thus from (2.4) we shall have2F1(a; b; 
; z) = 1B(b; 
� b) 1Xn=0 (a)n)n! zn Z 10 (1� t)
�b�1 tb+n�1 dt : (2.18)Inter
hanging the order of the integration and summation, we 
an sum the resulting seriesby noting from the binomial theorem that1Xn=0 (a)nn! zn tn = 1Xn=0 �(a+ n)�(a)n! (z t)n = (1� z t)�a : (2.19)Thus we arrive at the following integral representation for the hypergeometri
 fun
tion:2F1(a; b; 
; z) = �(
)�(b) �(
 � b) Z 10 (1� t)
�b�1 tb�1 (1� z t)�a dt : (2.20)This is valid for any 
omplex value of z provided that z is not real and larger than 1. (Thisrestri
tion ensures that the (1� z t)�a fa
tor does not give rise to a pole or bran
h point inthe integrand at t = 1=z.) The bran
h of (1�x t)�a must be 
hosen so that (1�x t)�a �! 1as t goes to zero, and the parameters b and 
 must be su
h that Re(
) >Re(b) > 0. Notethat this represents an analyti
 
ontinuation of the original power-series expression (2.4)for 2F1(a; b; 
; z), whi
h was 
onvergent only for jzj < 1.By playing around with this integral representation, and others, one 
an establish manyproperties and inter-relations among hypergeometri
 fun
tions. We shall not go into toomu
h further detail here, sin
e the subje
t is a vast one, and is dis
ussed at length inmany books. We shall just re
ord a few more fa
ts here, without proof, to show the sortof relations that one 
an establish. Firstly, there is another integral representation for thehypergeometri
 fun
tion, known as the Barnes Integral,2F1(a; b; 
; z) = �(
)2� i �(a) �(b) Z i1�i1 �(a+ s) �(b+ s) �(�s)�(
+ s) (�z)s ds ; (2.21)whi
h is proven by establishing that the term (a)n (b)n zn=((
)n n!) in the power-series ex-pansion (2.4) is the residue of the integrand at s = n. This integral gives the hypergeometri
fun
tion as a fun
tion analyti
 in the domain de�ned by the inequality jarg zj < �, and soagain, it is an analyti
 extension of the original series de�nition (2.4).One 
an use the Barnes representation (2.21) in order to obtain a new power seriesfor 2F1(a; b; 
; z) that is 
onvergent when jzj > 1. After some e�ort, one arrives at the47




on
lusion that�(a) �(b)�(
) 2F1(a; b; 
; z) = �(a) �(b� a)�(
� a) (�z)�a 2F1(a; a� 
+ 1; a� b+ 1; z�1)+�(b) �(a� b)�(
� b) (�z)�b 2F1(b; b� 
+ 1; b� a+ 1; z�1) ;(2.22)where jarg (�z)j < �. Sin
e the hypergeometri
 fun
tions on the right-hand side both have1=z as argument, it follows that when jzj > 1 the original power series (2.4) 
an be used inorder to obtain a series expansion for the right-hand side, and hen
e a series expansion for2F1(a; b; 
; z) that is 
onvergent for jzj > 1. The formula (2.22) is typi
al of many relationsthat one 
an obtain, relating 2F1(a; b; 
; z) to hypergeometri
 fun
tions with argument 1=zor (1� z) or z=(1� z), and so on. It 
an easily be shown that ea
h term on the right-handside of (2.22) is separately a solution of the original hypergeometri
 equation.Noti
e that the power series in 1=z that we obtain by using (2.22) together with theoriginal series (2.4) is a perfe
tly 
onvergent one, rather than an asymptoti
 expansion. Thisis be
ause z = 1 is a regular singular point of the hypergeometri
 equation. In the nextsubse
tion we shall see what happens when we take a singular limit of the parameters in thehypergeometri
 equation, resulting in the regular singular point at z = 1 being moved out tojoin the one at z =1. In this limit the point at in�nity be
omes an irregular singular point,and 
orrespondingly one is ba
k to the situation where one 
an obtain only an asymptoti
expansion, as opposed to a 
onvergent power-series expansion, around z = 1. In fa
t,as we shall see, this limit in whi
h two regular singular points join together to make anirregular singular point gives an equation, 
alled the 
on
uent hypergeometri
 equation,that in
ludes our old friend the Bessel equation as a spe
ial 
ase.2.2 Con
uent Hypergeometri
 Fun
tionsWe have seen that the hypergeometri
 equationz (1� z) y00(z) + [
� (a+ b+ 1) z)℄ y0(z)� a b y(z) = 0 : (2.23)has three singular points, all of them regular singular points, lo
ated at z = 0, 1 and1. Their pre
ise lo
ations 
an be moved around by making transformations of z, su
has 
onstant shifts and s
alings. Consider in parti
ular the following transformation, underwhi
h z �! zb ; (2.24)implying that the hypergeometri
 equation be
omesz (1� z b�1) y00(z) + [
� (a+ b+ 1) b�1 z)℄ y0(z)� a y(z) = 0 ; (2.25)48



(after dividing out by b). Evidently, at this stage the singular points of the equation havebeen transformed to z = 0, b and 1.Now, let us send b to in�nity. We 
an see that this is a perfe
tly well-de�ned limit ofthe equation (2.25), whi
h leads toz y00 + (
� z) y0 � a y = 0 : (2.26)This is 
alled the Con
uent Hypergeometri
 Equation. The name 
omes from the fa
t thatthe two regular singular points z = b and z = 1 in (2.25) have joined together (in a
on
uen
e), at z =1. Be
ause they are now superimposed, one �nds that the singularityat z = 1 is now more divergent, and in fa
t it is now an irregular singular point. (Oneshows this by the usual pro
edure of letting z = 1=w, and studying the stru
ture of thesingularity in the equation at w = 0.)Let us see what has happened to the hypergeometri
 fun
tion 2F1(a; b; 
; z) that was asolution of the hypergeometri
 equation, in this limiting pro
ess. We shall havelimb!1 2F1(a; b; 
; z=b) : (2.27)From (2.4), the b dependen
e of the term in zn in the power series for 2F1(a; b; 
; z=b) willtherefore be (b)n=bn, and so we havelimb!1 (b)nbn = limb!1 b (b+ 1)(b + 2) � � � (b+ n� 1)bn = 1 : (2.28)Thus we have the solution 1F1(a; 
; z) = 1Xn=0 (a)n(
)n znn! (2.29)to the 
on
uent hypergeometri
 equation (2.26). Observe that the notation here is ina

ordan
e with the previous one, namely that the subs
ripts 1 and 1 on 1F1 signify thatthere is 1 Po
hhammer symbol in the numerator, and 1 in the denominator, in ea
h termin the series.Now that we have derived it, let us 
hange the symbols of its arguments to the more
onventional ones 1F1(a; b; z). This fun
tion is 
alled a Con
uent Hypergeometri
 Fun
tion,or a Kummer Fun
tion. It is often denoted by the symbol M(a; b; z), and its full name isKummer's regular fun
tion, so we haveM(a; b; z) = 1Xn=0 (a)n(b)n znn! ; (2.30)satisfying the 
on
uent hypergeometri
 equationz y00 + (b� z) y0 � a y = 0 : (2.31)49



Sin
e the singular point of the equation nearest to the regular singularity at z = 0 isthe irregular singular point at z = 1, we know that the series (2.30) will be 
onvergenteverywhere in the �nite 
omplex plane.The same limiting pro
ess 
an be applied also to the se
ond solution (2.12) of thehypergeometri
 equation. Doing so, we obtain the se
ond solution for the 
on
uent hyper-geometri
 equation, y2 = z1�bM(a� b+ 1; 2 � b; z) : (2.32)As in the 
ase of the hypergeometri
 equation, here this solution to the 
on
uent hyperge-ometri
 equation is linearly-independent of y1 �M(a; b; z) as long as b is not an integer.If, on the other hand, b = 1 then 
learly y2 is exa
tly equal to y1. If b = N , where N isan integer � 2, then y2 be
omes singular, but 
an be res
aled by an appropriate 
onstantfa
tor before setting b = N so as to render the expression �nite. It then turns out to beproportional to y1 again. For example, using the power-series expansion (2.29), the se
ondsolution given in (2.32) has the formy2 = z1�b �1 + (a� b+ 1) z2� b + (a� b+ 1)(a � b+ 2) z22! (2 � b)(3 � b)+(a� b+ 1)(a� b+ 2)(a � b+ 3) z33! (2� b)(3 � b)(4� b) + � � � � : (2.33)Clearly ea
h term beyond the �rst diverges as b is set equal to 2, but if we �rst multiply by(2� b), and then set b = 2, we get the �nite resulty2 = (a� 1)�1 + 12a z + 112 a(a+ 1) z2 + 1144a(a+ 1)(a+ 2) z3 + � � � � : (2.34)This 
an be 
ompared with the series expansion of M(a; b; z) itself at b = 2, whi
h, from(2.29), isM(a; 2; z) = 1 + 12a z + 112 a(a+ 1) z2 + 1144a(a+ 1)(a + 2) z3 + � � � : (2.35)Thus at b = 2 we have that limb!2 (2� b) y2 = (a� 1) y1 ; (2.36)with analogous results at b = 3, 4, 5, et
.This is exa
tly like the situation with the J�(z) and J��(z) Bessel fun
tions, at � =integer. As in that 
ase, the way to extra
t a se
ond linearly-independent solution is to takethe di�eren
e between the two solutions thatare independent for non-integer parameter b,and divide out by an appropriate fa
tor that vanishes as b approa
hes an integer, so as to50



re
over a �nite result analogous to Yn(z). Thus one de�nes the se
ond solution here to beU(a; b; z) � �sin� b h M(a; b; z)�(b)�(a� b+ 1) � z1�bM(a� b+ 1; 2 � b; z)�(a)�(2 � b) i : (2.37)Following similar steps to those that we used for Yn(z), one 
an �nd the series expansionfor U(a; b; z) around z = 0. This involves showing �rst that the quantity in square bra
ketsin (2.37) vanishes at b = N = 2; 3; 4; : : :, and then 
arefully expanding around b = N + �and pi
king up the terms of �rst order in �. For example, by doing this for b = 2 one �ndsthat U(a; 2; z) be
omesU(a; 2; z) = 1�(a) z + 2
 +  (a) + log z�(a� 1) +O(z; z log z) : (2.38)Here 
 is the Euler-Mas
heroni 
onstant and  (s) = �(s)0=�(s) is the Digamma fun
tion.We see the familiar appearan
e of logarithmi
 terms in the series expansion. On a

ount ofthis non-analyti
ity at z = 0, the fun
tion U(a; b; z) is 
alled Kummer's Irregular Fun
tion.In general it 
an be shown that at b = n + 1, where n � 0 is an integer, the fun
tionU(a; b; z) has the series expansionU(a; n+ 1; z) = (�1)n+1n! �(a� n) hM(a; n+ 1; z) log z +1Xr=0 (a)r zr(n+ 1)r r! � (a+ r)�  (r + 1)�  (n+ r + 1)�i+(n� 1)!�(a) z�nM(a� n; 1� n; z)n ; (2.39)where the notation M(a � n; 1 � n; z)n means that just the �rst n terms in the seriesexpansion for M(a� n; 1� n; z) are retained.We 
an also derive integral representations for the Kummer fun
tions, by taking theappropriate limit in the original expressions for the hypergeometri
 fun
tions. For example,we may begin with the integral representation (2.20) for 2F1(a; b; 
; z). Now we a
tuallyknow that this must be symmetri
 under the ex
hange of the labels a and b, even thoughit is not obvious, sin
e the original series expansion for the hypergeometri
 fun
tion issymmetri
 in a and b. Thus we know from (2.20) that we must also have2F1(a; b; 
; z) = �(
)�(a) �(
� a) Z 10 (1� t)
�a�1 ta�1 (1� z t)�b dt : (2.40)In this form, the pro
ess of repla
ing z by z=b and sending b to in�nity is easily implemented,sin
e the only b dependen
e 
omes from the fa
tor(1 � z t b�1)�b : (2.41)51



Now it is a standard result7 that the limit of (1 � x=b)�b as b tends to in�nity is just ex,and hen
e we �nd thatlimb!1 2F1(a; b; 
; z b�1) = �(
)�(a) �(
� a) Z 10 (1� t)
�a�1 ta�1 ez t dt : (2.42)Finally, repla
ing 
 by b for 
onvenien
e, we have the result thatM(a; b; z) = �(b)�(a) �(b� a) Z 10 (1� t)b�a�1 ta�1 ez t dt : (2.43)This has restri
tions on the values of the parameters that follow dire
tly from those for thehypergeometri
 integral (2.20), namely that Re(b) > Re(a) > 0. It is valid for any �nite z,and so it de�nes M(a; b; z) as a fun
tion analyti
 everywhere in the �nite 
omplex plane.This a

ords with the fa
t that the series expansion (2.30) is 
onvergent for all �nite z.One 
an easily show from (2.43), by making the 
hange of integration variable t = 1�s,that M(a; b; z) = ezM(b� a; b;�z) : (2.44)This is known as Kummer's �rst formula.To 
lose this se
tion, here are some examples that show how spe
ial 
ases of the 
on
uenthypergeometri
 fun
tions 
orrespond to other well-known fun
tions. The Bessel fun
tions,for example, are spe
ial 
ases:M(� + 12 ; 2� + 1; 2i z) = �(� + 1) ei z �12z��� J�(z) ;U(� + 12 ; 2� + 1; 2i z) = 12p� e�� i (�+ 12 ) ei z (2z)�� H(2)� (z) : (2.45)Among many other spe
ial 
ase are the exponential fun
tion ez =M(a; a; z), the Laguerrepolynomials M(�n; �+ 1; z) = n!(�+ 1)n L(�)n (z) ; (2.46)and the Hermite polynomialsM(�n; 12 ; 12z2) = (�12 )�n n!(2n)! H2n(z) ; M(�n; 32 ; 12z2) = (�12 )�n n!(2n+ 1)! z�1H2n+1(z) : (2.47)7Whi
h 
an be proven by noting that at large b we have 1 � x=b = e�x=b + O(b�2), implying that(1 � x=b)�b = (e�x=b)�b (1 + ex=bO(b�2))�b = ex (1 + ex=bO(b�2))�b. Now note that 1 + ex=bO(b�2) hasthe form ey=b2 +O(b�3) for some y, and hen
e (1 + ex=bO(b�2))�b = e�y=b (1 + e�y=b2 O(b�3))�b. Iteratingthis, we see that all the fa
tors asso
iated with these higher terms be
ome 1 as b is sent to in�nity, leavingthe result ex
52



2.3 Asymptoti
 Expansions and the Stokes PhenomenonSin
e the point z = 1 in the 
on
uent hypergeometri
 equation is an irregular singularpoint, we expe
t that any series expansions for its solutions expanded around z =1 will beasymptoti
 series rather than 
onvergent ones. We 
an study this in detail for the regularKummer fun
tion M(a; b; z) by making use of the integral representation (2.43).First, we must 
ontrive by making an appropriate 
hange of variables to separate outthe z dependen
e in the exponential fun
tion from the t dependen
e, in su
h a way thatwe 
an make a series expansion of the integrand in inverse powers of z. We need the sortof transformation of integration variable that took the integral representation (1.136) forthe modi�ed Bessel fun
tion K�(z) into the form (1.141). However, this does not work outquite so easily in the present 
ase, on a

ount of the range of the integration variable t in(2.43) being [0; 1℄ rather than [1;1℄. The answer to how to handle this problem is a rathersimple one, namely to write the integral R 10 as R 10 = R 1�1� R 0�1. Thus we rewrite (2.43) asM(a; b; z) = �(b)�(a) �(b� a) h Z 1�1(1� t)b�a�1 ta�1 ez t dt� Z 0�1(1� t)b�a�1 ta�1 ez t dti :(2.48)Note that this 
hoi
e of lower limit �1 on both the integrals is an appropriate one whenRe(z) is positive.8Let us 
onsider �rst the 
ase where z is taken to be real, positive and large. In the �rstintegral, we make the 
hange of variable from t to u de�ned by t = 1 � u=z, while in these
ond integral we 
hange to w de�ned by t = �w=z. Both integrals now run from 0 to 1over their respe
tive integration variables:M(a; b; z) = �(b)�(a) �(b� a) hza�b ez Z 10 e�u ub�a�1 (1� u z�1)a�1 du+(�z)�a Z 10 e�w wa�1 (1 + w z�1)b�a�1 dwi : (2.49)We shall see below that the two integrals are approximately equal to �(b � a) and �(a)respe
tively, whi
h are �nite and non-zero for generi
 a and b. Sin
e we are 
onsideringthe 
ase where z is real, large and positive it follows that the 
ontribution from the �rstterm will be overwhelmingly larger than that from the se
ond term, on a

ount of the ezprefa
tor. Thus only the �rst term will 
ontribute in the asymptoti
 expansion for largepositive z.8Of 
ourse one 
an write R 10 = R 1t0 � R 0t0 for any 
hoi
e of t0. We shall see below that a 
hoi
e other thant0 = �1 be
omes appropriate when z is to be taken large and negative.53



Noti
e how with these 
hanges of variable we have 
ontrived to turn the integrands intofun
tions that 
an be expanded in power series in 1=z. Spe
i�
ally, to evaluate the �rstterm in (2.49) we use the binomial theorem to obtain(1� u z�1)a�1 = 1Xr=0 �(a)r! �(a� r) �� uz �r : (2.50)Substituting this into the �rst integral in (2.49), the term-by-term integration be
omes atriviality, sin
e all the terms are of the form R10 e�x x
�1 dx, whi
h is just �(
). Thus weobtain the asymptoti
 expansion for M(a; b; z), valid when z is real, large and positive:M(a; b; z) � �(b)�(b� a) za�b ez 1Xr=0 �(b� a+ r)r! �(a� r) �� 1z�r : (2.51)It should be emphasised that every term in this expansion is more important than even theleading-order term 
oming from the se
ond integral in (2.49) that we dropped.A brief pause for a word on terminology is appropriate here. Stri
tly speaking, we shouldnot 
all (2.51) itself an asymptoti
 expansion; the exponentials fa
tor ez is not stri
tlyallowed in the de�nition of an asymptoti
 series. Rigorously-speaking, an asymptoti
 seriesmust involve a sum only over (inverse) powers of z, of the form Pn�0 z
�n. And in fa
t,as we dis
ussed in Part I, the exponential fun
tion ez itself has the asymptoti
 expansionez � 0 when z tends to �1, and admits no asymptoti
 expansion at all when z tends to+1. So stri
tly speaking, we should really take the ez fa
tor in (2.51) over to the left-handside, and say that it is e�zM(a; b; z) that has the asymptoti
 expansion (given by (2.51)with the ez fa
tor omitted). Of 
ourse we a
tually know perfe
tly well how ez behaves atlarge positive and negative z and so in fa
t we are perfe
tly happy to leave it in there onthe right-hand side, and in pra
ti
e we usually refer to (2.51) as an asymptoti
 series forM(a; b; z). But it is worth bearing this point in mind, to avoid possible 
onfusion later.Now, 
onsider instead the situation when z is real, large and negative, so that z = �jzj.In this 
ase, we should use the identity that R 10 = R10 � R11 . Using this in (2.43), we nowmake the 
hanges of variable t = u=jzj in the �rst of these integrals, and t = 1 + w=jzj inthe se
ond. This leads to the expressionM(a; b; z) = �(b)�(a) �(b � a) hjzj�a Z 10 e�u ua�1 (1� u jzj�1)b�a�1 du�(�jzj)b�a�1 e�jzj Z 10 e�w wb�a�1 (1 + w jzj�1)a�1 dwi : (2.52)This time, it is 
lear that as z tends to �1 the �rst term overwhelmingly dominates overthe se
ond, be
ause of the e�jzj prefa
tor in the se
ond term. Again we perform a binomial54



expansion of the z-dependent fa
tor in the integrand of the �rst term, this time obtainingthe following asymptoti
 expansion, valid for z real, large and negative:M(a; b; z) � �(b)�(a) jzj�a 1Xr=0 �(a+ r)r! �(b� a� r) �� 1jzj�r : (2.53)The nature of the asymptoti
 expansions for M(a; b; z) for large positive z and for largenegative z are totally di�erent. To emphasise the point, let's 
ompare the leading-orderterms in the two 
ases: M(a; b; z) � 8>><>>: �(b)�(a) za�b ez ; z �! +1�(b)�(b�a) jzj�a z �! �1 (2.54)A
tually, we should not be surprised by the fa
t that a fun
tion 
an have totally di�erentasymptoti
 expansions depending upon the dire
tion in whi
h one heads o� to in�nity. Wealready saw this in Part I of the 
ourse, in the dis
ussion of asymptoti
 expansions, when wefound that ez has the asymptoti
 series expansion ez � 0 for z large and negative, whilst noasymptoti
 expansion exists at all for z large and positive. (Re
all the 
autionary dis
ussionabove about the stri
t meaning of an asymptoti
 series, and interpret these observationsappropriately within the spirit of those remarks!) The di�erent asymptoti
 behavioursexhibited by M(a; b; z) for large positive and negative z is mu
h more interesting than thesituation for the exponential fun
tion, however.One way of seeing why the upper asymptoti
 expansion in (2.54) 
ould not possibly bevalid for all values of arg(z) is as follows. We know that M(a; b; z) is analyti
 in the whole�nite 
omplex z plane, and therefore in parti
ular, it must be a single-valued fun
tion of z.Thus if we write z = jzj ei �, then we know that if we allow � to in
rease by an angle 2�,then the fun
tion M(a; b; z) must return to its initial value.Obviously, for generi
 values of the parameters a and b, the upper fun
tion in (2.54) isnot single valued, and so if we were to allow � to in
rease by 2� we would pi
k up a phasefa
tor e2� (a�b) i 6= 1 ; (when (a� b) 6= integer) : (2.55)Thus the asymptoti
 expansion has a behaviour that is totally wrong, if we allow z to beswung around by a full 2� angle. Similar remarks apply to the lower formula in (2.54).This observation is an example of what is 
alled the Stokes Phenomenon, and it is in fa
twhat almost always happens with asymptoti
 expansions. To see exa
tly what is going on,we need to do a rather more 
areful analysis of the asymptoti
 behaviour of M(a; b; z) notmerely for z real and large, but for z 
omplex and large, of the form z = jzj ei � with jzj large55



and the phase � allowed to take any value. What we shall �nd is that for � in a 
ertain rangearound � = 0, an appropriate generalisation of the upper asymptoti
 behaviour in (2.54)o

urs, whislt for � in the rest of the range, around � = �, an appropriate generalisationof the lower asymptoti
 behaviour in (2.54) o

urs. There are 
ertain 
rossover angles onwhi
h both types of asymptoti
 behaviour have roughly equal importan
e.To study the Stokes phenomenon in more detail, we need to repeat the previous analysis,but now for the 
ase where z tends to in�nity with some phase �. In other words, we takez = ei � jzj and send jzj to in�nity, holding the angle � �xed. We shall 
onsider �rst the 
aseof angles � in the range 0 < � < �; the reason for pla
ing this restri
tion in this 
ase willbe
ome apparent below. We now use the identity thatZ 10 dt = Z �1 e�i �0 dt� Z �1 e�i �1 dt : (2.56)Use this in (2.43), with the 
ontours of integration now running with an angle � relative tothe negative real axis. In the �rst integral, we make the 
hange of variablet = �w e�i �jzj = w ei(���)jzj ; (2.57)while in the se
ond integral we make the 
hange of variablet = 1� u e�i �jzj : (2.58)In ea
h 
ase, to traverse the stated 
ontour we shall have the new integration variable w oru running from 0 to +1. After simple algebra, we get the following:M(a; b; z) = �(b)�(a) �(b� a) hei(���) ajzja Z 10 e�w wa�1 �1 + wz �b�a�1 dw+ez e�i(b�a) �jzjb�a Z 10 e�u ub�a�1 �1� uz �a�1 dui : (2.59)The integration 
ontours in the 
omplex t-plane are depi
ted in Figure 11 below.Sin
e the integrand in (2.43) has bran
h points at t = 0 and t = 1, we must establisha 
onvention about where to 
hoose our bran
h 
uts, and then sti
k with this 
hoi
e in thesubsequent analysis. Spe
i�
ally, when we de
ompose the integral in (2.43) into a di�eren
eof two integrals as in (2.56), with t running o� to in�nity somwhere in the 
omplex t-plane,we must establish a 
onvention about where the bran
h 
ut running out to in�nity will lie.Let us 
hoose the negative real t axis. This means that we must restri
t � to lie in between0 and �, so that the 
ontours for the two t integrations don't 
ross over the real t axis andpass through the bran
h points at t = 0 or t = 1.56
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Figure 11: The 
ontours for 0 < � < � (solid lines) and �� < � < 0 (dashed lines)Eventually, we make binomial expansions of the quantities (1 + w=z)b�a�1 and (1 �u=z)a�1 in the integrands, to obtain the full asymptoti
 expansions. First, it is useful tofo
us just on the leading-order terms, where, for very large jzj, we approximate these fa
torsby 1. This 
an be done for exa
tly the same reason as we dis
ussed previously, namely thatby the time w or u has be
ome large enough that jw=zj or ju=zj 
annot be negle
ted in
omparison to 1, the exponential fa
tor will have be
ome so tiny that the error is very small.In fa
t in the subsequent dis
ussion we 
an always fo
us just on the two leading-order terms,with the understanding that ea
h is always to be supplemented by its binomial-expansiondes
endants.For the leading-order terms, the integrals that remain to be evaluated then simply give�(a) and �(b� a) respe
tively, and so the leading 
ontributions from ea
h integral giveM(a; b; z) � �(b)�(b� a) jzj�a ei(���) a + �(b)�(a) jzja�b ejzj ei� ei(a�
) � ; (2.60)where, it will be re
alled, 0 < � < �. In fa
t if z is real and positive we have already obtainedthe result (2.51), whi
h is pre
isely (2.60) with � = 0, bearing in mind that the �rst termin (2.60) is negligable 
ompared with the se
ond in this 
ase, on a

ount of the latter's ejzj57



fa
tor. If, on the othere hand, z is real and negative then the previously-obtained expansion(2.53) 
an be seen to be pre
isely in agreement with setting � = � in (2.60), and bearingin mind that now only the �rst term in (2.60) 
ontributes, on a

ount of the e�jzj fa
tor inthe se
ond term.Suppose instead we now take � at some intermediate angle 0 < � < �. If we take � = 12�,the exponential fa
tor in the se
ond term now just be
omes ei jzj, whi
h is a phase fa
torof unit modulus. At � = 12�, therefore, the exponential has no damping e�e
t, and the twoterms in (2.60) have roughly equal size. Thus both terms, and their binomial-expansiondes
endants, will be in
luded in the asymptoti
 expansion at � = 12�. As � ranges from0 to �, the expression (2.60) (and its binomial des
endants) therefore gives the 
orre
tasymptoti
 expansion, with the �rst term disappearing altogether at � = 0, and the se
ondterm disappearing at � = �.Now let us 
onsider what happens in the region where �� < � < 0, i.e. when z is inthe lower-half 
omplex plane. It 
an be seen from Figure 11 that if we simply allowed �to pass through 0 and be
ome negative in the previous integral de
omposition (2.56), thenthe integration 
ontours for t would now have swung down below the negative real t-axis,
rossing over the bran
h 
ut running out to �1 in the 
omplex t-plane. On the other hand,nothing untoward should happen when we swit
h over between � = +� and � = ��, sin
ethis 
orresponds to t running out along the positive real axis, where there is no bran
h 
ut.To make sure that this works, we must now taket = �w e�i �jzj = w e�i(�+�)jzj ; (2.61)t = 1� u e�i �jzj ; (2.62)for the rede�nitions in the two integrations. Note that the �rst rede�nition here di�ers fromthe one in (2.57) that we used when 0 < � < �. This di�eren
e pre
isely takes a

ount ofthe need to avoid the bran
h 
ut from t = 0 to t = �1. Following through the analogoussteps to our previous ones, we now �ndM(a; b; z) � �(b)�(b� a) jzj�a e�i(�+�) a + �(b)�(a) jzja�b ejzj ei� ei(a�
) � ; (2.63)for �� < � < 0, repla
ing (2.60) that was valid for 0 < � < �.Noti
e that as � runs from 0 to negative values, the �rst term here emerges from beinginsigni�
ant (relative to the se
ond term), and takes over as the dominant term by the time� is passing through �12�. Now at � = 0 the �rst term in (2.63) has a fa
tor e�2� a i in
omparison to the �rst term in (2.60) at � = 0. This makes it look as if there would be a58



dis
ontinuity in the asymptoti
 expansion of the fun
tion M(a; b; z) at � = 0, but a
tuallythere isn't. The reason is pre
isely be
ause the term with the apparent dis
ontinuity is the�rst term in (2.60) or (2.63), and this term is absent from the asymptoti
 expansion at� = 0 on the grounds of its insigni�
an
e in 
omparison to the se
ond term. (Morse andFes
hba
h refer to it as being \in e
lipse" at � = 0, whi
h is quite an apt des
ription.)On the other hand, we 
an see that the �rst term in the expansion (2.60) at � = �, whereit dominates over the se
ond term, is in pre
ise agreement with the �rst term in (2.63) at� = ��. This would not have happened if we had not made the repla
ed the rede�nition(2.57) by (2.61). Without the repla
ement, we would have got an answer at � = �� thatdi�ered from the answer at � = pi by a fa
tor of e2� a i. This would have 
ontradi
ted thefa
t thatM(a; b; z) is analyti
, and should therefore not exhibit any bran
h-point behaviour.The summary of this rather long and tortuous dis
ussion is the following. The 
on
uenthypergeometri
 fun
tion M(a; b; z) is itself analyti
 in the �nite 
omplex plane, and soin parti
ular it has no bran
h points. However, the presen
e of the bran
h points in the
omplex t-plane in the integrand of (2.43) means that one has to be 
areful, when derivingthe asymptoti
 expansion ofM(a; b; z), to handle the 
hoi
e of integration 
ontour 
arefully.When this is done properly, one �nds that the asymptoti
 expansion 
an be expressed asa set of results valid in di�erent \pat
hes," 
orresponding to di�erent ranges for the phase� of the 
omplex variable z. In ea
h pat
h the expansion naively appears to su�er fromnot being single-valued, but a
tually everything is OK be
ause one is not allowed to letthe phase angle � stray far enough in any parti
ular expansion expression for the la
k ofsingle-valuedness in that expression to be
ome evident. The expressions for the asymptoti
expansions in ea
h pat
h join on smoothly and 
ontinuously to one another, as one swings� around to pass from one pat
h to the next. This is despite the fa
t that 
ertain terms intwo neighbouring pat
hes 
an appear to have di�erent phase fa
tors (like the e2� a i fa
torwe en
ountered above). The point is that su
h a term is always \in e
lipse" at the valueof � where the 
rossover between the pat
hes o

urs, and so the two expressions merelydi�er by a phase fa
tor that multiplies 0. The bottom line is that one ends up with a setof expression for the asymptoti
 expansions that 
orre
tly des
ribe the large-z behaviour ofthe single-valued fun
tion M(a; b; z).The situation 
an be summarised mathemati
ally as follows. The asymptoti
 expansionof the fun
tion �(a) �(b � a)M(a; b; z)=�(b), with z = ei � jzj and jz large is given by� = �� : �(a) jzj�a ;�� < � < 0 : �(b� a) jzja�b ei(a�b) � ez + �(a) jzj�a e�ia (�+�) ;59



� = 0 : �(b� a) jzja�b ez ;0 < � < � : �(b� a) jzja�b ei(a�b) � ez + �(a) jzj�a eia (���) ;� = � : �(a) jzj�a ;� < � < 2� : �(b� a) jzja�b ei(a�b) (��2�) ez + �(a) jzj�a eia (���) ;� = 2� : �(b� a) jzja�b ez ; (2.64)and so on.3 Integral Transforms and Fourier SeriesIntegral transforms 
an provide a very useful te
hnique for 
onstru
ting the solutions ofdi�erential equations. We have in fa
t already en
ountered several examples of integralrepresentations for solutions of di�erential equations, whi
h 
an be derived by applyingthe methods of integral transforms. They are also very familiar in other 
ontexts, su
h asthe Fourier transform that has many appli
ations in mathemati
al physi
s, for example inquantum me
hani
s and in wave theory. We shall begin with a general dis
ussion of the useof integral transform methods for solving di�erential equations.3.1 Solution of ODEs by Integral TransformsThe general idea of an integral transform is that we write a fun
tion y(z) as an integral,y(z) = Z K(z; t) f(t) dt ; (3.1)where K(z; t) is 
alled the Kernel Fun
tion. y(t) is said to be the integral transform of thefun
tion f(t). For now, we shall leave the range of the integration over t unspe
i�ed; the
hoi
e for the integration range depends upon the details of the problem. It might sometimesbe a real integral between spe
i�ed limits, or it might instead be a 
ontour integral in the
omplex t-plane.Let us begin with an example, to illustrate the basi
 idea and utility of an integraltransform. Suppose we wish to solve the se
ond-order ODEz y00 + (b� z) y0 � a y = 0 : (3.2)This will be re
ognised as the 
on
uent hypergeometri
 equation, whi
h we en
ountered inthe previous 
hapter. A rather signi�
ant feature of this equation is that it is, of 
ourse, ofse
ond order in z derivatives, but the 
oeÆ
ients involve expli
it powers of z only up to the60



power 1. For reasons that will emerge in a moment, this means that it is useful to writey(z) as an integral transform of the form (3.1), with the kernel fun
tion K(z; t) 
hosen tobe K(z; t) = ez t : (3.3)This, of 
ourse, has the property thatddz ez t = t ez t ; d2dz2 ez t = t2 ez t ; (3.4)et
.The transformation (3.1) with a kernel of this exponential type is known as the Lapla
eTransform.Substituting (3.1) into the di�erential equation (3.2), we therefore obtainZ f(t)�z t2 + (b� z) t� a� ez t :dt = 0 (3.5)Now of 
ourse the kernel ez t also has the property thatz ez t = ddt ez t ; (3.6)whi
h is in some sense \dual" to (3.4). Thus we 
an write (3.5) asZ f(t)�t2 ddt + b t� t ddt � a� ez t dt = 0 ; (3.7)and so after an integration by parts we getZ �t(t� 1) _f(t) + (2� b) t f(t) + (a� 1) f(t)� ez t dt = 0 ; (3.8)where we use a dot to denote a derivative with respe
t to t. We have assumed here thatthe boundary term from the integration by parts gives zero. This is up to us to arrange, bymaking a suitable 
hoi
e of limits or 
ontour for the integration.As we shall see later, for suitable 
hoi
es of kernel fun
tion K(z; t), su
h as ez t, thetransform (3.1) is invertible, in the sense that for every admissable y(z) there is a uniquefun
tion f(t) that produ
es it. In parti
ular, the fun
tion that produ
es 0 must itself be 0.We may therefore 
on
lude from (3.8) that the integrand is zero, and so in other wordst(t� 1) _f(t) + (2� b) t f(t) + (a� 1) f(t) = 0 : (3.9)This di�erential equation in the transform variable t, is, lu
kily, mu
h easier to solve thanthe original equation (3.2). In parti
ular, it is only of �rst order in derivatives, unlike theoriginal equation, whi
h was of se
ond order. The reason for this is pre
isely be
ause of61



the fa
t that we drew attention to earlier, namely that the original equation (3.2) onlyinvolved z to the powers 0 and 1 in the 
oeÆ
ients of y(z), y0(z) and y00(z). The \dual"relation between (3.4) and (3.6) for the kernel fun
tion ez t means that ea
h derivative inthe original equation be
omes a multipli
ation by t inn the transformed equation, and vi
eversa. (Noti
e that (3.9) has t to the powers 0, 1 and 2 in its 
oeÆ
ients of f(t) and _f(t).)The transformation to the �rst-order di�erential equation (3.9) has in fa
t given us anequation that 
an be solved very easily, namely_ff = a� 1t � b� a� 11� t ; (3.10)whose solution is f = ta�1 (1� t)b�a�1 : (3.11)Thus we 
on
lude that the solution of the 
on
uent hypergeometri
 equation (3.2) is givenby y(z) = Z ta�1 (1� t)b�a�1 ez t dt : (3.12)We have, essentially, reprodu
ed the integral representation (2.43) of the previous 
hapter,whi
h gave us the regular Kummer fun
tion M(a; b; z). A
tually, we have produ
ed some-thing a little more general here, sin
e we have not yet spe
i�ed any parti
ular 
hoi
e forthe integration limits. In the integral representation (2.43) for M(a; b; z) the integral wastaken from t = 0 to t = 1, and indeed one 
an easily verify that the boundary term that wedropped in getting from (3.7) to (3.8) vanishes at these endpoints. In fa
t, the boundaryterm is hez t ta (1� t)b�ai ; (3.13)whi
h indeed vanishes at t = 0 and t = 1, provided that b > a > 0.There are other ways of arranging for the boundary term (3.13) to vanish, instead oftaking the integration limits to be 0 and 1. For example, we 
ould take them to be 1 and1,provided that the real part of z is negative, and that b > a. The freedom to 
hoose di�erentpossibilities for the 
ontour of integration re
e
ts the fa
t that the original di�erentialequation (3.2) has two independent solutions. By making an appropriate 
hoi
e, we 
an getthe se
ond solution U(a; b; z), Kummer's irregular fun
tion. We en
ountered examples alsoin Chapter 1, where a di�erent 
hoi
e of 
ontour gave a di�erent and linearly-independentsolution of the di�erential equation, in the 
ontext of the Bessel fun
tions. Namely, we sawthat the integral representation (1.29) produ
ed the J�(z) Bessel fun
tion for one 
hoi
e of
ontour, but it produ
ed instead H(1)� (z) or H(2)� (z) for di�erent 
hoi
es of 
ontour.62



The integral transformation with the kernel ez t was parti
ularly ni
e in the example ofthe 
on
uent hypergeometri
 equation be
ause of the fa
t that the 
oeÆ
ients in front ofy(z), y0(z) and y00(z) in (3.2) involve only the zero'th and �rst powers of z, implying thatthe transformed di�erential equation (3.9) is only a �rst-order equation. Sometimes, a dif-ferential equation may have higher powers of z that 
an be removed by making appropriate
hanges of the dependent and independent variables. The Bessel equation is an example ofthis type, as is the modi�ed Bessel equation,z2 y00(z) + z y0(z)� (�2 + z2) y(z) = 0 : (3.14)Taken as it stands, this would give us a se
ond-order di�erential equation for f(t) aftermaking the transformation (3.1) with K(z; t) = ez t. However, it is easy to see that if we lety(z) = z� e�z w(z) ; (3.15)and then let z = 12 ~z, the modi�ed Bessel equation be
omesd2wd~z2 + (2� + 1� ~z) dwd~z � (n+ 12)w = 0 : (3.16)This is just the 
on
uent hypergeometri
 equation (3.2), with a = � + 12 and b = 2� + 1.Indeed, this makes expli
it the way in whi
h the Bessel fun
tions and modi�ed Besselfun
tions arise as spe
ial 
ases of the 
on
uent hypergeometri
 fun
tions.There are other examples, of 
ourse, where one 
annot redu
e the 
oeÆ
ients of they00(z), y0(z) and y(z) terms to 
onstants and linear powers, no matter how hard one trieswith 
hanges of variable. It may well happen, therefore, that the transformed equation is\worse" then the original one. On the other hand, it may be that by making a di�erent
hoi
e for the kernel fun
tion K(z; t), the situation might like better. In fa
t the kernelK(z; t) = ez t is the suitable one when dealing with an equation with one regular singularpoint and one irregular singular point of a 
ertain parti
ular kind. Spe
i�
ally, this kernelworks well in the 
ase of the 
on
uent hypergeometri
 equation, whi
h has an irregularsingular point that 
omes from the 
on
uen
e of two regular singular points. In fa
t, weobtained the equation by taking a limit of the hypergeometri
 equation, in whi
h its regularsingular points at z = 1 and z =1 fused together.To transform the hypergeometri
 equationz(1� z) y00(z) + [
� (a+ b+ 1) z℄ y0(z)� a b y(z) = 0 (3.17)into a ni
e form, a di�erent kernel, namely K(z; t) = (z � t)�, is appropriate, where � is a
onstant that we shall 
hoose for 
onvenien
e. An integral transform using a kernel of this63



type is known as an Euler Transform. Thus if we transform y(z) a

ording toy(z) = Z (z � t)� f(t) dt; (3.18)then substituting into (3.17) we get, after 
olle
ting powers of z,Z (z�t)��2 h(�+a)(�+b) z2�[�(�+
�1)+(2ab+�(a+b+1)) t℄ z+(� 
+a b t) tif(t) dt = 0 :(3.19)Now re
all that we are free to 
hoose the 
onstant � at will. By 
hoosing � = �a or� = �b, the term in z2 in the large square bra
kets in (3.19) will disappear. The two 
hoi
esare equivalent, so let us, w.o.l.o.g., 
hoose � = �a. The integral (3.19) now be
omesZ h(z � t)�a�1 [
� b t+ (a+ 1)(t � 1)℄ + (a+ 1) t (t � 1)(z � t)�a�2i f(t) dt = 0 : (3.20)Observe that we 
an write the last fa
tor in the large square bra
kets as(a+ 1) t (t� 1)(z � t)�a�2 = t (t� 1) ddt (1� z t)�a�1 ; (3.21)giving usZ h(z � t)�a�1 [
� b t+ (a+ 1)(t � 1)℄ + t (t� 1) ddt (z � t)�a�1i f(t) dt = 0 : (3.22)Integrating by parts, and invoking the expe
ted uniquness of transform, we then dedu
ethat f(t) must satify the �rst-order di�erential equationt (t� 1) _f(t)� [
� a+ (a� b� 1) t℄ f(t) = 0 : (3.23)It is easy to solve this, to obtain f(t) = ta�
 (t � 1)
�b�1, and hen
e we learn that thesolution of the hypergeometri
 equation is given byy(z) = Z (t� 1)
�b�1 ta�
 (z � t)�a dt : (3.24)This is very like the integral representation for 2F1(a; b; 
; z) that we en
ountered in theprevious 
hapter, in equation (2.20); in fa
t if we send t to 1=t in (3.24), then up to anunimportant 
onstant fa
tor we re
over the integral representation in (2.20). As usual,we must 
hoose the 
ontour of integration su
h that the boundary terms arising from theintegration by parts give zero. From (3.22), and the solution for f(t), this means thathta�
�1 (t� 1)
�b (z � t)�a�1i (3.25)should vanish when evaluated between the integration limits. One possible 
hoi
e, providedthat Re(
) > Re(b) > 0, is to take t to run from t = 1 to t =1. This is pre
isely equivalent64



to the integration range used in (2.20), bearing in mind the inversion t �! 1=t between(2.20) and (3.24).We have now seen two examples of integral transforms, one using the kernel K(z; t) =ez t, for solving the 
onluent hypergeometri
 equation, and the other using the kernelK(z; t) = (z� t)�, for solving the hypergeometri
 equation. In ea
h 
ase the kernel has ni
e\re
ipro
al" properties, in that derivatives with respe
t to z and with respe
t to t bear someni
e relation to one another. To 
omplete this part of the dis
ussion, let us 
onsider thepro
edure in a more general setting, leaving the 
hoi
e of kernel in the integral transform(3.1) unspe
i�ed.Suppose we wish to solve the se
ond-order ODE (ordinary di�erential equation)Lz[y(z)℄ � p0(z) y00(z) + p1(z) y0(z) + p2(z) y(z) = 0 : (3.26)The subs
ript z on the di�erential operator Lz de�ned by this equation indi
ates that thederivatives are with respe
t to z:Lz = p0(z) d2dz2 + p1(z) ddz + p2(z) : (3.27)A
ting with this operator on the integral transform (3.1), we 
an take the di�erentialoperator inside the integration, provided that the integral is suitably 
onvergent, to givethen gives Lz[y(z)℄ = Z Lz[K(z; t)℄ f(t) dt : (3.28)If the kernel K(z; t) has been 
hosen appropriately, the quantity Lz[K(z; t)℄ 
an be re-expressed as a di�erent di�erential operatorMt a
ting on some other fun
tion fK(z; t), thistime with the derivatives being with respe
t to t instead of z:Lz[K(z; t)℄ =Mt[fK(z; t)℄ : (3.29)Sometimes it may be the 
ase that fK(z; t) is a
tually the same fun
tion as K(z; t) itself.As an example, re
all our integral transform of the hypergeometri
 equation, where weused K(z; t) = (z� t)�a. From (3.17) and (3.22), it will be seen that fK(z; t) = (z� t)�a�1,with Lz = z(1� z) d2dz2 + [
� (a+ b+ 1) z℄ ddz � a b ;Mt = t(t� 1) ddt + 
� b t+ (a+ 1)(t� 1) : (3.30)On the other hand, in the example of the 
on
uent hypergeometri
 equation, where thekernel was K(z; t) = ez t, we see from (3.2) and (3.7) that in this 
ase we have fK(z; t) =65



ez t = K(z; t), and Lz = z d2dz2 + (b� z) ddz � a ;Mt = t(t� 1) ddt + b t� a : (3.31)More generally, let us suppose that with a 
hoi
e of kernel fun
tion K(z; t) that isappropriately \mat
hed" to the di�erential operator (3.27) for the spe
i�
 fun
tions p0(z),p1(z) and p2(z) in question, there is some di�erential operator Mt su
h that (3.29) issatis�ed, whereMt has the form9Mt = �0(t) d2dt2 + �1(t) ddt + �2(t) : (3.32)The idea now is that after a
ting on (3.1) with the di�erential operator Lz, we use (3.29)and then integrate by parts to move the t derivatives o� fK(z; t) and onto f(t):Lz[y(z)℄ = Z Lz[K(z; t)℄ f(t) dt= Z Mt[fK(z; t)℄ f(t) dt= Z ��0(t) f(t) d2fK(z; t)dt2 + �1(t) f(t) dfK(z; t)dt + �2(t) f(t)fK(z; t)� dt= Z �� d(�0(t) f(t))dt dfK(z; t)dt � d(�1(t) f(t))dt fK(z; t) + �2(t) f(t)fK(z; t)+ ddth�0(t) f(t) dfK(z; t)dt + �1(t) f(t)fK(z; t)i�dt= Z �hd2(�0(t) f(t))dt2 � (d(�1(t) f(t))dt + �2(t) f(t)i fK(z; t) (3.33)+ ddth�0(t) f(t) dfK(z; t)dt � fK(z; t) d(�0 f(t)dt + �1(t) f(t)fK(z; t)i� dt :We may write this asLz[y(z)℄ = Z �fK(z; t)Mt[f(t)℄ + dP (f;fK)dt � dt ;= Z fK(z; t)Mt[f(t)℄ dt+ hP (f;fK)i ; (3.34)9We are assuming here that the operator Mt is of at most se
ond order in derivatives. This, of 
ourse,is not guaranteed; it all depends on the details of the original di�erential operator Lz, and on one's 
hoi
eof kernel fun
tion K(z; t). In pra
ti
e, it is unlikely that we would want to use this method for solving thedi�erential equation if the transformed equation turned out to be of higher order in derivatives than theoriginal one. Sin
e we are assuming that we start with a se
ond-order di�erential operator Lz, then wemay restri
t our dis
ussion to those 
ases where Mt involves no higher than se
ond derivatives also. Theextension to higher-order operators is totally straightforward.66



whereMt is the adjoint of the operatorMt, and P (f;fK) is the the bilinear 
on
omitant off(t) and fK(z; t):Mt[f(t)℄ � d2dt2 (�0(t) f(t))� ddt (�1(t) f(t)) + �2(t) f(t) ; (3.35)P (f;fK) � �0(t) f(t) dfK(z; t)dt � fK(z; t) d(�0 f(t)dt + �1(t) f(t)fK(z; t) : (3.36)The square bra
kets en
losing P (f;fK) in the se
ond line indi
ate that it is to be evaluatedat the endpoints of the integration.Now, we make the usual kind of argument that we shall 
hoose a 
ontour for the inte-gration in (3.1) su
h that the bilinear 
on
omitant P (f;fK) returns to its initial value atthe end of the 
ontour, so that the boundary term [P (f;fK)℄ in (3.34) is zero, and so wesimply have Lz[y(z)℄ = Z fK(z; t)Mt[f(t)℄ dt : (3.37)Thus we 
on
lude that y(z) de�ned by (3.1) satis�es the original di�erential equationLz[y(z)℄ = 0 if the fun
tion f(t) satis�es the di�erential equation Mt[f(t)℄ = 0. Of 
oursethe hope is that we have made a fortunate 
hoi
e for K(z; t) so that the transformed equa-tion is easier to solve than the original one.In our example of the hypergeometri
 equation, we see from (3.22), (3.35) and (3.36)that in this 
ase we shall haveMt[f(t)℄ = � ddt �t(t� 1) f(t)�+ �
� b t+ (a+ 1)(t� 1)� f(t) ;P (f;fK) = t(t� 1) f(t) (z � t)�a�1 : (3.38)On the other hand, for the example of the 
on
uent hypergeometri
 equation, it followsfrom (3.7), (3.35) and (3.36) that in this 
aseMt[f(t)℄ = � ddt �t(t� 1) f(t)�+ (b t� a) f(t) ;P (f;fK) = t(t� 1) f(t) ez t : (3.39)Both these examples are rather simpler than the general dis
ussion, be
ause the di�erentialoperator Mt is only of �rst order in derivatives, and so �0(t) = 0.3.2 The Fourier TransformWe 
on
luded the previous subse
tion by 
onsidering the general 
ase of an integral trans-form (3.1) where the kernel fun
tion K(z; t) is unspe
i�ed. We also looked at spe
i�
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examples, for whi
h we had K(z; t) = ez t and K(z; t) = (z � t)�. The integral trans-form is 
alled the Lapla
e transform when K(z; t) = ez t, and the Euler transform whenK(z; t) = (z � t)�.In pra
ti
e, there is a rather small number of di�erent kernels that turn out to be useful,and most of these are 
losely related to the Fourier transform. The Fourier transform is thename given to the 
ase where one uses K(z; t) = ei z t as the kernel fun
tion. Its relation tothe Lapla
e transform K(z; t) = ez t is obvious. We shall now pro
eed with a more detailedstudy of the Fourier transform, sin
e it is one that is used extensively in mathemati
alphysi
s.First, let us establish some notation. We shall de�ne the Fourier transform F (k) of afun
tion f(x) as follows: F (k) = 1p2� Z 1�1 ei k x f(x) dx : (3.40)The need for 2� fa
tors somewhere in the dis
ussion is inevitable, and stems from thein
onvenient fa
t that a unit 
ir
le has 
ir
umferen
e 2� rather than 1. Putting in a p2� inthe de�nition of the Fourier transform gives the symmetri
al result that the inverse Fouriertransform is f(x) = 1p2� Z 1�1 e�ik x F (k) dk : (3.41)The fa
t that this is the inverse of the Fourier transform (3.40) is a non-trivial result, knownas Fourier's Theorem. We 
an prove it by viewing the Fourier transform as the limit of aFourier series. Before doing this, note that be substituting (3.40) into (3.41), we have anequivalent statement of Fourier's theorem, namely thatf(x) = 12� Z 1�1 dk Z 1�1 dy ei k (y�x) f(y) : (3.42)Yet another way of expressing this is that sin
e this is true for any (reasonable) fun
tionf(x), it must be that 12� Z 1�1 dk ei k (y�x) = Æ(y � x) ; (3.43)where Æ(y � x) is the Dira
 delta fun
tion, with the property thatf(x) = Z 1�1 f(y) Æ(y � x) dy ; (3.44)for any (reasonable) fun
tion f(x). We shall postpone for now the issue of de�ning exa
tlywhat 
onstitutes a \reasonable" fun
tion. We shall return to this later, when we dis
uss
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the topi
 of Generalised Fun
tions, of whi
h the Dira
 delta fun
tion is an example.10 Notethat by repla
ing the integration variable k by �k in (3.43), we immediately see that theDira
 delta fun
tion is symmetri
al:Æ(y � x) = Æ(x� y) : (3.45)Now for the proof of Fourier's theorem. First, 
onsider the Fourier series for fun
tionsf(x) de�ned on the interval �12b � x � 12b. It is mu
h simpler to work with the Fourierseries using 
omplex exponentials, rather than dealing separately with sines and 
osines, sowe shall 
onsider the following expansion:f(x) = 1Xn=�1an e2� inx=b : (3.46)Note that all the fun
tions e2� inx=b used in this expansion indeed have the property ofreturning to their original values after x is advan
ed through a distan
e b, sin
e every termin the series has this property. The Fourier 
oeÆ
ients an 
an be determined by multiplying(3.46) by e�2� imx=b, and integrating over the interval �b=2 � x � b=2. Sin
e we haveZ b=2�b=2 e2� i (n�m) x=b dx = hb e2� i (n�m) x=b2� i (n�m) ib=2�b=2 = 0 (3.47)when m 6= m, while it gives Z b=2�b=2 dx = b (3.48)when m = n, this implies thatZ b=2�b=2 f(x) e�2� imx=b dx = b am : (3.49)Substituting ba
k into (3.46) then gives11f(x) = 1b 1Xn=�1 Z b=2�b=2 f(y) e2� in (x�y)=b dy : (3.50)We want to 
onsider the limit where the interval b is sent to in�nity. To do this, weintrodu
e a 
ontinuous variable k whi
h at dis
rete points kn takes the values kn = 2� n=b.10Mathemati
ians grumbled at �rst when Dira
 introdu
ed the delta fun
tion, maintaining that it wasn'twell-de�ned. Later, they introdu
ed the notion of generalised fun
tions, and made it respe
table. So insteadof the mathemati
ians' eyes glazing over when the physi
ists make dubious manipulations with ill-de�nedfun
tions, now the physi
ists' eyes glaze over when the mathemati
ians make them rigorous in ex
rutiatingdetail.11There are some interesting subtleties in the theory of Fourier series, asso
iated with what is known asthe Gibbs Phenomenon. We shall return to look at this later.69



The di�eren
e between adja
ent points is �k � kn+1 � kn = 2�=b. We 
an rewrite (3.50)as f(x) = 12� 1Xn=�1�k Z b=2�b=2 f(y) ei kn (x�y) dy : (3.51)Now, as we take b �! 1, the interval �k between adja
ent values of kn goes to zero, andthe sum is repla
ed by an integral: 1Xn=�1�k �! Z 1�1 dk : (3.52)Thus (3.51) be
omes f(x) = 12� Z 1�1 dk Z 1�1 f(y) eik (x�y) dy : (3.53)This is pre
isely equivalent to (3.42) (send k to �k to get exa
tly (3.42)), and so Fourier'stheorem is proven.One 
an easily prove some general properties of the Fourier transform. Trivially obviousones are that the Fourier transform is a linear operator a
ting on f to give F . Let us denotethe operation of taking the Fourier transform by LF (where the subs
ript F here stands forFourier), so that we have LF[f ℄ = F , LF[g℄ = G, et
. Then the linearity impliesLF[f + g℄ = LF[f ℄ + LF[g℄ ;LF[a f ℄ = aLF[f ℄ ; (3.54)where in the se
ond line the quantity a is an arbitrary 
onstant. Another general propertyis that the Fourier transform of the derivative of a fun
tion is equal to �i k times the Fouriertransform of the fun
tion itself:LF[f 0(x)℄ = �i kLF[f(x)℄ = �i k F (k) : (3.55)This is easily proved by writing down the Fourier transform of f(x) and then integrating byparts to push the derivative onto the exponential ei k x. The assumption that the fun
tionf(x) is a \reasonable" one justi�es the negle
t of the boundary terms at x = �1 that arisefrom the integration by parts.Parseval's Theorem:A useful result that 
an be proven from the de�nition (3.40) of the Fourier transform isthe following, known as Parseval's Theorem:Z 1�1 jF (k)j2 dk = Z 1�1 jf(x)j2 dx : (3.56)70



To show this, we substitute from (3.40) into the left-hand side, inter
hange the orders ofintegration, and then use the expression (3.43) for the Dira
 delta fun
tion:Z 1�1 jF (k)j2 dk = 12� Z 1�1 dk Z 1�1 dx ei k x f(x) Z 1�1 dy e�ik y f(y) ;= Z 1�1 dx Z 1�1 dy f(x) f(y)� 12� Z 1�1 dk ei k (x�y)� ;= Z 1�1 dx Z 1�1 dy f(x) f(y) Æ(x � y)= Z 1�1 f(x) f(x) dx= Z 1�1 jf(x)j2 dx : (3.57)(As usual, a more 
areful dis
ussion 
ould be given in whi
h the 
ir
umstan
es where theinter
hange of the orders of integration are determined. In pra
ti
e, it is valid for all\reasonable" fun
tions f(x).)A small generalisation of Parseval's theorem 
an be obtained by repla
ing the fun
tionf(x) by f(x) + g(x). Of 
ourse sin
e the Fourier transform (3.40) is a linear operation onf(x), it trivially follows that the Fourier transform of f(x)+g(x) is F (k)+G(k), where F (k)and G(k) are the Fourier transforms of f(x) and g(x) respe
tively. Thus we immediatelyhave from Parseval's theorem (3.56) thatZ 1�1 jF (k) +G(k)j2 dk = Z 1�1 jf(x) + g(x)j2 dx : (3.58)Expanding this out, we getZ 1�1 �jF (k)j2 + jG(k)j2 + F (k)G(k) + F (k)G(k)� dk= Z 1�1 �jf(x)j2 + jg(x)j2 + f(x) g(x) + f(x) g(x)� dx : (3.59)Using the original statement (3.56) of Parseval's theorem, we see that the �rst terms onea
h side are equal, as are the se
ond terms on ea
h side, and soZ 1�1 �F (k)G(k) + F (k)G(k)� dk = Z 1�1 �f(x) g(x) + f(x) g(x)� dx : (3.60)If instead we were to repla
e f(x) by f(x)+i g(x) in (3.56), we would, by a similar argument,have thatZ 1�1 �F (k)G(k) � F (k)G(k)� dk = Z 1�1 �f(x) g(x) � f(x) g(x)� dx : (3.61)Combining these two results, we arrive at the 
on
lusion thatZ 1�1 F (k)G(k) dk = Z 1�1 f(x) g(x) dx : (3.62)71



The Convolution Integral:Another useful property of the Fourier transform involves the following integral:h(x) � 1p2� Z 1�1 dy f(y) g(x� y) ; (3.63)whi
h is 
alled the 
onvolution of f and g. It is also sometimes known as the Faltung of fand g, from the German for \folding." (It is a kind of shifted overlap between f(x) andg(�x).) If the fun
tions f(x), g(x) and h(x) have Fourier transforms F (k), G(k) and H(k)respe
tively, then we 
an show thatH(k) = F (k)G(k) : (3.64)This is easily proven, by multiplying (3.63) by 1=(p2�) ei k x and integrating over all x. Thisgives H(k) = 12� Z 1�1 dy f(y) Z 1�1 dx g(x� y) ei k x : (3.65)Now 
hange integration variable from x to z = x� y in the se
ond integral here, givingH(k) = 12� Z 1�1 dy f(y) eik y Z 1�1 dz g(z) ei k z ; (3.66)and hen
e (3.64).Note that the expression (3.63) is a
tually symmetri
al between f and g, as may be seenby 
hanging the integration variable from y to z = x� y. Of 
ourse this symmetry is evenmore obvious in the Fourier-transformed version (3.64).Fourier Transforms and Quantum Me
hani
s:The Fourier transform 
an be viewed as a mapping between position spa
e and mo-mentum spa
e representations in quantum me
hani
s. Consider �rst wavefun
tion  p inone spatial dimension that is an eigenstate of the momentum operator, with eigenvalue p: p(x) = 1=(p2�) ei px=�h. De�ning the wave-ve
tor k = p=�h, this is k(x) = 1p2� eik x : (3.67)We shall refer to k simply as the momentum, sin
e up to an irrelevant 
onstant fa
tor,that's what it is.12 To map into momentum spa
e, we take the inverse Fourier transform of12In high-energy physi
s one usually takes the bull by the horns and 
hooses units where �h = 1, whi
hsaves a lot of tedious writing. The same is done for the speed of light, and for Newton's 
onstant, so thatone works in dimensionless units where �h = 
 = G = 1. For mysterious reasons, people in other dis
iplinesapparently prefer to 
arry around the redundant baggage of super
uous dimensionful 
onstants. There isno physi
s 
ontained in these; it is merely a re
e
tion of one's de
ision to measure, for example, distan
e inmetres, while time is measured in se
onds, rather than \the time taken for light to travel a 
ertain numberof metres." 72



 k0(x), obtaining	(k) = 1p2� Z 1�1  k0(x) e�i k x dx = 12� Z 1�1 ei (k0�k)x dx= Æ(k � k0) ; (3.68)where in the �nal step we have used the de�nition (3.43) of the Dira
 delta fun
tion.Note that the rôles of k and x are reversed here, relative to our de�nition of the Fouriertransform (3.40) and the inverse transform (3.41). (This is a minor in
onvenien
e in thenotation, resulting from the fa
t that we 
onventionally give a positive-frequen
y wave atime dependen
e e�i! t, whi
h implies that a positive-momentum wave has x dependen
eei k x. This does not mesh ideally with the 
onventional 
hoi
e of eik x as the kernel in theFourier transform (3.40). C'est la vie!) There should be no 
onfusion on this point, butjust to 
larify our 
onventions, let us emphasise that we shall always refer to an integralof the form 1=(p2�) R 
(�) ei � � d� as a Fourier transform, and an integral of the form1=(p2�) R 
(�) e�i � � d� as an inverse Fourier transform, regardless of the names that wehappen to be using for the variables.More generally, if a wave fun
tion  (x) in position spa
e is a superposition of momentumeigenstates, then it has an equivalent representation 	(k) in momentum spa
e, given by	(k) = 1p2� Z 1�1  (x) e�i k x dx : (3.69)The inverse of this, by Fourier's theorem, is (x) = 1p2� Z 1�1	(k) ei k x dk : (3.70)One 
an view this as the 
ontinuous limit of a sum over momentum eigenstates, and thefun
tion 	(k) has the imterpretation of being the \amplitude" of the momentum eigenstateei k x in the sum. The derivative operator d=dx in position spa
e therefore be
omes simplya multipli
ation by i k in momentum spa
e:d (x)dx = 1p2� Z 1�1(i k)	(k) ei k x dk : (3.71)If we substitute (3.70), with ~k as the integration variable, into the S
hr�odinger equation�d2 (x)dx2 + V (x) (x) = E  (x) ; (3.72)we therefore get 1p2� Z 1�1 d~k �~k2	(~k) + V (x)	(~k)�E	(~k)� ei ~k x = 0 : (3.73)73



Muliplying this by 1=(p2�) e�i k x and integrating over x, this givesk2	(k) + Z 1�1 d~k	(~k)� 12� Z 1�1 dxV (x) ei (~k�k)x��E	(k) = 0 ; (3.74)sin
e the x integrations in the �rst and last terms simply give Dira
 delta fun
tions. Thex integration in the potential term gives 1=(p2�)V(k � ~k), where V is the inverse Fouriertransform of the potential V , and so the S
hr�odinger equation in momentum spa
e hasbe
ome k2	(k) + 1p2� Z 1�1 V(k � ~k)	(~k) d~k = E	(k) : (3.75)The term involving the potential here is pre
isely of the form of the 
onvolution integral(3.63), and in fa
t we e�e
tively re-derived the relation (3.64) here.In quantum me
hani
s j (x)j2 dx is the probability that the parti
le lies in the interval[x; x+ dx℄ in position spa
e. In terms of the momentum-spa
e representation, j	(k)j2 dk isthe probability that the momentum lies in the interval [k; k + dk℄. This 
an be establishedby showing that the expe
tation value of the momentum, and all higher powers of themomentum, are the same whether 
al
ulated in the position-spa
e or momentum-spa
erepresentation. Parseval's theorem (3.56) tells us that the total probability for the parti
leto be somewhere (= 1) is equal to the total probability for its momentum to be something.More generally, from (3.62), we 
an learn that an overlap integral between two wavefun
tions 1(x) and  2(x) in position spa
e is equal to the overlap integral evaluated in momentumspa
e using their inverse Fourier transforms 	1(k) and 	2(k).Poisson Summation Formula:This 
an be expressed as follows. If F (k) is the Fourier transform of f(x), then1Xn=�1 f(n z) = p2�z 1Xn=�1F (2� n=z) : (3.76)To prove this, we simply use the de�nition of the inverse Fourier transform (3.41),together with the usual assumption of the inter
hangeability of the orders of integrationand summation: 1Xn=�1 f(n z) = 1p2� Z 1�1 dk 1Xn=�1 e�ik n z F (k) ;= p2� Z 1�1 dk 1Xn=�1 Æ(k z � 2� n)F (k) ;= p2�z Z 1�1 dk0 1Xn=�1 Æ(k0 � 2� n)F (k0=z) ;74



= p2�z 1Xn=�1 F (2� n=z) ; (3.77)where in the step from line 2 to line 3 we 
hanged integration variable from k to k0 = k z.In the step from line 1 to line 2, we used the fa
t that1Xn=�1 einx = 2� 1Xn=�1 Æ(x� 2� n) : (3.78)Essentially, this is the statement that the fun
tions einx form a 
omplete set on the unit
ir
le: Taking our dis
ussion at the begining of the se
tion, and setting b = 2� in (3.50),we see that for x restri
ted to a single 
overing of the unit 
ir
le, su
h as �� � x � �, wemust have 1Xn=�1 einx = 2� Æ(x) : (3.79)Sin
e obviously einx is periodi
 in x, with period 2�, it must be that when x is allowedto range over the entire real line the fun
tion (3.79) must get repeated at intervals of 2�,giving rise to the \
omb" of delta fun
tions, as in (3.78).An example of the use of the Poisson summation formula is to evaluate 
ertain spe
i�
in�nite sums. Consider, for example, the fun
tion f(x) = 1=(1 + x2). Its Fourier transformis given by F (k) = 1p2� i Z 1�1 dx ei k x1 + x2 = r�2 e�jkj : (3.80)(This is easily proven using the 
al
ulus of residues: If k > 0, the integration 
ontour 
anbe 
losed o� with a large semi
ir
le in the upper-half x plane, and so the integral is givenby the residue of the pole at x = i. On the other hand if k < 0, the 
ontour 
an insteadbe 
losed o� with a semi
ir
le in the lower-half plane, and now one pi
ks up the residue atx = �i.) Applying the Poisson summation formula (3.76), we therefore get1Xn=�1 f(n z) = 1Xn=�1 11 + n2 z2 = �z 1Xn=�1 e�2� jn=zj ;= �z �1Xn=�1 e2� n=z + �z 1Xn=0 e�2� n=z ;= �z h e�2�=z1� e�2�=z + 11� e�2�=z i ; (3.81)and hen
e 1Xn=�1 11 + n2 z2 = �z 
oth ��z � : (3.82)75



Another appli
ation of the Poisson summation formula is the following. In the studyof di�erential operators su
h as the Lapla
e operator r2, it is sometimes ne
essary tostudy the distribution of its eigenvalues �n, de�ned by �r2 un = �n un, where un are the
orresponding eigenfun
tions. This 
an be done by studying the so-
alled heat kernel�(t) �Xn dn e�� t �n ; (3.83)where dn is the degenera
y of the eigenvalue �n. Clearly, if �(t) is known for all t, thenthis en
odes a lot of information about the values, and degenera
ies, of the eigenvalues. Ofparti
ular importan
e is to know how �(t) behaves for very small values of t, sin
e this givesinformation about the limiting distribution of the eigenvalues for large �n.Consider the following simple example, where we look at the 1-dimensional Lapla
ianr2 = d2=dx2 on the unit 
ir
le. The eigenfun
tions are einx, with eigenvalues �n = n2, andso �(t) = 1Xn=�1 e�� t n2 : (3.84)If we let f(x) = e�x2=2, then �(t) is of the formPn f(n z) as in (3.76), with z = p2� t. Butthe Fourier transform of e�x2=2 is just e�k2=2, sin
e1p2� Z 1�1 dx e�x2=2 ei k x = 1p2� Z 1�1 dx e�(x�i k)2=2 e�k2=2= 1p2� Z 1�1 dy e�y2=2 e�k2=2 = e�k2=2 ; (3.85)where we have 
hanged integration variable from x to y = x� i k. Thus from (3.76) we �ndthat 1Xn=�1 e�� t n2 = 1pt 1Xn=�1 e�� n2=t ; (3.86)whi
h when re-expressed in terms of �(t), is nothing but�(t) = 1pt ��1t � : (3.87)Thus we have a remarkable relation between the large-t and small-t behaviour of the heatkernel for the Lapla
ian on the 
ir
le. In parti
ular, sin
e it is obvious from (3.84) that atlarge t have � � 1, we see that at small t we have�(t) � 1pt : (3.88)
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3.3 The Lapla
e TransformThe Lapla
e transform is 
losely related to the Fourier transform. In the Fourier transform(3.40), it is evident that the fun
tion f(x) should obey some suitable fall-o� 
onditionsat x = �1, in order that the integral be well-de�ned. Essentially, we sould require thatf(x) �! 0 as x tends to �1. A
tually, sin
e we have adopted the prin
iple that delta-fun
tions are a

eptable \fun
tions" we 
an be a little more tolerant. For example, wewould say that the 
onstant fun
tion f(x) = 1 has a valid Fourier integral (3.40), givingF (k) = p2� Æ(k). More generally, f(x) 
an be a sine or 
osine or 
omplex exponential. Forexample, if f(x) = 
os x, we shall have, from (3.40)F (k) = r�2 �Æ(k � 1) + Æ(k + 1)� : (3.89)As it stands, we 
annot, however, allow the fun
tion f(x) to have any divergent be-haviour at large jxj. The Lapla
e transform is e�e
tively a modi�
ation of the 
on
eptof the Fourier transform that does allow su
h kinds of divergent behaviour for f(x). TheLapla
e transform FL(p) of f(x) is de�ned byFL(p) = Z 10 e�p x f(x) dx : (3.90)It is evident that this will be well-de�ned for p > 0, even if f(x) has a power-law divergen
ef(x) � xm as x tends to in�nity, for any arbitrarily large 
onstant m. Even if f(x) divergesexponentially, f(x) � ea x, the integral will still be well-de�ned provided that p > a.Obviously there is a rather 
lose 
onne
tion between the Lapla
e and the Fourier trans-forms. In fa
t, if we de�ne f+(x) byf+(x) = ( f(x) x > 00 x < 0 ; (3.91)then the Fourier transform of f+(x) will be F+(k) given byF+(k) = 1p2� Z 10 f(x) ei k x dx ; (3.92)and so evidently we shall have FL(p) = p2� F+(i p) : (3.93)We now need to �nd the inverse of the Lapla
e transform. Again, this 
an be done by usingwhat we already know about Fourier transforms.77



Suppose that we are 
onsidering a fun
tion f(x) that has an exponential divergen
e ofthe form ea x as x tends to in�nity, where a is a 
onstant with a positive real part. We maythen introdu
e the fun
tion g(x), whi
h tends to zero as x tends to in�nity, wheref(x) = e
 x g(x) ; (3.94)and 
 is a real positive number su
h that 
 > Re(a). The Fourier transform G+(k) of thefun
tion g+(x) given by g+(x) = ( g(x) x > 00 x < 0 (3.95)is therefore well-de�ned, and so by Fourier's theorem we 
an then take the inverse Fouriertransform of G+(k) to get ba
k to g+(x). Hen
e we haveg(x) = 12� Z 1�1 dt eix t Z 10 dy e�i t y g(y) : (3.96)From (3.94) this means thatf(x) = 12� e
 x Z 1�1 dt eix t Z 10 dy e�i t y e�
 y f(y) : (3.97)Now 
hange integration variable from t to s = 
 + i t. This givesf(x) = 12� i Z 
+i1
�i1 ds es x Z 10 dy e�s y f(y) : (3.98)The y integral here 
an be re
ognised as giving pre
isely the Lapla
e transform FL(s) off(y), and so (3.98) allows us to read o� the inverse of the Lapla
e transform:f(x) = 12� i Z 
+i1
�i1 ds es x FL(s) : (3.99)This is 
alled the Bromwi
h Integral. The integration 
ontour runs verti
ally in the 
omplexs plane, along a line whose real part is 
. The real 
onstant 
 
an be 
hosen arbitrarily,subje
t only to the requirement that the 
ontour should run to the right of any singularitiesof FL(s). Any 
hoi
e of 
 that a
hieves this will do, and the answer does not depend onwhi
h su
h value for 
 we 
hoose.Let us 
onsider an example. Suppose we are given the fun
tionFL(s) = 1s� a ; (3.100)where a is a real 
onstant, and we are required to 
al
ulate its inverse Lapla
e transform.The fun
tion FL(s) has a pole at s = a, so we should take a 
ontour in (3.99) with 
 > a.The integral (3.99) will be 12� i Z 
+i1
�i1 ds es xs� a : (3.101)78



This 
an be evaluated by means of the 
al
ulus of residues, by 
losing o� the 
ontour witha large semi
ir
le swinging out and around to the west. This is justi�able for x > 0, sin
ethe fun
tion es x will then be
ome exponentially small on the semi
ir
le as the radius goesto in�nity. (See Part I of the 
ourse for a dis
ussion of su
h integrals.) The 
losed 
ontouren
loses the simple pole at s = a, meaning that by the 
al
ulus of residues the integral justevaluates to give 12� i Z 
+i1
�i1 ds es xs� a = ea x ; for x > 0 : (3.102)Thus we have derived that the inverse Lapla
e transform of the fun
tion 1=(s� a) is ea x.This result is easily veri�ed, by simply 
he
king what the Lapla
e transform of ea x is.From (3.90), this will beFL(p) = Z 10 ea x e�px dx = Z 10 e�(p�a)x dx= "�e�(p�a)xp� a #x=1x=0 = 1p� a ; (p > a) ; (3.103)whi
h is indeed ba
k to where we started. Observe how the fun
tion ea x, whose Lapla
etransform is 1=(s � a), does diverge at large x (assuming a is positive), and, a

ordingly,the argument s of the Lapla
e transform FL(s) = 1=(s� a) is restri
ted to have s > a.13The Lapla
e transform obeys general properties that are 
losely analogous to those forthe Fourier transform that we dis
ussed prevsiouly. If we denote by LL the operation oftaking the Lapla
e transform, then we obviously have the linearity propertiesLL[f + g℄ = LL[f ℄ + LL[g℄ ;LL[a f ℄ = aLL[f ℄ ; (3.104)where a is any 
onstant. The analogue of the Fourier result (3.55) is a little more involvedhere, owing to the fa
t that the integration range in the Lapla
e transform is only semi-in�nite. Thus if FL(p) = LL[f(x)℄ is the Lapla
e transform of f(x), then taking the Lapla
etransform of f 0(x) we getLL[f 0(x)℄ = Z 10 dx e�p x f 0(x) = pFL(p) + he�px f(x)ix=1x=0= pFL(p)� f(0) : (3.105)13It might seem surprising that although the Lapla
e transform FL(s) is valid only for s > a, in ourevaluation of the inverse transform in (3.99) we pre
isely pla
e ourselves in the region Re(s) < a in the
omplex s-plane. This is just a manifestation of analyti
 
ontinuation: The Lapla
e transform FL(s) was
onstru
ted under the requirement s > a, but having obtained it, it 
an a
tually be analyti
ally extendedto the entire 
omplex s-plane, where it de�nes the meromorphi
 fun
tion 1=(s � a). It is this analyti
allyextended fun
tion that is used in (3.99) to evaluate the inverse Lapla
e transform.79



The Lapla
e transforms of higher derivatives of f(x) 
an be 
al
ulated similarly. One �nds,for example, that LL[f 00(x)℄ = p2 FL(p)� p f(0) + f 0(0) : (3.106)Some Simple Lapla
e Transforms, and Their Uses:First, let's take the Lapla
e transform of a few simple fun
tions, to see what we get.The simplest of all is f(x) = 1, for whi
h the Lapla
e transform will beLL[1℄ = Z 10 dx e�p x = 1p : (3.107)Of 
ourse we should note that this is true for p > 0. If p � 0 the Lapla
e transform off(x) = 1 does not exist.Slightly less trivially, take f(x) = x��1. In order to have 
onvergen
e of the integral atthe lower limit, we must require Re(�) > 0. However, it doesn't matter how big the realpart of � gets, be
ause the exponential e�px in (3.90) will ensure 
onvergen
e at x = 1,provided that p is positive. Then we shall haveLL[x��1℄ = Z 10 dx e�p x x��1 = p�� Z 10 dy e�y y��1 = �(�) p�� : (3.108)Finally, 
onsider taking f(x) = eia x, whi
h is 
losely related to a 
ase we looked atpreviously. This gives LL[ei a x℄ = Z 10 dx e�x (p�ia) = 1p� i a ;= p+ i ap2 + a2 ; (3.109)again valid only for p > 0. Taking real and imaginary parts, we thus learn that the Lapla
etransforms of the 
osine and sine fun
tions are given byLL[
os ax℄ = pp2 + a2 ;LL[sinax℄ = ap2 + a2 : (3.110)We saw earlier that one of the appli
ations of integral transforms is for solving di�erentialequations, by transforming them into a (hopefully!) simpler form. In fa
t we have studiedsome fairly 
ompli
ated examples. For a little light relief, let's take a di�erential equationfrom kindergarten, and solve that using the Lapla
e transform. Suppose we have a harmoni
os
illator, satisfying the familiar old equationf 00(x) + f(x) = 0 ; (3.111)80



subje
t, let's say, to the boundary 
onditions y(0) = 1, y0(0) = 0. Taking the Lapla
etransform of (3.111), and making use of the results (3.105) and (3.106) above, we obtain ingeneral p2 FL(p) + FL(p)� p f(0)� f 0(0) = 0 : (3.112)This 
an then be solved algebrai
ally for FL(p), in terms of the boundary 
onditions onf(x) and f 0(x) at x = 0. In our example, we have f(0) = 1 and f 0(0) = 0, and soFL(p) = pp2 + 1 : (3.113)As it happens, we saw just a few paragraphs previously what fun
tion has this as its Lapla
etransform, namely 
os x (see (3.110)), and so from (3.113) we 
on
lude that the solution tothe di�erential equation (3.111), subje
t to the given boundary 
onditions, isf(x) = 
os x : (3.114)More generally, if f(0) and f 0(0) were both non-vanishing, we would solve (3.113) to getFL(p) = f(0) pp2 + 1 + f 0(0) 1p2 + 1 : (3.115)Again, by good 
han
e, we already know what fun
tion has this se
ond term as its Lapla
etransform (see (3.110) again), and so here we 
on
lude that the original di�erential equation(3.111) has the general solutionf(x) = f(0) 
os x+ f 0(0) sinx : (3.116)Of 
ourse if we had not been fortunate enough to know the fun
tions whose Lapla
e trans-forms give the two terms in (3.115) we 
ould easily have derived them using the Bromwi
hintegral (3.99) for the inverse Lapla
e transform, mu
h as we did earlier in equation (3.101).One might begin to wonder, though, whether in this example one were using a sledge-hammer to 
ra
k a nut!14 However, it is perhaps useful to have looked at the details ofhow one solves a di�erential equation by Lapla
e transform methods in a trivially simpleexample, sin
e essentially the same te
hniques are used in more 
ompli
ated 
ases too.Convolution Theorem for the Lapla
e Transform:There is a 
onvolution theorem for the Lapla
e transform that is 
losely analogous to theone for the Fourier transform that we met previously. Re
alling that we �rst obtained the14There is a Latin phrase ignotum per ignotius, whi
h is perhaps appli
able here.81



Lapla
e transform from the Fourier transform by 
onsidering fun
tions of the form f+(x)de�ned in (3.91), whi
h vanish for x < 0 and equal f(x) for x > 0, we should now use su
hfun
tions in the type of 
onvolution integral (3.63) that we studied before. Thus we mayde�ne h(x) = Z 1�1 f+(y) g+(x� y) dy = Z x0 f(y) g(x� y) dy : (3.117)(We do not in
lude a 1=p2� fa
tor here be
ause the overall 2� that 
omes from taking atransform followed by its inverse is, by 
onvention, treated asymmetri
ally in the 
ase of theLapla
e transform.) The substantial point to noti
e is that the 
onvolution integral for twofun
tions, in the 
ontext of a Lapla
e transform, is de�ned with integration limits runningfrom 0 to x: h(x) � Z x0 f(y) g(x� y) dy : (3.118)This has happened, obviously, be
ause of the vanishing of f+(x) and g+(x) when x isnegative.The most dire
t way to derive the 
onvolution theorem here is to take a Lapla
e trans-form of (3.118). Thus we getHL(p) = Z 10 dx e�p x h(x) = Z 10 dx Z x0 dy e�px f(y) g(x� y)= Z 10 dy Z 1y dx e�px f(y) g(x� y)= Z 10 dy Z 10 dz e�p (y+z) f(y) g(z) = Z 10 dy e�p y f(y) Z 10 dz e�p z g(z)= FL(p)GL(p) : (3.119)In getting to the se
ond line, we have used the fa
t that the original region of integrationin the (x; y) plane is only the lower-triangular half of the positive (x; y) quadrant, i.e. thetriangular area between the positive x-axis and the line y = x. In the integration on line 1,it is 
overed by verti
al strips, 0 < y < x, with x then running up to in�nity. It 
an insteadbe 
overed by horizontal strips, y < x < 1, with y running from 0 to in�nity, and this iswhat is done in line 2. To get to line 3, we then make a shift of the x integration variable,to z = x � y, implying that now the se
ond integral runs from z = 0 to z = 1. The twointegrals now fall apart into a produ
t of two independent ones, giving the produ
t of theLapla
e transforms of f(x) and g(x). Thus we have 
on
luded that if FL(p), GL(p) andHL(p) are the Lapla
e transforms of f(x), g(x) and h(x) respe
tively, and if h(x) is the
onvolution of f(x) and g(x) de�ned in (3.118), thenHL(p) = FL(p)GL(p) : (3.120)82



Noti
e, by the way, that the 
onvolution (or Faltung) de�ned in (3.118) has the samesymmetry property as the one de�ned in (3.63) for the Fourier transform. Namely, if we
hange integration variable in (3.118) from y to z = x� y, then we �nd thath(x) = Z x0 f(y) g(x � y) dy = Z x0 g(z) f(x � z) dz : (3.121)Again, the symmetry between f and g is even more manifest in the Lapla
e-transformedexpression (3.120).Here is a simple example of the use of the 
onvolution theorem in solving a di�erentialequation. Like our previous example, we'll take the simple-harmoni
 equation, but this timewith a sour
e term: f 00(x) + f(x) = g(x) : (3.122)For simpli
ity, suppose that f(0) = f 0(0) = 0 here. Thus from (3.105) and (3.106), we �ndthat the Lapla
e transform of the equation isp2 FL(p) + FL(p) = GL(p) ; (3.123)where GL(p) is the Lapla
e transform of the sour
e term g(x). Solving for FL(p) we getFL(p) = GL(p) 1p2 + 1 : (3.124)Sin
e we 
an re
ognise the fa
tor 1=(p2 +1) as the Lapla
e transform of sinx (see (3.110)),we 
an invoke the 
onvolution theorem to give usf(x) = Z x0 g(x� y) sin y dy : (3.125)This result is, of 
ourse, easily derivable by other methods too, but again it serves toillustrate a method that has rather general appli
ability.3.4 The Gibbs PhenomenonIn our proof of Fourier's theorem earlier, we invoked the easily-proven results for the dis
reteanalogue of the Fourier transform, namely the Fourier series. We remarked at that time thatthere was an interesting subtlety in the Fourier expansion, known as the Gibbs Phenomenon.Although it is slightly o� the mainstream of our present dis
ussion, it is perhaps interestingto look at it here, sin
e it may not 
ome up again later.The Gibbs phenomenon is seen when one 
onsiders the Fourier series expansion for afun
tion with a dis
ontinuity. This happens quite often in a Fourier series, sin
e it des
ribesa periodi
 fun
tion whi
h 
an, for example, have a sudden \jump" when the end of the period83



is rea
hed. Let us 
onsider a 
on
rete example, of a square-wave with period 2�, whi
h 
antherefore be expanded in terms of the 
omplex exponential fun
tions einx, asf(x) = 1Xn=�1an einx : (3.126)Let us take f(x) to be f(x) = ( +1 0 < x < ��1 � < x < 2� : (3.127)As in (3.49), the Fourier 
oeÆ
ients will then be given byan = 12� Z 2�0 dy e�iny f(y)= 12� Z �0 dy e�in y � Z 2�� dy e�iny= 1i� n �1� (�1)n)� ; (3.128)and they are non-zero only when n is odd. Noting that in the sum (3.126) we 
an thenrepla
e n by �n as the summation variable when n is negative, we 
on
lude that thesquare-wave (3.127) has the Fourier series expansionf(x) = 4� 1Xr=0 1(2r + 1) sin[(2r + 1)x℄ = 4� � sinx+ 13 sin 3x+ 15 sin 5x+ � � � � : (3.129)Obviously the terms are getting smaller in magnitude as r in
reases, and so we 
anexpe
t that if we 
onsider a partial sum from r = 0 only as far as r = M , we should geta better and better approximation to the square wave as M in
reases. And essentially,this expe
tation is 
orre
t, ex
ept that there is one small subtlety that one might not haveforeseen. This 
an be best illustrated �rst by looking at a few plots of the partial sums in(3.129) where only the �rst few terms are inl
uded. Below, in Figures 12-16, we give theplots for the �rst term alone (a sine wave); the �rst two terms; the �rst three; the �rst ten,and �nally the �rst twenty.
As 
an be seen from the various plots, it is indeed broadly-speaking true that as wein
lude more and more terms in the sum, we get a 
loser and 
loser approximation to thesquare wave (3.127). However, it also be
omes apparent that no matter how many terms wein
lude, there always seems to be an \overshoot" every time there is a dis
ontinuity in the84



2 4 6 8

-1

-0.5

0.5

1

Figure 12: The �rst term in the Fourier series for the square wave
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Figure 13: The �rst 2 terms in the Fourier series for the square wavesquare-wave. As we in
lude more terms in the sum, the width of the overshoot gets less, butits height seems to be staying roughly the same. This overshoot is the Gibbs phenomenon.We 
an show relatively easily that it will always be there, no matter how many terms wein
lude in the sum. And indeed, it always leads to something like an 18% overshoot of thetrue value of the fun
tion, at the dis
ontinuity. A
tually, we should remark that there ismore than just a single overshoot; as 
an be seen rather 
learly in Figure 16 there is a sortof \ringing" phenomenon whi
h o

urs after the overshoot, whi
h takes a while to settledown.To study the Gibbs phenomenon, we go ba
k to the se
ond line in (3.128), and leavingthe integrals unevaluated, substitute the expressions for the 
oeÆ
ients an ba
k into (3.126).However, we shall now restri
t the summation to run only over the �nite range�N � n � N .85
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Figure 14: The �rst 3 terms in the Fourier series for the square wave
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Figure 15: The �rst 10 terms in the Fourier series for the square waveAt the same time inter
hanging the orders of the integration and the summation, this givesSN (x) = 12� Z �0 dy NXn=�N ein (x�y) � 12� Z 2�� dy NXn=�N ein (x�y) : (3.130)We 
an expli
itly evaluate the sum here, sin
e it is just a geometri
al series:NXn=�N ein (x�y) = e�N (x�y) 2NXn=0 ein (x�y) = e�N (x�y) "1� ei (2N+1) (x�y)1� ei (x�y) # ;= sin[(N + 12 )(x� y)sin[12(x� y)℄ : (3.131)Plugging (3.131) into (3.130), and 
hanging integration variable from y to � = y � x inthe �rst integral, and � = 2� � (y � x) in the se
ond, we getSN (x) = 12� Z ��x�x d� sin(N + 12 )�sin 12� � 12� Z �+xx d� sin(N + 12 )�sin 12� : (3.132)86
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Figure 16: The �rst 20 terms in the Fourier series for the square waveJuggling the integration limits around, by usingZ ��x�x � Z �+xx = Z ��x
 � Z �x
 � Z �+x
 + Z x
 = Z x�x� Z �+x��x ; (3.133)this 
an be rewritten asSN (x) = 12� Z x�x d� sin(N + 12 )�sin 12� � 12� Z �+x��x d� sin(N + 12 )�sin 12� : (3.134)Now let u = (N + 12 ) �, leading toSN (x) = 1� Z (N+ 12 )x�(N+ 12 )x du sinu(2N + 1) sin[u=(2N + 1)℄� 1� Z (N+ 12 )(�+x)(N+ 12 )(��x) du sinu(2N + 1) sin[u=(2N + 1)℄ : (3.135)Suppose now that we look in the region 0 < x < �, with x signi�
antly smaller than �.The �rst integral in (3.135) will be mu
h larger than the se
ond one, when N is large. Tosee this, note that the argument of the sine fun
tion in the denominator of the integrand,u=(2N + 1) is ranging over the values�12 x � u=(2N + 1) � 12 x (3.136)in the �rst integral, while in the se
ond integral it is ranging over the values12 (� � x) � u=(2N + 1) � 12 (� + x) : (3.137)Thus the denominator of the integrand never goes to zero in the se
ond integral, and thisintegral tends to zero as N tends to in�nity. On the other hand, the denominator of the87



integrand does go to zero within the integration range in the �rst integral. At large N , thisgives, to a good approximationSN (x) � 1� Z 1�1 du sinuu ; for 0 < x < � ; (3.138)when N gets very large. The integral here is a standard one (we evaluated it in Part I ofthe 
ourse, using Cau
hy's prin
ipal-value integral, for example), implying thatSN (x) � 1 ; for 0 < x < � ; (3.139)exa
tly as we would hope.In the above, we assumed that x was greater than zero, but less than �, and that it isheld �xed as N was sent to in�nity. We showed that SN (x) then 
onverges to 1 as N issent to in�nity. Suppose instead we now arrange to sit on the peak of the Gibbs overshoot,and see what happens there as N is sent to in�nity. This peak will o

ur when S0N (x) hasits �rst zero as x in
reases from 0, and 
learly it will be at a very small value of x whenN is large. Let it o

ur at x = Æ. Again the se
ond integral in (3.135) will be negligible
ompared with the �rst when N gets large, and so for small positive x we know that SN (x)is given approximately by SN (x) � 1� Z (N+ 12 )x�(N+ 12 ) x du sinuu ; (3.140)sin
e the argument u=(N + 12 ) in the sine fun
tion in the denominator is so small that we
an approximate sin[u=(N + 12 )℄ by u=(N + 12). This integral is expressible in terms of theSine Integral Si(x) � Z x0 du sinuu : (3.141)First, however, we need to di�erentiate (3.140) with respe
t to x, to �nd the �rst zero ofS0N (x) as x in
reases from 0. This is easy, sin
e it just givesS0N (x) � 2� x sin[(N + 12 )x℄ : (3.142)The �rst zero therefore o

urs at x = Æ = 2�2N + 1 : (3.143)Plugging into the expression (3.140 for SN (x), we �nd thatlimN!1SN (�=(2N + 1)) = 1� Z ��� du sinuu = 2� Si(�) = 1:1798 : : : : (3.144)88



Thus we see that the �rst peak ex
eeds the true value f(x) = 1 by about 18%, even as N issent to in�nity.15 As 
an be seen from (3.143), the width of the overshoot spike gets smallerand smaller as N in
reases, be
oming vanishingly small in the limit.It may be re
alled, for example from Part I of the 
ourse, that the expressions in thetop line of (3.128) for the Fourier expansion 
oeÆ
ients an 
an be shown to optimise thea

ura
y of the expansion for the fun
tion f(x). Furthermore, these expressions for thean are optimal not only for the entire in�nite series expansion, but also if one takes onlya partial sum, as we have been doing. How does this square up with what we have beenseeing with the Gibbs phenomenon? After all, 18% is a pretty serious error! The resolution,of 
ourse, is that as we have seen, the width of the overshoot-spike gets less and less as thenumber of terms in
luded in the partial sum is in
reased. And when one says that the
hoi
e (3.128) for the an 
oeÆ
ients in the Fourier series is the one that gives the \best �t"to the fun
tion f(x), it should be re
alled that the measure of su

ess here is de�ned to bea least-squares average. Namely, the 
hoi
e for the 
oeÆ
ients an in (3.128) minimises thequantity QN � Z 2�0 ������f(x)� NXn=�N an einx������2 dx ; (3.146)making it vanish in the limit where N goes to in�nity. It is evident that the overshoot-spikesasso
iated with the Gibbs phenomenon will give no 
ontribution in the limit when N goesto in�nity, sin
e their height is �nite (about 9% of the dis
ontinuity; in our example thefun
tion jumps from �1 to +1 at x = 0), while their width goes to zero.We 
an also examine the details of the \ringing" that is 
learly visible in Figure 16, bylooking at the values of the fun
tion SN (x) at its �rst few extrema. As before, the lo
ationsof these points are easily determined from the expression (3.142) for S0N (x). Thus the m'thzero of S0N (x) is at x = Æm = 2�m2N + 1 : (3.147)15Note that Morse and Feshba
h spoil an otherwise ni
e derivation of this result (at least in the editionI have) by mis
al
ulating the lo
ation of the peak in the �nal stage of the 
omputation. They obtain theexpression (3.144) with limits ��=2 in the integral, and then make the false 
laim that1� Z �=2��=2 du sinuu = 1:1798 : : : (3.145)although the a
tual value of their integral is 0:8726 : : :. Their mis-identi�
ation of the lo
ation of the peakhas a
tually set them at a point where SN (x) is smaller than 1. Even Homer nods, o

asionally!
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In the limit when N be
omes large, the value of SN (Æm) is then given byS(Æm) = 1� Z m��m� du sinuu : (3.148)Taking m = 1 gives us ba
k the results (3.144) for the value at the �rst peak. As we takem = 3; 5; 7; : : : we will get the values at the later peaks, while taking m = 2; 4; 6; : : : willgive the values at the su

essive troughs in between the peaks. The results for the �rst fewpeaks and troughs are given below:m = 1 3 5 7 9S(Æm) = 1.17898 1.06619 1.04021 1.02883 1.02246The values of the �rst �ve peaksm = 2 4 6 8 10S(Æm) = 0.90282 0.94994 0.96641 0.97475 0.97978The values of the �rst �ve troughsFinally, we may remark that although we fo
ussed on the example of a square-wavefun
tion expressed as a Fourier series, the Gibbs phenomenon is a very general one. Anytime that one makes a series expansion of a fun
tion with dis
ontinuities, as a sum oversome 
omplete set of eigenfun
tions of a Sturm-Liouville operator, the same phenomenonof overshoot-spikes and ringing will o

ur.4 Integral Equations4.1 Introdu
tionThe idea of formulating physi
al laws in terms of di�erential equations is a very familiarand fundamental one. Indeed, all the fundamental laws of physi
s fall into this 
ategory;for example the Maxwell equations, the Einstein equations of general relativity, and theequations governing the fundamental parti
le intera
tions of the strong and weak intera
-tions. There are times, however, when it turns out that a system 
an be more 
onvenientlydes
ribed in terms of integral equations, and in some 
ases where one is dealing with an ef-fe
tive ma
ros
opi
 theory rather than a fundamental one, a des
ription in terms of integalequations be
omes a ne
essity. 90



Let us begin by introdu
ing the most 
ommon types of integral equation that one en-
ounters. We shall dis
uss four types, whi
h are as follows:Fredholm Equation of the First Kind:f(x) = Z ba K(x; t)�(t) dt ; (4.1)Fredholm Equation of the Se
ond Kind:�(x) = f(x) + � Z ba K(x; t)�(t) dt ; (4.2)Volterra Equation of the First Kind:f(x) = Z xa K(x; t)�(t) dt ; (4.3)Volterra Equation of the Se
ond Kind:�(x) = f(x) + � Z xa K(x; t)�(t) dt ; (4.4)In all four 
ases, �(t) is the unknown fun
tion that must be solved for. The kernelK(x; t) is given, as is the fun
tion f(x) in the two equations of the se
ond kind. If thefun
tion f(x) is zero, the equation is said to be homogeneous, sin
e it then s
ales uniformlyunder a 
onstant s
aling of �(t). The quantity � the integral equations of the se
ond kindis a 
onstant.First, let's establish a mnemoni
 for remembering whi
h equation is whi
h. The di�er-en
e between the Fredholm and the Volterra equations is that the Fredholm equations haveFixed limits of integration, while the Volterra equations have Variable limits of integration.Integral equations of the Se
ond kind have a Se
ond term as well as the integral, while theequations of the First kind have Fewer terms. So that is easy!91



Noti
e that the Fredholm equation of the �rst kind looks very like the sort of equation wehave en
ountered already in our dis
ussion of integral transforms. Essentially, the equation
an be viewed as taking the transform of �(t) using the kernel K(x; t). In order to solve for�(t), we therefore need to �nd the inverse transform. This would be very easy, for example,if the given kernel fun
tion was K(x; t) = eix t, sin
e then we would simply have to take theinverse Fourier transform of the given fun
tion f(x) in order to obtain our solution �(t).Another example of an integral equation that we have already en
ountered is theS
hr�odinger equation re-expressed in momentum spa
e, whi
h we obtained in equation(3.75): (E � k2)	(k) = 1p2� Z 1�1 V(k � ~k)	(~k) d~k ; (4.5)where V is the inverse Fourier transform of the potential V (x). This is a homogeneousFredholm equation of the se
ond kind. We already have a 
lue about how one might solveit, from the fa
t that we obtained it from an ordinary di�erential equation by taking aFourier transform.We 
an, however, imagine a more general situation in this quantum-me
hani
al example,for whi
h an integral equation beom
es unavoidable. Let us go ba
k to the original x-spa
eS
hr�odinger equation, �d2 (x)dx2 + V (x) (x) = E  (x) ; (4.6)and re-write it as d2 (x)dx2 +E  (x) = Z 1�1 V (x; x0) (x0) dx0 : (4.7)This be
omes identi
al to (4.6) if V (x; x0) is given byV (x; x0) = V (x) Æ(x � x0) : (4.8)When (4.8) holds the intera
tion is an ordinary lo
al one; the wavefun
tion at the point xsenses the potential at the same point x. More generally, one 
ould 
onsider situations withnon-lo
al intera
tions, in whi
h the wavefun
tion at x senses the e�e
ts from other positionstoo, and this is what is des
ribed by (4.7). Su
h intera
tions would not be desirable in atheory at the fundamental level (imagine the possible impli
ations for a
ausal faster-than-light transfer of information, for example!).16 However, they 
ould arise at some e�e
tivelevel. The non-lo
al equation (4.7) is an integro-di�erential equation, with  (x) appearingboth via its derivatives, and within an integral.16In any 
ase the S
hr�odinger equation itself is 
learly not \fundamental" sin
e it is not even relativisti
.92



One 
an Fourier-transform the non-lo
al equation (4.7), mu
h as we did earlier for theusual lo
al equation, to obtain(E � k2)	(k) = Z 1�1 V(k; ~k)	(~k) d~k ; (4.9)where V(k; ~k) = 12� Z 1�1 dx Z 1�1 dy V (x; y) e�i (k x�~k y) : (4.10)The previous lo
al 
ondition (4.8) 
an easily be seen to implyV(k; ~k) = 1p2� V(k � ~k) ; (4.11)and then (4.9) redu
es to the previous result (4.9). The general result (4.9) is itself of theform of a homogeneous Fredholm equation of the se
ond kind.In this example, on
e we have generalised to the non-lo
al intera
tion, it is most naturalto write the equation for  (x) in the form of an integro-di�erential equation, and indeedthere is really no way to write a pure di�erential equation. This is inevitable, in view ofthe non-lo
al nature of the intera
tion that is being des
ribed. We improve things, in somesense, by transforming to momentum spa
e, sin
e now the equation be
omes purely anintegral equation.In other examples one has a 
hoi
e as to whether to work with an equation in integralor di�erential form. One might think that in su
h 
ases it is better to sti
k with the morefamiliar di�erential form. There are, however, 
ertain advantages to having an equationexpressed in integral form, most notably assoi
ated with the issue of boundary 
onditions.In a di�erential equation one has to supply information about the boundary 
onditions assupplementary data. In an integral equation, on the other hand, the information about theboundary 
onditions is e�e
tively already en
oded in the equation itself. This 
an be useful,for example, if one is wanting to study the asymptoti
 properties of the solution, subje
t tospe
i�
 boundary 
onditions, in a 
ase where approximate methods must be used.An Integral Equation from a Di�erential Equation:The point about the boundary 
onditions 
an be illustrated by 
onstru
ting an example,somewhat arti�
ially. Consider the se
ond-order ordinary di�erential equationy00(x) + p(x) y0(x) + q(x) y(x) = g(x) ; (4.12)with spe
i�ed boundary 
onditionsy(a) = y0 ; y0(a) = y00 : (4.13)93



This 
an be turned into an integral equation by the following pro
edure. First, we integrate(4.12): y0(x) = � Z xa p(t) y0(t) dt� Z xa q(t) y(t) dt+ Z xa g(t) dt + y00 : (4.14)Noti
e that we have spe
i�ed the lower limit of the integration, and thus we have been ableto in
orporate the boundary 
ondition on y0(a) from (4.13). Now integrate the �rst termon the right-hand side by parts, to gety0(x) = �p(x) y(x) + Z xa �p0(t)� q(t)� y(t) dt+ Z xa g(t) dt + p(a) y0 + y00 : (4.15)Next, we integrate this equation again:y(x) = � Z xa p(t) y(t) dt + Z xa ds Z sa dt�p0(t)� q(t)� y(t) + Z xa ds Z sa dt g(t)+�p(a) y0 + y00� (x� a) + y0 : (4.16)At this stage we note that by integrating by parts, we 
an show that for any fun
tionf(t) we shall have17Z xa ds Z sa dt f(t) = � Z xa ds s f(s) + hs Z sa dt f(t)is=xs=a = Z xa dt (x� t) f(t) dt : (4.17)Using this, we 
an re-express (4.16) asy(x) = � Z xa dt p(t) y(t) + Z xa dt (x� t)�p0(t)� q(t)� y(t) + Z xa dt(x� t) g(t)+�p(a) y0 + y00� (x� a) + y0 : (4.18)Finally, we introdu
e fun
tions K(x; t) and f(x) de�ned as follows:K(x; t) � (x� t)�p0(t)� q(t)�� p(t) ;f(x) � Z xa dt (x� t) g(t) + �p(a) y0 + y00� (x� a) + y0 : (4.19)(Note that these are 
onstru
ted purely from the original quantities given in the di�erentialequation and the boundary 
onditions.) We 
an now write the equation (4.18) in the �nalform y(x) = f(x) + Z xa K(x; t) y(t) dt : (4.20)This 
an be re
ognised as a Volterra equation of the se
ond kind. Noti
e that all informationabout the boundary 
onditions is already en
oded in the formulation of the equation. For17If you look at this dis
ussion in Arfken, he makes a real dog's breakfast of it, by 
onfusing the dummyintegration variable s and the integration limit x. 94



example, if we set x = a in (4.20) we learn that y(a) = f(a), and from the de�nition off(x) in (4.19), this tells us that y(a) = y0.Consider a simple example, where p(x) = 0 and q(x) = 1, and g(x) = 0, so that theoriginal di�erential equation (4.12) is just the simple harmoni
 os
illator,y00(x) + y(x) = 0 : (4.21)Suppose also that we 
hoose our boundary 
onditions so that y0 = 0, y00 = 1. From (4.19)and (4.20) we therefore get the integral equationy(x) = x+ Z x0 (t� x) y(t) dt : (4.22)One 
an easily verify that this is satis�ed by y(x) = sinx. Of 
ourse this is not a \derivation"of the solution, more a veri�
ation that what we already know a
tually works. We shalldis
uss later how one goes about solving su
h equations.An Example with Two End-point Boundary Conditions:The derivation above was tailored spe
i�
ally to the 
ase where the boundary 
onditionswere as stated in (4.13). Clearly we 
ould adjust the derivation slightly to a

omodatedi�erent types of boundary 
ondition. Sin
e our prin
iple obje
tive at this stage is notsimply to turn familar di�erential equations into unfamiliar integral equations, we shallnot pursue this point in great detail here. Let us take one spe
i�
 example, with di�erentboundary 
onditions, in order to illustrate the point. Consider again the harmoni
 os
illatorequation (4.21), but now with the boundary 
onditionsy(0) = 0 ; y(a) = 0 : (4.23)Integrating (4.21) on
e gives y0(x) = � Z x0 y(t) dt+ y0(0) : (4.24)We don't know yet what to substitute for y0(0), sin
e this is not one of the given boundary
onditions any more. So we pro
eed by integrating again, to gety(x) = � Z x0 (x� t) y(t) dt+ y0(0)x ; (4.25)after using (4.17). Now we 
an set x = a, and thereby obtain an expression for y0(0):y0(0) = y(0)a + 1a Z a0 (a� t) y(t) dt ; (4.26)95



whi
h 
an be plugged ba
k into (4.25) to givey(x) = � Z x0 (x� t) y(t) dt + xa Z a0 (a� t) y(t) dt : (4.27)Using the identity that �(x� t) = t (a� x)=a� x (a� t)=a, we therefore gety(x) = Z a0 ta (a� x) y(t) dt+ Z ax xa (a� t) dt : (4.28)Now de�ne the kernel K(x; t) byK(x; t) = 8>><>>: ta (a� x) ; t < xxa (a� t) ; x < t ; (4.29)in terms of whi
h (4.28) 
an be written asy(x) = Z a0 K(x; t) y(t) dt : (4.30)This is a homogeneous Fredholm equation of the se
ond kind. The kernel K(x; t) hereis in fa
t the Green fun
tion for the equation (4.21), subje
t to the boundary 
onditionsy(0) = y(a) = 0. It is symmetri
 in x and t. If plotted as a fun
tion of t, it 
onsists of astraight-line segment starting at the origin, and in
reasing with positive gradient 1 � x=auntil the point t = x is rea
hed. For t > x it is a straight-line segment with negativegradient �x=a, whi
h rea
hes the t axis at t = a. The kernel is 
ontinuous at t = x, butwith a dis
ontinuity of �1 in its gradient there.Solutions Using Fourier and Lapla
e Transforms:We have already remarked that if one were presented with the following Fredholm equa-tion of the �rst kind, f(x) = Z 1�1 eix t �(t) dt ; (4.31)then solving for �(t) would be easy, sin
e we just re
ognise this as a Fourier transform.Thus we 
an invoke Fourier's theorem and immediately write down the solution, namely�(t) = 12� Z 1�1 e�ix t f(x) dx : (4.32)Of 
ourse when we say that we have solved the equation here, what we mean is that wehave \redu
ed it to quadratures." Whether or not an expli
it 
losed-form solution 
an bepresented depends on whether the given fun
tion f(x) allows us to perform the integralexpli
itly. 96



Similarly, there are other Fredholm equations of the �rst kind that 
ould be re
ognisedas Lapla
e transforms, or 
ertain other related transforms su
h as the Mellin or Hankeltransforms. In all su
h 
ases, a pro
edure for solving the equation by inverting the trans-formation exists.There are somewhat more general types of integral equation that 
an also be solvedby Fourier transform te
hniques, or by analogous pro
edures related to the other 
lassi�edintegral transforms. Suppose we have the following Fredholm equation of the �rst kind:f(x) = Z 1�1 k(x� t)�(t) dt ; (4.33)where k(x � t) is the given kernel, and we wish to solve for �(t). Note that the kernel israther spe
ial here, being a fun
tion of just the single variable 
ombination (x� t). We 
anre
ognise (4.33) as being nothing but a 
onvolution integral of the fun
tions k and �. Aswe saw in our dis
ussion of Fourier transforms, the Fourier transform of the 
onvolution oftwo fun
tions is proportional to the produ
t of the Fourier transforms of the two 
onvolvedfun
tions. The pre
ise statements, with all 2� fa
tors, are given in (3.63) and (3.64).Comparing with (4.33), we see that the solution to (4.33) will be given by�(x) = 12� Z 1�1 e�ix t F (t)K(t) dt ; (4.34)where F (t) and K(t) are the Fourier transforms of f(x) and k(x):F (t) = 1p2� Z 1�1 eix t f(x) dx ; K(t) = 1p2� Z 1�1 eix t k(x) dx : (4.35)So provided that the ne
essary integrals 
an be evaluated, the solution for �(x) 
an beobtained.It is 
lear that a straightforward extension of this pro
edure allows us to solve theFredholm equation of the se
ond kind, again in the spe
ial 
ase where the kernel is k(x� t),and where the limits of the integration are �1. Fourier transforming the integral equation�(x) = f(x) + � Z 1�1 k(x� t)�(t) dt (4.36)and using the 
onvolution theorem gives�(t) = F (t) + �p2�K(t)�(t) ; (4.37)whi
h 
an be solved for �(t) to give:�(t) = F (t)1� �p2�K(t) : (4.38)97



Finally, we take the inverse Fourier transform to get the solution as�(x) = 1p2� Z 1�1 F (t)1� �p2�K(t) e�ix t dt : (4.39)A similar te
hnique 
an be used to solve the Volterra equation of the se
ond kind, in thespe
ial 
ase where the kernel is of the form k(x� t), and the lower limit of the integrationis 0: �(x) = f(x) + � Z x0 k(x� t)�(t) dt (4.40)The integral here 
an be re
ognised as the 
onvolution integral (3.118) of the Lapla
etransform. Thus using (3.120) we now 
on
lude that the solution for �(x) is�(x) = 12� i Z 
+i1
�i1 F (s)1� �K(s) ex s ds ; (4.41)where F (s) and K(s) are the Lapla
e transforms of f(x) and k(x). The integral in (4.41) isthe Bromwi
h integral for the inverse Lapla
e transform, whi
h we dis
ussed in se
tion 3.3.Re
all that the real 
onstant 
 should be 
hosen so that the verti
al 
ontour of integrationlies to the right of any singularities of the integrand. The solution for the Volterra equationof the �rst kind is easily derivable by this method too. Or, one 
an obtain it from (4.41)by noting from the original Volterra equations (4.3) and (4.4) that if we repla
e f(x) by�� f(x) in (4.4), and then send � �! 1, we obtain (4.3). Thus the solution to the Volterraequation of the �rst kind, for the kernel k(x� t), will be�(x) = 12� i Z 
+i1
�i1 F (s)K(s) ex s ds ; (4.42)4.2 Degenerate KernelsOne might think from this title that we were about to stray o� the topi
 of integral equationsand undertake an investigation of improper goings-on in the OÆ
ers' Mess, but a
tuallythis will be a perfe
tly respe
table analysis of a rather general te
hnique for solving integralequations with a parti
ular type of kernel fun
tion K(x; t). In fa
t a less sensational-sounding and more des
riptive terminology is Separable Kernels.The idea is the following. Suppose the kernel fun
tion K(x; t) in an integral equation isseparable, in the sense that it 
an be written as a �nite sum of N fa
torised terms:K(x; t) = NXj=1Mj(x)Nj(t) : (4.43)A kernel K(x; t) that was of the form of any polynomial in x and t would thus be of thisdegenerate type. So also would the kernel 
os(x� t), sin
e
os(x� t) = 
osx 
os t+ sinx sin t : (4.44)98



Suppose we wish to solve a Fredholm equation of the se
ond kind, for a degeneratekernel of the form (4.43). Substituting into (4.2) we obtain�(x) = f(x) + � NXj=1 Mj(x) Z ba dtNj(t)�(t) : (4.45)The integrals appearing here are just 
onstants, say
j = Z ba dtNj(t)�(t) ; (4.46)and if we knew what they were we would have the solution for �(x), sin
e (4.45) gives�(x) = f(x) + � NXj=1 
jMj(x) : (4.47)Of 
ourse we dont yet know what the 
onstants 
i are, sin
e they are given by the integrals(4.46) whi
h themselves involve the unknown fun
tion �(x). However, if we multiply (4.47)by Ni(x) and integrate, we get 
i = bi + � NXj=1 Aij 
j ; (4.48)where we have also de�ned 
onstants bi and Aij bybi = Z ba dxNi(x) f(x) ;Aij = Z ba dxNi(x)Mj(x) : (4.49)Now, sin
e the 
onstants bi and Aij are simply 
al
ulated as integrals of given fun
tions, itfollows that we 
an view (4.48) as a system of N simultaneous equations for the N unknowns
i. In matrix notation, these equations are~
 = ~b+ �A~
 ; (4.50)or in other words (1l� �A)~
 = ~b : (4.51)This 
an be solved for ~
 by inverting the matrix, to give~
 = (1l� �A)�1~b ; (4.52)and so the problem is solved.If the Fredholm equation is homogeneous, meaning f(x) = 0 and hen
e ~b = 0, then(4.51) be
omes (1l� �A)~
 = 0 ; (4.53)99



whi
h does not in general admit any non-zero solution for ~
. The only way it 
an admit asolution is if the determinant of (1l� �A) should happen to vanish. This is be
ause havinga solution of (4.53) would imply that ~
 was an eigenve
tor of (1l��A) with zero eigenvalue.But the determinant of a matrix is equal to the produ
t of its eigenvalues, and hen
e a zeroeigenvalue means a zero determinant. Thus for a homogeneous Fredholm equation with adegenerate kernel to have a non-zero solution, it would have to be thatdet(1l� �A) = 0 : (4.54)This is a standard eigenvalue equation, giving an N 'th-order polynomial equation for theeigenvalues 1=� of the matrix A.Let us 
onsider an example. Suppose we wish to solve the homogeneous Fredholmequation �(x) = � Z 1�1(x+ t)�(t) dt : (4.55)The kernel is degenerate, withM1(x) = 1 ; M2(x) = x ; N1(t) = t ; N2(t) = 1 : (4.56)Simple integration gives A11 = A22 = 0, A12 = 2=3 and A21 = 2, or in other wordsA =  0 232 0 ! : (4.57)The 
ondition (4.54) for the vanishing of the determinant then implies����� 1 �23��2� 1 ����� = 0 : (4.58)One easily �nds that this gives 1� 4�2=3 = 0, with solutions �1 = p3=2 and �2 = �p3=2,with the 
orresponding eigenve
tors~
1 = �1  1p3! ; ~
2 = �2  1�p3! ; (4.59)where �1 and �2 are arbitrary 
onstants. (One 
annot expe
t these to be determinedwhen solving a homogeneous equation.) Plugging these results ba
k into (4.47), we get thesolutions � = p32 : �(x) = 12p3�1 (1 +p3x) ;� = �p32 : �(x) = �12p3�2 (1�p3x) : (4.60)100



4.3 Neumann Series Solution of Integral EquationsAnother method that 
an sometimes be useful for solving integral equations is the Neu-mann series expansion method. This 
an, in parti
ular, be useful as a way of getting anapproximate solution, up to the �rst few orders in an expansion parameter. The idea 
anbe illustrated by 
onsidering an inhomogeneous Fredholm equation of the se
ond kind:�(x) = f(x) + � Z ba dtK(x; t)�(t) : (4.61)The simplest way to des
ribe the idea of the method is as follows. Let us suppose that� 
an be thought of as a \small parameter." We may therefore say that as a leading-order approximation, the integral equation (4.61) is simply �(x) � f(x). Let us write thisleading-order result as �0 = f(x) : (4.62)Sin
e � is assumed small, we 
an then make a next-order approximation in whi
h we use �0in pla
e of � in the integral in (4.61), and get the next approximation to the true solution:�1(x) = f(x) + � Z ba dtK(x; t)�0(t) : (4.63)Sin
e already have our expression for �0 as the known fun
tion f(x), this means thateverything on the right-hand-side of (4.63) is in prin
iple 
al
ulable. The pro
ess 
an thenbe repeated again and again, and at ea
h stage one uses the just-obtained approximation�n in the integral in (4.61) in order to get the next approximation �n+1:�n+1(x) = f(x) + Z ba dtK(x; t)�n(t) : (4.64)It is helpful to express this in a slightly di�erent way, as follows. Viewing � as aparameter for keeping tra
k of the order in the expansion, we may write�n(x) = nXk=0�k uk(x) : (4.65)Substituting this into the original integral equation (4.61), and then equating order-by-orderin � we 
learly obtainu0(x) = f(x) ;u1(x) = Z ba dt1K(x; t1) f(t1) ;u2(x) = Z ba dt2 Z ba dt1K(x; t1)K(t1; t2) f(t2) ;� � � (4.66)un(x) = Z ba dtn Z ba dtn�1 � � � Z ba dt1K(x; t1)K(t1; t2) � � �K(tn�1; tn) f(tn) :101



If we are lu
ky, the pro
edure des
ribed above will be a 
onvergent one, and the solutionto the original integral equation (4.61) will be given by�(x) = limn!1�n(x) = 1Xk=0�k uk(x) : (4.67)Of 
ourse in pra
ti
e it might be that expli
tly performing the integrals (4.66) might gettoo diÆ
ult to do on
e n gets very big, and so we might well just stop after a few termsand view that as an approximate solution to the problem. But still, we should like to knowthat the series would in prin
iple be 
onvergent.Testing for 
onvergen
e is, of 
ourse, not going to be easy if we 
an't evaluate theintegrals, but we 
an a
hieve something, at least, by making the traditional sort of \worst-
ase" estimates. Thus we may observe from (4.66) that we shall havej�n un(x)j � j�nj jf jmax jKjnmax jb� ajn : (4.68)Here, jf jmax means the maximum value of jf(x)j in the interval a � x � b, and jKjmaxmeans the maximum value of jK(x; t)j that it a
hieves anywhere in the ranges taken by xand t. By Cau
hy's ratio test we 
an 
ertainly therefore be sure of 
onvergen
e ifj�j jKjmax jb� aj < 1 : (4.69)One 
an view this as a 
ondition on the smallness of the parameter � that is needed for
onvergen
e. Of 
ourse if this 
ondition is not satis�ed it may still be that the series is
onvergent, sin
e we made some pretty drasti
 worst-
ase assumptions in getting to (4.68).Let us look at an example. Consider the following inhomogeneous Fredholm equationof the se
ond kind: �(x) = x+ � Z 1�1 dt (t� x)�(t) : (4.70)For the leading approximation we have �0(x) = x, and plugging this into the integral in(4.70) we then get �1(x) = x+ � Z 1�1 dt (t� x) t = x+ 23 � : (4.71)Using this to 
al
ulate �2(x), and then this for �3(x) gives�2(x) = 23�+ (1� 43�2)x ;�3(x) = 23� (1� 43�2) + (1� 43�2)x : (4.72)Clearly we only ever generate x to the powers 0 and 1 in ea
h iteration, so we 
an usefullysimply the dis
ussion by making the de�nition�n(x) = an + bn x ; (4.73)102



where an and bn are 
onstants. Substituting this into�n(x) = x+ � Z 1�1 dt (t� x)�n�1(t) ; (4.74)we easily get an = 23� bn�1 ; bn = 1� 2�an : (4.75)From this we 
an see thatan = 23� (1� 2�an�2) ; bn = 1� 43 �2 bn�2 : (4.76)It is a
tually ni
er at this point to de�ne a new eigenvalue � instead of �, related by� = p32 � ; (4.77)so that we have an = �p3 � �2 an�2 ; bn = 1� �2 bn�2 : (4.78)It is then easy to show by indu
tion thata2p = a2p�1 = 1p3 �1� �2 + �4 � �6 + � � � � (�1)p �2(p�1)� ; p � 1 ;b2p�2 = b2p�1 = 1� �2 + �4 � �6 + � � � � (�1)p �2(p�1) ; p � 1 ; (4.79)with a0 = 0. The �rst few examples area0 = 0 ; a1 = a2 = �p3 ; a3 = a4 = �p3(1� �2) ; a5 = a6 = �p3(1� �2 + �4) ;b0 = b1 = 1 ; b2 = b3 = 1� �2 ; b4 = b5 = 1� �2 + �4 ; (4.80)and so on.The �nal solution �(x) to our equation (4.70) is obtained by taking the limit where ngoes to in�nity, so that �(x) = a+ b x wherea = limn!1an = �p3 1Xm=0(�1)m �2m ; b = limn!1 bn = 1Xm=0(�1)m �2m : (4.81)Clearly these sums 
onverge if �2 < 1, and they diverge if �2 > 1, so in this 
ase theNeumann series solution is 
onvergent forj�j < p32 : (4.82)A
tually, we 
an do rather better here, sin
e the in�nite series in (4.81) is geometri
,and therefore expli
itly summable:1Xm=0(�1)m �2m = 11 + �2 : (4.83)103



This gives us the �nal solution�(x) = �p3 (1 + �2) + x1 + �2 : (4.84)After rewriting in terms of � again, this is�(x) = 2�3 + 4�2 + 3x3 + 4�2 : (4.85)In fa
t we have been lu
ky here, sin
e now as a result of summing the in�nite series, wehave a
hieved an analyti
 
ontinuation of the Neumann series solution, whi
h is now validfor all � ex
ept � = �i. It is easy to verify, by dire
t substitution, that (4.85) solves18 theoriginal integral equation (4.70) for all values of �.The same general idea of solving by the Neumann series methods 
an also be appliedto integral equations the Volterra type. To illustrate this, let us take an integral equationthat looks very like our previous example (4.70), ex
ept that now we take the integrationlimit to involve x: �(x) = x+ � Z x0 dt (t� x)�(t) : (4.87)Again, we think of � as an order parameter, and thus we have the leading-order solution �0 =x. Substituting this into the integral on the right-hand side gives us the next approximation�1(x) = x+ � Z x0 dt (t� x) t = x� � x36 : (4.88)Substituting this again, we get�2(x) = x+ � Z x0 dt (t� x)�t� � t36 � = x� � x36 + �2 x5120 : (4.89)One further step yields �3(x) = x� � x36 + �2 x5120 � �3 x75040 : (4.90)It is pretty 
lear where this is leading:�n(x) = ��1=2 nXr=0(�1)r (�1=2 x)2r+1(2r + 1)! : (4.91)18A
tually, of 
ourse, we 
ould have solved this even more simply without ever using a series solution. Atthe stage where we observed that �n(x) was of the form (4.73) we 
ould have seen that this would 
ontinueto be true in the limit where n tends to in�nity. Thus we 
ould simply have substituted the trial solution�(x) = a+ b x into (4.70), and solved the two algebrai
 equations result from separately equating the termsof orde 0 and 1 in x, namely a = 23� b ; b = 1� 2� a : (4.86)This dire
tly gives the same result as (4.85). Bear in mind, therefore, that (4.70) is really a rather trivialtoy example that we are 
onsidering just to illustrate a few of the general methods that have been dis
ussed.104



In the limit as n tends to in�nity we get the 
omplete solution�(x) = limn!1�n(x) = ��1=2 1Xr=0(�1)r (�1=2 x)2r+1(2r + 1)!= ��1=2 sin(�1=2 x) : (4.92)We 
ould, of 
ourse, quite easily set up an iterative s
heme to derive this rigorously,rather than simply observing the trend from the �rst few terms in the series. If we did so,there would be no surprises or subtleties, and we would rather qui
kly get the result in adedu
tive way. Alternatively, we 
an just substitute (4.92) ba
k into the integral equation(4.87), and verify that it is indeed a solution. Sin
e it is obvious from the Neumann seriesapproa
h that at ea
h stage in the iteration we get a spe
i�
 and unique result for �n, there
an only be one possible �nal answer and so if we �nd that our proposed solution indeedsolves the integral equation then we know that it is the unique answer.Noti
e, by the way, that (4.87) with � = 1 is pre
isely the integral equation that weprodu
ed a while ba
ki in (4.22), by integrating the simple harmoni
 os
illator equationy00 + y = 0, subje
t to the boundary 
onditions y(0) = 0 and y0(0) = 1. It is worthemphasising again that when we solved the integral equations (4.70) and (4.87) abovewe got unique answers in ea
h 
ase. This illustrates the point made earlier, about howthe boundary 
onditions are built into the integral equation. Noti
e also that these twoexamples show us that the solution is radi
ally di�erent for a Volterra equation, as 
omparedwith a Fredholm equation with a very similar stru
ture.5 Conformal Mappings5.1 Introdu
tionAt this stage in the 
ourse we revert to a topi
 that is 
on
erned dire
tly with 
omplexanalysis. Re
all that if we have an analyti
 fun
tionw(z) = u(x; y) + i v(x; y) ; (5.1)where z = x+i y is a 
omplex variable, then the real and imaginary parts u(x; y) and v(x; y)satisfy the Cau
hy-Riemann equations,�u�x = �v�y ; �v�x = ��u�y : (5.2)An equivalent, but more elegant, statement of the same thing is�w��z = 0 ; (5.3)105



where we are treating z = x+ i y and �z = x� i y as independent variables here19��z = 12 ��x + 12i ��y ; ���z = 12 ��x � 12i ��y : (5.5)Thus if w(z) is analyti
 in some region, then it depends only on z but not on �z in thatregion.We 
an view the fun
tion w(z) as a mapping from the 
omplex z-plane into the 
omplexw-plane. This mapping has some very important properties. The �rst of these is that itpreserves angles. To see what is mean by this, we need to 
onsider a pair of lines in thez-plane, whi
h interse
t ea
h other at some point, at a 
ertain angle. As we tra
e along thepath of one of these lines in the z-plane, we shall �nd that an image of this path is tra
edout in the w-plane. If we look at the images of the two interse
ting paths in the z-plane, weget two interse
ting paths in the w-plane. The statement about the preservation of anglesis that the angle between the interse
ting paths in the z-plane is equal to the angle betweenthe interse
ting paths in the w-plane.To show this, let us suppose that the two lines in the z-plane interse
t at z = a. Letus refer to these two lines as Path 1 and Path 2. Points on Path 1 near to z = a must
learly lie approximately on a straight line (any well-behaved path looks straight if a shortenough segment is examined), and so we 
an say that points on Path 1 near to z = a are
hara
terised by dz1 = jdz1j ei �1 ; (5.6)where �1 measures the angle that Path 1 makes with the real axis. Likewise, near to z = apoints on Path 2 will be su
h that dz2 = jdz1j ei �2 : (5.7)19One might feel uneasy about this, sin
e we know that �z is not independent of z! The best way to 
larifywhat is going on is to think initially of writing x� i y as ~z, and not yet to assume that x and y are real. Itis now 
lear that the equations z = x+i y, ~z = x� i y give a perfe
tly legitimate mapping from the 
omplexvariables (x; y) to the 
omplex variables (z; ~z), and so the equations��z = 12 ��x + 12i ��y ; ��~z = 12 ��x � 12i ��y : (5.4)make perfe
t sense. Then, at the end of the day in any 
al
ulation, we �nally repla
e ~z by �z (the 
omplex
onjugate of z), whi
h amounts to 
hoosing the \real se
tion" where x and y are real. Having been throughthis argument we 
an then see that in fa
t we 
an be impatient and not bother to wait untile the end ofthe day before setting ~z = �z; we 
an just use �z right from the beginning, and keep at the ba
k of our mindswhat it is that it really means. (If you weren't 
onfused about this point before reading this footnote, itwould probably have been better if you hadn't read it!)106



Tha angle between the two paths is 
learly �2 � �1.Now, we 
onsider the mapping into the 
omplex w-plane. We shall havedw = dwdz dz ; (5.8)Now a 
ru
ial property of the derivative dw=dz of an analyti
 fun
tion is that at a givenpoint z it is independent of the dire
tion of dz. (This is a standard result, whi
h was provedin Part 1 of the 
ourse.) Therefore if we write dw=dz = jdw=dzj ei � at z = a, we shall havedw = jdw=dzj ei � dz (5.9)at z = a, independent of the angle of dz. Thus the images of our two paths in the w-plane,whi
h interse
t at w(a), will be 
hara
terised at nearby points bydw1 = jdw=dzj jdz1 j ei (�+�1) ; dw2 = jdw=dzj jdz2 j ei (�+�2) : (5.10)Thus the angle between the two image paths in the w-plane is 
learly therefore (� + �2)�(�+ �1) = �2� �1. This is the same as the angle between the original paths in the z-plane,and so the result is established.Another important point is that not only the angles but also the shapes of in�nitesimal�gures in the z-plane are mapped into the same angles and shapes in the w-plane. Tounderstand this, we have to think about how to measure in�nitesimal separations in the
omplex plane. In the z-plane, Pythagoras' Theorem tells us that the distan
e ds betweento in�nitesimally separated points (x; y) and (x+ dx; y + dy) is given byds2 = dx2 + dy2 ; (5.11)whi
h 
an be written also as ds2 = dz d�z = jdzj2 : (5.12)The quantity ds2 is 
alled the metri
 on the 
omplex z-plane. Similarly, in the 
omplexw-plane we have a metri
 dŝ2, given bydŝ2 = du2 + dv2 = dw d �w = jdwj2 : (5.13)In view of the fa
t that dw = (dw=dz) dz, and that if w(z) is analyti
 at z then dw=dz hasan unambiguous meaning independent of the dire
tion of dz, we see that there is a simplerelation between the metri
s in the w-plane and the z-plane:dŝ2 = ���dwdz ���2 ds2 : (5.14)107



This equation in fa
t summarises all the properties of the mapping between the z-planeand the image in the w-plane. There is an overall s
ale fa
tor jdw=dzj, but aside fromthat, in�nitesimal distan
es all map over in the same way. So we have established thatan in�nitesimal �gure in the z-plane is mapped into a similar �gure in the w-plane, withall relative angles, and ratios of lengths, preserved. An in�nitesimal obje
t in the z-planemaps into one that looks exa
tly the same in the w-plane, up to some overall rotation ands
aling. This is what is meant by a 
onformal mapping, or 
onformal transformation.5.2 Two-dimensional Lapla
e EquationAn important appli
ation of 
onformal mappings is for solving Lapla
e's equation in twodimensions. Situations where this problem arises in
lude solving for ele
trostati
 potentialsin two dimensions, and solving hydrodynami
al equations in two dimensions. Of 
ourse su
hproblems might not only arise by 
onsidering two dimensions in its own right; they 
an alsoarise if one has a three-dimensional 
on�guration that has a translational invarian
e alongone axis (for example, and in�nite 
ylinder lying along the z-axis). It turns out that themethods of 
onformal mapping 
an be an extremely powerful tool.To understand this, 
onsider a potential  (x; y) that satis�es Lapla
e's equation in twodimensions: r2  � �2 �x2 + �2 �x2 = 0 : (5.15)Note that from (5.5) we have��x = ��z + ���z ; ��y = i � ��z � ���z� ; (5.16)and so we 
an also write the Lapla
ian asr2 � �2�x2 + �2�x2 = 4 �2�z ��z : (5.17)Now let us see what happens if we map into the 
omplex w-plane In the w-plane wemay 
onsider a fun
tion 	(u; v) whi
h is simply the image of the fun
tion  (x; y) in thez-plane: 	(u; v) = 	(u(x; y); v(x; y)) =  (x; y) : (5.18)What we shall now show is that if  (x; y) satis�es Lapla
e's equation in the z-plane, then	(u; v) satis�es Lapla
e's equation in the w-plane. To see this, we note that��z = �w�z ��w : (5.19)108



Noti
e that there is no term (� �w=�z) �=� �w here be
ause we are assuming that w(z) isanalyti
. By the same token, we shall have���z = � �w��z �� �w : (5.20)Furthermore, we also have �2�z ��z = ����w�z ���2 �2�w � �w : (5.21)The 
ru
ial point here is that for the same reason of analyti
ity of w(z), we don't pi
k upany \extra" term where the �=�z derivative lands on the (� �w=��z) fa
tor in (5.20). So wesee that the Lapla
ians r2 and r̂2 in the z-plane and w-plane respe
tively, whi
h are givenby r2 = 4 �2�z ��z ; r̂2 = 4 �2�w � �w ; (5.22)are related by r2 = ����w�z ���2 r̂2 : (5.23)In parti
ular, if  (x; y) satis�es r2  = 0 in the z-pane, then the 	(u; v), the image of (x; y) in the w-plane as in (5.18), satis�es r̂2	 = 0.The upshot of this dis
ussion is that we now have a ni
e way of solving two-dimensionalpotential-theory problems at our disposal. Namely, if we 
an solve Lapla
e's equationsubje
t to 
ertain boundary 
onditions in one parti
ular \
onformal frame," (say the z-plane), then we immediately know that after making a 
onformal mapping to the w(z)plane, the same potential will be a solution of Lapla
e's equation in the w-plane. Clearlythe original boundary 
onditions on  (x; y) will map over into \image" boundary 
onditionson 	(u; v) =  (x; y). For example, if  (x; y) vanishes on a 
ertain 
urve in the z-plane,then 	(u; v) will vanish on the image 
urve in the w-plane. Of 
ourse the idea is that we
hoose our 
onformal mapping judi
iously, to transform a diÆ
ult problem into an easierone.Let us 
onsider an example. Suppose we wish to solve for the two-dimensional ele
tro-stati
 potential for the following situation. There is a 
ondu
tor lying along the entire yaxis, at x = 0, and 
ir
ular 
ondu
tor of radius R, 
entred on (x; y) = (d; 0). The in�niteline is held at zero potential, and the 
ir
le is held potential  0. The problem is to �ndthe potential everywhere in the region x � 0, outside the 
ir
ular 
ondu
tor, by using the
onformal mapping te
hnique.The whole art of solving problems like this is to spot the right 
onformal transformationthat maps the original problem into a simpler one. In this 
ase, fortunately, an artist has109



been here before us, and so we are invited to 
ontemplate the following transformation:z = a tanh iw2 ; (5.24)where a is a 
onstant. Of 
ourse it would a
tually be the inverse of this transformationthat gave us w as a fun
tion of z. Writing w = u + i v, some simple t(h)rigonometri
manipulations lead us tox = � a sinh v
osh v + 
os u ; y = a sinu
osh v + 
os u : (5.25)Thus if we look at the y-axis, x = 0, we see that it 
orresponds to taking v = 0, with uranging from �� to � as y ranges from �1 to 1. So we have found the image of thein�nite line 
ondu
tor.Now, 
onsider what happens if we eliminate u from the equations (5.25). We do this by�rst noting that we have
os u = ��ax sinhv + 
osh v� ;sinu = ya (
osh v + 
osu) = �yx sinhv : (5.26)Using 
os2 u+ sin2 u = 1, we therefore get(ax sinh v + 
osh v�2 + y2x2 sinh2 v = 1 ; (5.27)whi
h then 
an be rearranged as(x+ a 
oth v)2 + y2 = a2sinh2 v : (5.28)Thus we see that at �xed v we have a 
ir
le of radius ja= sinh vj, 
entred on the point(x; y) = (�a 
oth v; 0) in the z-plane. This is exa
tly what we want, if we 
hoose a, andthe �xed value v0 for v, su
h thatd = �a 
oth v0 ; R = � asinhv0 : (5.29)It is easy to see that as u ranges from �� to � at this �xed value v = v0, the image inthe z-plane tra
es out the points on the 
ir
le of radius R, 
entred on (x; y) = (d; 0) in thez-plane. This is shown in the �gure below.We have su

eeded in mapping the geometry of the original problem into a 
onsiderablysimpler one; the original in�nite line and 
ir
ular 
ondu
tors have be
ome the two line110
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Figure 17: The line and 
ir
le in the z-plane are mapped to two parallel line segments inthe w-plane.segments v = 0 and v = v0, with u in the range �� � u � � to 
over ea
h 
ondu
tor.Furthermore, it is easy to 
he
k that the region between these two line segments in thew-plane maps into the region between the two 
ondu
tors in the z-plane.In fa
t lu
kily, we 
an think of extending the line segments to the entire range �1 � u �1 in the w-plane, sin
e x and y are periodi
 in u and so as u traverses the entire real linewe just get multiple 
overings of the two 
ondu
tors. This is an important point, be
ause itnow means that we merely have to solve Lapla
e's equation between the two in�nitely-longparallel \plates" at v = 0 and v = v0 in the w-plane. Sin
e our boundary 
onditions arethat 	(u; v) = 0 on the 
ondu
tor at v = 0, and 	(u; v) =  0 on the 
ondu
tor at v = v0,it follows that the solution everywhere between the parallel plates in the w-plane is	(u; v) = vv0  0 : (5.30)It only remains to express the potential (5.30) ba
k in terms of the (x; y) 
oordinates, inorder to obtain the required solution for the potential in the z-plane. From (5.24) we havew = �2 i ar
tanh�za� ; (5.31)and so v is given by taking the imaginary part of this. Thus we arrive at the solution forthe potential in terms of x and y: (x; y) = �2 0v0 Rehar
tanh�za�i : (5.32)111



Finally, we may note that sin
e the equipotentials in the w-plane are 
learly simply given byv =
onstant, it follows that in the original z-plane the equipotentials are the 
ir
les de�nedat �xed v by equation (5.28). (The \
ir
le" 
orresponding to v = 0 has in fa
t blown up tobe
ome the y-axis.)5.3 S
hwarz-Christo�el TransformationIt should be 
lear from the previous dis
ussion that solving a potential theory problem intwo dimensions 
an be
ome rather simple, if one is able to �nd a 
onformal transformationthat maps the geometry of the original problem into a ni
er one, where Lapla
e's equation
an be easily solved. Of 
ourse the key word in the last senten
e is \if." It is not easyto give general pres
riptions for how to �nd the required transformation, and at times thepro
edure 
an seem more like an art than a s
ien
e. There is one 
lass of geometries,however, for whi
h a general pres
ription 
an be given. Namely, we 
an 
onstru
t generalformulae for mapping an N -sided polygon in the z-plane onto the real axis of the w-plane.An alarm-bell might perhaps start ringing at this point. At the beginning of our dis
us-sion of 
onformal transformations mu
h was made of the fa
t that they are angle-preserving.Now, we are proposing to \unwrap" a polygon and lay it out 
at along the real axis; whatis going on? There is, in fa
t, no paradox here. The 
ru
ial property that guaranteedthe angle-preserving nature of the 
onformal transformation was that the mapping w(z)was assumed to be analyti
. Clearly, therefor, if we are to map a polygon into a line, thefun
tion w(z) that does the job must have singularities at the verti
es of the polygon. Weshall now pro
eed to see how to 
onstru
t this fun
tion, known as the S
hwarz-Christo�eltransformation.Consider �rst what happens if we have a fun
tion w(z) su
h thatdzdw = A (w � w0)��0 ; (5.33)where A is a 
omplex 
onstant, �0 is a real 
onstant, and w0 is a real 
onstant spe
ifyinga point on the real axis in the w-plane. Let us investigate what happens as w is allowedto range along the real axis in the w-plane. Sin
e �0 is not in general an integer, we mustmake a de�nition about where to pla
e the bran
h 
ut. When w > w0, we de�ne the phase,or argument, of (w � w0)��0 to be 0.When w be
omes less than w0, we imagine that it detours in a little semi-
ir
le aroundw0 that takes it above the real axis, whi
h implies that the argument of (w � w0) will be112



�� �0 when w < w0. Thus we havearg dzdw = ( argA� � �0 ; w < w0argA ; w > w0 (5.34)Now, let us 
onsider what happens as w in
reases along the real axis. At all points, ifw advan
es by an in�nitesimal amount dw, we shall have arg dw = 0, sin
e dw is a realquantity, and so from (5.33) and (5.34) it follows that we must havearg dz = ( argA� � �0 ; w < w0argA ; w > w0 (5.35)Thus we see that as w approa
hes w0 from the left, a straight-line path in the z-plane istra
ed out, at an angle given by argA� � �0. After w has advan
ed to the right past w0,a straight-line path is again being tra
ed out in the z-plane, bu now at an angle given byargA. In other words, the total path in the z-plane 
onsists of a straight-line segment, thena sharp turn to the left by an angle � �0, and then another straight-line segment going o�at this new angle.We now generalise the above 
onstru
tion, by 
hoosing w(z) to be su
h thatdzdw = A (w � w0)��0 (w � w1)��1 � � � (w � wn)��n : (5.36)This will map the real axis of the w-plane into a sequen
e of straight-line segments Li inthe z-plane, ea
h su

essive line segment swinging round to the left by an angle � �i relativeto the previous one. If we 
hoose the exponents �i to be su
h thatnXi=0 �i = 2 ; (5.37)then the sum total of all the left-turning angle 
hanges will be 2�, and so provided we 
hoosethe starting and �nishing values of w appropriately, will shall have ni
ely 
onstru
ted a
losed polygon,20 sin
e the sum of the interior angles will be 2�. (See �gure below.) Allthat remains is to integrate (5.36), and to 
hoose the various 
onstants in the 
onstru
tionappropriately, so as to des
ribe the desired polygon in the 
omplex z-plane.21 Noti
e thatsin
e the 
orners in the polygon twist round to the left as we move along the real w axis inthe dire
tion of in
reasing w, the interior of the polygon is 
orresponds to the region abovethe real axis in the 
omplex w-plane.20Note that we are not obliged to 
onstru
t a 
losed polygon. In fa
t, it is quite 
ommon that one uses aS
hwarz-Christo�el transformation to 
onstru
t an open geometry with angles, su
h as a U-shaped 
hannel.21Of 
ourse there is also the little matter of inverting the resulting expression for z(w) that one obtainsby this means, in order to express w as a fun
tion of z. Re
all from our example in the previous se
tionthat we eventually need to know w(z), sin
e the potential is easily solved for in the w-plane, and must nowbe re-expressed in terms of the z variable. 113
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Figure 18: The S
hwarz-Christo�el transformation.To see how the 
hoi
e of 
onstants will work, let us perform a 
ounting of parameters.We spe
ify our N -sided polygon in the z-plane by spe
ifying the lo
ation of its N verti
eszi (so we have n = N � 1, in terms of the integer n appearing in (5.36)). Ea
h of these is a
omplex number, so there are 2N real parameters needed here. After integrating (5.36) weshall have z(w) = z0 +A Z w dt (t� w0)��0 (t� w1)��1 � � � (t� wn)��n ; (5.38)where z0 is the (
omplex) 
onstant of integration. Thus we have at our disposal N realparameters wi, a further (N � 1) real parameters from �i (re
alling that we have the singlereal 
onstraint (5.37)), and 2 real parameters ea
h from A and z0. In total, therefore, wehave 2N + 3 real parameters available, and we need only 2N in order to mat
h up withour required polgygon in the z-plane. This means that three of the lo
ations wi 
an infa
t be 
hosen arbitrarily, and then the rest of the parameters will be uniquely determined.Usually, one 
hooses three of the wi so as to make life as simple as possible, from the pointof view of making the evaluation of the integral (5.38) as straightforward as possible.Commonly, one of the transformed points wi is 
hosen to be at in�nity. Let us thereforetake w0 = 1. If we send w0 to in�nity, after �rst res
aling the 
onstant A by the fa
tor(�w0)�0 , then 
learly (5.38) be
omesz(w) = z0 +A Z w dt (t� w1)��1 (t� w2)��2 � � � (t� wn)��n : (5.39)Let us 
onsider some examples. A
tually, there are not really that many examples one
an easily 
onsider expli
itly, be
ause if there are too many fa
tors in the integrand in (5.38)or (5.39) the integral be
omes diÆ
ult or impossible to evaluate. For example, already if114



we take (5.39) with two generi
 fa
tors only, we have quite a 
ompli
ated result:z(w) = z0 +A Z w dt (t� w1)��1 (t� w2)��2 ;= z0 +A0 (w � w2)1��2 2F1�1� �2; �1; 2� �2; w � w2w1 � w2� : (5.40)The 
ases that lead to elementary fun
tions are degenerate triangles and re
tangles.Consider �rst the example of an in�nite U-shaped 
hannel, formed by the lines x = 0 tox =1 at y = 0 and at y = h, together with the line y = 0 to y = h at x = 0. Suppose thatwe are interested in solving Lapla
e's equation inside this 
hannel, and thus we should liketo map the geometry into a simpler one. The idea here will be to \unwrap" the U-shaped
hannel, so that it ends up 
attened out along the real axis in the w-plane.If you imagine 
oming in along the semi-in�nite line at y = h, from x = 1 down tox = 0, the 
hannel then makes a 90-degree left turn at (x; y) = (0; h). It then makes another90-degree left turn at (x; y) = (0; 0), before heading out to the east again along the realaxis. Thus we have �1 = 12 and �2 = 12 , and from (5.39) the required transformation isz(w) = z0 +A Z w dt (t� w1)� 12 (t� w2)� 12 : (5.41)E�e
tively, we are taking a degenerate triangle, with an exterior angle of � at the thirdvertex lo
ated at z =1.It is 
onvenient to make a symmetri
al 
hoi
e w1 = �1, w2 = 1 here, and so the integralbe
omes z(w) = z0 +A Z w dtpt2 � 1 = z0 +A ar
oshw : (5.42)We shall want the vertex at z = 0 to 
orrespond to w = 1, so0 = z0 +A ar
osh 1 = z0 ; (5.43)while the vertex at z = ih must be at w = �1, and soih = A ar
osh (�1) = A i� : (5.44)Thus the 
onformal mapping for this problem isz = h� ar
oshw ; (5.45)whi
h, lu
kily, is easily inverted to givew = 
osh �� zh � : (5.46)115



It is easy to 
he
k that the real axis in the w-plane has indeed been mapped onto theU-shaped 
hannel in the z-plane. The mapping is as follows:�1 � w � �1 maps to z =1+ ih �! z = ih ;�1 � w � 1 maps to z = ih �! z = 01 � w � 1 maps to z = 0 �! z =1 : (5.47)This is depi
ted in the �gure below. Furthermore, it is also easy to see that points in theupper-half w-plane map into the interior region of the 
hannel in the z-plane. If we takez = x+ ih �� ; (5.48)then (5.46) givesw = 
osh �x�h + i �� = 
osh �x�h � 
os � + i sinh�x�h � sin � : (5.49)The phase � of w is therefore given bytan� = tanh�x�h � tan � ; (5.50)implying that as � goes from 0 to � (
orresponding to in
reasing the y value inside the
hannel), the phase in the w plane in
reases from 0 to �. For example at � = 12�, 
orre-sponding to sitting on the line at y = 12h along the middle of the 
hannel, we �nd � = 12�.Thus the positive imaginary axis of the w plane maps onto the line running up the middleof the 
hannel.
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Figure 19: The U-sphaped 
hannel is mapped into the three line segments in the w-plane.For another example, 
onsider two 
ondu
tors, one of whi
h 
onsists of the two semi-in�nite lines (x � 0; y = 0) and (x = 0; y � 0) (i.e. the x and y axes in the positive116



quadrant), and the other 
onsists of the in�nite line y = �d. Suppose the �rst 
ondu
toris at potential zero, and the se
ond is at potential V = V0. This is an interesting geometryin whi
h to study the ele
trostati
 potential, be
ause one 
an �nd an analyti
al solutioneverywhere, and it will des
ribe the \fringing �eld" in the vi
inity of the sharp 90-degreeangle at the origin. We shall map this geometry onto the real axis in the w-plane. Let us
hoose 
onstants so that as w runs from �1 to 0, the z 
oordinate runs from z = �1� i dto z = +1 � i d. Then, as w runs from 0 to 1, the z 
oordinate runs from z = +1 toz = 0. Finally, as w runs from 1 to +1, the z 
oordinate runs from 0 to +i1. We thereforehave a 180-degree angle at the point 
orresponding to w = w1 = 0, implying �1 = 1, anda (�90)-degree angle at the point 
orresponding to w = w2 = 1, implying �2 = �1. Thusthe S
hwarz-Christo�el transformation is determined by the equationdzdw = A pw � 1w : (5.51)whi
h integrates up to givez = z0 + 2Apw � 1 + iA log �1 + ipw � 11� ipw � 1� : (5.52)We have to be a little 
areful here, be
ause of the need to handle the bran
h 
uts properly.First, we may note that w = 1 is supposed to 
orrespond to z = 0. This immediately tellsus that z0 = 0. Next, we 
an determine A from the requirement that z should run alongthe line from z = �1� i d to z = +1� i d as w runs from �1 to 0. In this region we havepw � 1 = i� ; (5.53)where � is real and satis�es � > 1. Thus the logarithm giveslog �1 + ipw � 11� ipw � 1� = log �1� �1 + �� = i� + log ��� 1�+ 1� = i� + � ; (5.54)where � is real and runs from 0 to �1 as w runs from �1 to 0. So we havez = 2A i��A� + iA� (5.55)in this region. We are wanting z to have a 
onstant imaginary part �i d along this line, andso we must 
hoose A = i d� ; (5.56)giving z = �i d� 2d� �� d� � : (5.57)117



It is 
lear, looking at how � and � are varying with w, that at large negative w the �term dominates, sending the real part of z to large negative values. On the other hand asw approa
hes 0 from the left, the � term dominates, sending the real part of z to largepositive values. So far, so good!Now, 
onsider what happens for 0 < w < 1. Here we still have pw � 1 = i� with � realand positive, but now 0 < � < 1. A

ordingly, the logarithm is now of the formlog �1� �1 + �� = � ; (5.58)with � real, running from � = �1 at w = 0 to � = 0 at w = 1. It follows from (5.52) thatthis w segment does indeed map into the required segment in the z-plane, with z runningfrom +1 to 0.Finally, 
onsider what happens when w > 1. We now have pw � 1 = � with � real andpositive here, so the region 1 < w � 1 
orresponds to 0 < � � 1. Thus we havez = 2i d� �� d� log �1 + i�1� i�� (5.59)in this region. Now if we let p = log((1+i�)=(1� i�)) then we have i� = (ep�1)=(ep+1) =tanh(p=2), and so p = 2i ar
tan � ; (5.60)whi
h is purely imaginary. We 
an now easily see that as w in
reases from 1 to 1, we doindeed have z runnning from z = 0 up the imaginary axis to z = i1.In summary, we have determined that the required 
onformal mapping isz = 2 i d� pw � 1� d� log �1 + ipw � 11� ipw � 1� ; (5.61)with the bran
h point at w = 1 handled as dis
ussed above. The mapping is illustrated inthe �gure below.Now, �nally, how do we use this transformation? We have mapped the problem of solvingLapla
es' equation into one where we have the boundary 
onditions that the potential V = 0on the positive real w-axis, and V = V0, whi
h is a given 
onstant, on the negative realw-axis. This is easily solved, givingV = V0� � = Im�V0� logw� ; (5.62)where � is the polar angle in the w-plane. In other words, the equipotential surfa
es areradial lines 
oming out from the origin. It is 
onvenient to view the potential V as the118
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Figure 20: The two 
ondu
tors in the z-plane are mapped into line segments in the w-plane.imaginary part of an analyti
 fun
tion W :W = U + iV = V0� logw : (5.63)A question of interest here is to 
al
ulate the ele
tri
 �eld in the z-plane of the originalproblem, so that we 
an see the fringing-�elds near the sharp 
orner at z = 0. Things area little bit tri
ky here, sin
e we are obviously not going to be able to invert the relationz = z(w) in (5.61) expli
itly, to obtain w = w(z). Nonetheless, we 
an learn a lot fromwhat 
an be done. To do this, we note from (5.4) that�W�z = 12 �U�x + i2 �V�x + 12i �U�y + 12 �V�y ;�W��z = 12 �U�x + i2 �V�x � 12i �U�y � 12 �V�y = 0 ; (5.64)(the se
ond line vanishes be
ause W is analyti
). Adding these equations gives�W�z = �U�x + i �V�x ; (5.65)whi
h 
an be rewritten using the Cau
hy-Riemann equations as�W�z = �V�y + i �V�x : (5.66)This is nothing but the statement thatEx � iEy = i �W�z ; (5.67)where Ex and Ey are the x and y 
omponents of the ele
tri
 �eld in the z-plane. Using the
hain rule, �W=�z = (�W=�w) (�w=�z), and (5.51), we therefore �ndEx � iEy = V0dpw � 1 : (5.68)119



Now, 
onsider �rst the region near to w = 0, for whi
h we shall have pw � 1 � i, andhen
e we get Ex � 0 ; Ey � V0d : (5.69)This is what we should expe
t; far over to the right-hand side, the ele
tri
 �eld shouldlook just like the �eld in a parallel-plate 
apa
itor, with potential di�eren
e V0 and plate-separation d.In the region where Re(w) >> 1, we see that the �eld falls away, as it should high upin the region where Im(z) is very large. In parti
ular, when w is real and large, we seethat Ey = 0. This is exa
tly as it should be; the tangential 
omponent of ele
tri
 �eld at a
ondu
tor should vanish.Now 
onsider the region with jwj >> 1, with no parti
lar restri
tion on the phase angle.We see from (5.61) that we shall have z � 2 i d� pw ; (5.70)so from (5.68) we shall have Ex � iEy � 2iV0� z : (5.71)Taking z = Rei �, with R >> 1, we need to 
onsider the region 12� � � � �. Thus we haveEx � iEy � 2iV0�R e�i � ; (5.72)whi
h implies that Ex = 2V0�R sin � ; Ey = �2V0�R 
os � : (5.73)The ele
tri
 �eld lines form large quarter-
ir
les, starting perpendi
ular to the real z-axis atlarge negative z, and swinging round to hit the imaginary z axis at large positive-imaginaryz. Finally, the most interesting behaviour is 
lose to the sharp 
orner at z = 0. Sin
e thisis 
lose to w = 1 we 
an perform a Taylor expansion of (5.61) around w = 1, �ndingz = 2i d3� (w � 1)3=2 +O((w � 1)5=2)) : (5.74)This 
an then used to solve approximately for (w�1)1=2 in terms of z, and then substitutedinto (5.68). The answer is thus of the formEx � iEy � 
 z�1=3 : (5.75)The ele
tri
 �elds be
ome singular as z approa
hes 0, as one would expe
t, and the pre
isenature of the �elds near to z = 0 is determinable.120



5.4 More on the Complex PlaneWe shall 
lose this 
hapter with some further geometri
al investigation of the 
omplex plane.This will also serve as an introdu
tion to the topi
 of the next 
hapter, whi
h will be someelementary group theory. To begin, let us re
all that the 
omplex plane is 
losely related tothe so-
alled Riemann Sphere. The idea here is that by adding a single point, namely thepoint at in�nity, to the ordinary 
omplex plane, we �nd that it now be
omes a spa
e that
an be mapped into a 
ompa
t and 
losed surfa
e, i.e. the Riemann Sphere. It may seema little strange that in�nity is viewed as a single point, but it 
an easily be understood mymaking a stereographi
 proje
tion. The idea was introdu
ed in Part I of the 
ourse; here,again, is the �gure showing the stereographi
 proje
tion:
North Pole

Riemann Sphere

Complex Plane

P

Q

Figure 21: The point Q on the 
omplex plane proje
ts onto the point P on the Riemannsphere.It is 
lear that any point Q in the �nite 
omplex plane proje
ts onto a well-de�ned pointP on the sphere. As Q moves further and further away from the origin (think of the southpole of the sphere as tou
hing the 
omplex plane at z = 0), the 
orresponding point P gets
loser and 
loser to the north pole. Eventually, as jzj tends to in�nity, the 
orresponding121



point P rea
hes the north pole. It doesn't matter in whi
h dire
tion Q heads o� to in�nity;by the time it gets there, P is at the north pole. Thus by adding the point at in�nity,the 
omplex plane has been mapped into the 
ompa
t surfa
e of the sphere. For futurereferen
e, let us remark that this is 
alled the 2-sphere, sin
e its surfa
e is 2-dimensional.Let's now look at the stereographi
 proje
tion in a little more detail. To do this, it is
onvenient to take the sphere that sits on the 
omplex plane to have a diameter of 1, whi
hmeans, of 
ourse, that its radius is 12 . So if we take the plane to have 
oordinates (x; y),and take the third dire
tion, perpendi
ular to the plane, to be the t dire
tion (we 
an't 
allit z be
ause that has already been earmarked for another purpose!), then the origin of thesphere sits at (x; y; t) = (0; 0; 12). The north pole sits at (0; 0; 1), and, of 
ourse, the southpole is at (0; 0; 0).What we are going to do now is to work out how the usual spheri
al polar 
oordinates(�; �) for the point P on the sphere are related to the Cartesian 
oordinates (x; y) for the
orresponding point Q in the plane. For this purpose, it is useful to give the names (~x; ~y; ~t)to the Cartesian 
oordinates of points in the 3-spa
e. The sphere is 
learly de�ned by theequation ~x2 + ~y2 + (~t� 12)2 = 14 : (5.76)On the other hand the line running from the north pole at (0; 0; 1) to the point Q at (x; y; 0)
an be parameterised as (~x; ~y; ~z) = (�x; � y; 1 � �) ; (5.77)so that as � in
reases from 0 to 1 we move along the straight line from the north pole to Q.The point P is lo
ated at the interse
tion of the surfa
e (5.76) and the line (5.77), whi
himplies �2 (x2 + y2) + (12 � �)2 = 14 : (5.78)Multiplying out the left-hand side, we see that the 14 on the right is 
an
elled, and so weget (1 + �2)�2 � � = 0 ; (5.79)where we have de�ned �2 � x2 + y2 : (5.80)One solution is � = 0, whi
h just tells us the obvious fa
t that the sphere and the lineinterse
t at the north pole. We want the other interse
tion, whi
h therefore o

urs at thevalue of � given by � = 11 + �2 : (5.81)122



From (5.77), it therefore follows that the point P is lo
ated at(~x; ~y; ~t) = � x1 + �2 ; y1 + �2 ; �21 + �2� : (5.82)To 
onvert to the spheri
al polar 
oordinates (�; �), we re
all that this are related to(~x; ~y; ~t) by ~x = 12 sin � 
os� ; ~y = 12 sin � sin� ; ~t� 12 = 12 
os � ; (5.83)remembering that the sphere has radius 12 and that its origin is lo
ated at (0; 0; 12). Theseequations 
an be better written as~x+ i ~y = 12ei� sin � ; ~t = 
os2 12� : (5.84)Comparing with (5.82), and de�ning z = x + i y in the 
omplex plane (this is why we
ouldn't use z for the 3'rd axis!), we see that
os 12� = jzjp1 + jzj2 ; ei� = zjzj = rz�z ; (5.85)sin
e �2 = x2 + y2 = jzj2. We 
an neaten up this relation, by noting that the �rst equationimplies jzj = 
ot 12�, and so we get z = 
ot 12� ei� : (5.86)So (5.86) gives us the required mapping from a point P on the sphere with spheri
al polar
oordinates (�; �) to the 
orresponding point z in the 
omplex plane.Re
all that we observed earlier that the way to measure the distan
e ds between thein�nitesimally-separated points (x; y) and x+dx; y+dy) in the 
omplex plane is by Pythago-ras' Theorem, giving ds2 = dx2 + dy2 = dz d�z = jdzj2 : (5.87)This is 
alled the metri
 on the plane, sin
e it is the thing we use in order to measuredistan
es. Suppose now that an ant lives on the sphere, and that its job is to work outthe in�nitesimal distan
e between the points Q at (x; y) and Q0 at (x + dx; y + dy) onthe plane. However, being short-sighted, it 
an only see the 
orresponding points P andP 0 in the surfa
e of the sphere, to whi
h it assigns spheri
al polar 
oordinates (�; �) and(� + d�; �+ d�). From (5.86), we see that the di�erentials are related bydz = �12
ose
 2 12� ei� d� + i 
ot 12� ei� d� ; (5.88)and hen
e the metri
 (5.87) in the 
omplex z-plane be
omesds2 = jdzj2 = 14(sin 12�)4 (d�2 + sin2 � d�2) : (5.89)123



This is therefore the rule that the ant must use, for working out the distan
e between thetwo points in the 
omplex plane. Noti
e, however, that it is a di�erent rule from the onethat the ant will use if it wants to work out how far it a
tually has to walk on the surfa
eof the sphere, to get from P to P 0. It is a simple geometri
al exer
ise to work out that thedistan
e between the points (�; �) and (�+ d�; �+ d�) on the sphere of radius 12 is given byd~s, where d~s2 = 14(d�2 + sin2 � d�2) : (5.90)This is just like the metri
 we would use on the earth, to work out the distan
e between anytwo points. (We would do this by integrating up all the in�nitesimal 
ontributions alongthe path, using (5.90).)There are very important di�eren
es between the metri
 (5.87) on the 
omplex plane,and the metri
 (5.90) on the sphere. In parti
ular, using the metri
 (5.90) we would dis
overthat there is 
urvature. This would show up, for example, if we measured the 
ir
umferen
eL of a 
ir
le of radius R on the surfa
e of the sphere. This is easy to work out. We
an exploit the fa
t (whi
h we shall examine in more detail later on) that the sphere is a
ompletely symmetri
al obje
t, and any point on it is just like any other point (before westart atta
hing 
ities, and mountians, and things like that). Thus when 
onsidering a 
ir
leof radius R on the sphere, we may as well take the 
entre of the 
ir
le to be at the northpole, sin
e that makes the 
al
ulation easy.To get a 
ir
le of radius R, we must therefore walk from the north pole (� = 0) to apoint at 
oordinate �0 su
h that R = 12�0 (re
alling that we are stu
k with a sphere ofradius 12 here). We then measure the 
ir
umferen
e of this 
ir
le by walking around theline of latitude, at �xed � = �0, until the azimuthal angle � has advan
ed through 2�.The distan
e walked around the 
ir
umferen
e is therefore L = 12 sin �0, and so the ratio of
ir
umferen
e to radius is given by LR = 2� sin �0�0 ; (5.91)where �0 = 2R. We see that as expe
ted, if �0 is very small, 
orresponding to a very small
ir
le, it has the usual property that L=R = 2�. Lo
ally, we don't noti
e that the earth is
urved. As the radius of the 
ir
le gets bigger, however, the ratio L=R be
omes less than2�, revealing that the surfa
e of the earth is 
urved. The most extreme situation o

urswhen the radius of the 
ir
le be
omes so big that �0 = �, i.e. when R = �=2 on our earth ofradius 12 . Now, the 
ir
umferen
e of the 
ir
le is in fa
t zero. All we have to do to traversethe 
ir
umferen
e in this extreme 
ase is to stand at the south pole and not walk at all!124



Let us return to our ant, and the stereographi
 proje
tion from the 
omplex plane. Justlike ourselves on the earth, the ant will be aware that it lives on a 
urved spa
e, sin
e itmeasures its own walking distan
es using the sphere metri
 (5.90). On the other hand,during its working hours when its job is to measure distan
es in the 
omplex plane, it hasbeen instru
ted to use the rule given by the metri
 metri
 (5.89) for reporting distan
es.Using this rule, it will �nd no 
urvature, and all 
ir
les, no matter how big, will have a ratioof 
ir
umferen
e to radius that is equal to 2�. The point is that even though it is writtenin terms of (�; �) 
oordinates, the metri
 (5.89) is nothing but a restatement of the original
at metri
 jdzj2 on the 
omplex plane.The point of all this preamble was to draw a distin
tion between two very di�erent ideas.The �rst is that we 
an 
hoose to use any (well-behaved) 
oordinate system we like in orderto spe
ify the lo
ations of points in a spa
e. Thus, for example, on the 
omplex plane we
an simply spe
ify a point Q by its Cartesian x and y 
oordinates, 
onveniently groupedtogether into the 
omplex 
oordinate z = x+i y. Alternatively, we 
an if we wish spe
ify thesame point by its image in the stereographi
 proje
tion, with spheri
al polar 
oordinates(�; �) that are related to z by equation (5.86). The mapping between the two 
oordinatesystems works well everywhere ex
ept at the north pole itself. This freedom to des
ribe agiven geometri
al 
on�guration in terms of di�erent possible 
hoi
es of 
oordinate systemis one of the 
ornerstones of Einstein's general theory of relativity, whi
h is the theoryof gravitation. A 
ru
ial ingredient in the theory is that our des
ription of physi
s, andphysi
al laws, should be formulated in su
h a way that no preferred 
hoi
e of 
oordinatesystem need be made.The se
ond idea that our investigation of the stereographi
 proje
tion has introdu
edis that there are also genuinely di�erent geometries that 
an be obje
tively distinguishedfrom one another. Again, though, the 
hoi
e of 
oordinates is not important. In parti
ular,we saw that the 
at metri
 on the plane is geometri
ally quite di�erent from the 
urvedmetri
 on the 2-sphere. We wrote the 
at metri
 ds2 in two equivalent ways, using eitherCartesian or spheri
al polar 
oordinates:ds2 = dx2 + dy2 = 14
ose
 4 12� (d�2 + sin2 � d�2) : (5.92)By the same token, we 
an write the metri
 on the sphere in di�erent ways too. On theone hand we have d~s2 = 14(d�2 + sin2 � d�2) ; (5.93)on the sphere of radius 12 . From (5.89) we 
an also therefore write this in terms of the125




omplex 
oordinate z, related to (�; �) by (5.86), asd~s2 = sin4 12� jdzj2 ; (5.94)whi
h, after expressing � in terms of z, be
omesd~s2 = jdzj2(1 + jzj2)2 : (5.95)Noti
e that the metri
 d~s2 on the sphere, and the metri
 ds2 on the plane, are relatedto one another by a multipli
ative fa
tor:d~s2 = 
2 ds2 : (5.96)Of 
ourse the fa
tor is 
oordinate-dependent, namely
 = 11 + jzj2 : (5.97)This means that the 
onformal stru
ture is preserved; the shapes of in�nitesimal surfa
es,and the angles between lines in in�nitesimal �gures, are the same whether they are measuredin the 
at metri
 or the sphere metri
.6 Some Introdu
tory Geometry and Group Theory6.1 Some Properties of the 2-SphereWe shall begin by looking in more detail at at some of the properties of the 2-sphere. It isgoing to be
ome tedious at this stage if we 
ontinue to work with a sphere of radius 12 ; itwas the \natural" radius in the 
ontext of the stereographi
 proje
tion, but not otherwise.So 
onsider from now on a sphere of radius 1, whi
h is 
ommmonly 
alled the unit sphere.Introdu
e three 
oordinates (X;Y;Z) in Eu
lidean 3-spa
e. We sometimes denote this spa
eby IR3 (indi
ating three real dire
tions). The unit sphere 
an then be 
onsidered to be thesurfa
e X2 + Y 2 + Z2 = 1 (6.1)in IR3.At times it will be 
onvenient to use an index notation for the 
oordinates, and so weshall de�ne Xa to mean (X1;X2;X3) = (X;Y;Z). Note that we put the index \upstairs"on the 
oordinates; that is a well-established 
onvention. It does mean, however, that onehas to be 
areful somtimes in order to avoid 
onfusion between, for example, X2 meaning Y(as it does here), and the total di�erent notion of X2 meaning X times X. Often, to avoid126



the 
onfusion, it is 
onvenient to write expli
it numeri
al indi
es on 
oordinates downstairs,so that we would use Xa for the generi
 
oordinates, but (X1;X2;X3) for the i = 1, 2 and3 values. This is not a perfe
t resolution either, and one just has to be adaptable.Let us see how to make pre
ise our observation of a while ago that the 2-sphere is verysymmetri
al, with ea
h point on the surfa
e looking like ea
h other point. It 
an be seenvery 
learly in the de�ning equation (6.1), in fa
t, if we write it asXaXa = 1 : (6.2)Alternatively, in a ve
tor notation, we 
ould de�ne the 
olumn ve
tor X asX = 0BB�XYZ 1CCA ; (6.3)so that (6.2) be
omes XT X = 1 ; (6.4)where XT denotes the transpose of X.It is now evident that if we a
t on the 
olumn ve
tor X with any 3�3 orthogonal matrixM , to give a new 
olumn ve
tor X0 �M X, then the 
ondition (6.4) will be left unaltered:X0T X0 = XT MT M X = XT X = 1 ; (6.5)sin
e MT M = 1l. Expressed in index notation, the equivalent statement is that X 0a �MabXb, and the orthogonality 
ondition on the matrix is MabMa
 = Æb
, so thatX 0aX 0a =MabXbMa
X
 = Æb
XbX
 = XbXb = 1 : (6.6)Of 
ourse Mab here denotes the element at row a and 
olumn b in the matrix M . Sin
e Mis 3� 3 and orthogonal, it is referred to as an O(3) matrix. An orthogonal n� n matrix is
orrespondingly 
alled an O(n) matrix.Thus we have the statement that if one a
ts the on the de�ning equation (6.2) with anyO(3) matrix, the equation is left unaltered. This means that O(3) is the symmetry groupof the 2-sphere. It may be helpful to look at what in�nitesimal O(3) transformations do tothe sphere. Suppose M is orthogonal, and in�nitesimally 
lose to the identity matrix:M = 1l +A ; (6.7)where the magnitudes of the 
omponents of A are in�nitesimal. Then the orthogonality
ondition MT M = 1l be
omes (1l +AT )(1l +A) = 1l ; (6.8)127



and sin
e A is in�nitesimal we 
an negle
t the AT A term in 
omparison to the terms linearin A, giving A+AT = 0, so AT = �A : (6.9)So the 
ondition for M de�ned in (6.7) to be orthogonal when A is in�nitesimal is that Ashould be antisymmetri
.This means that we 
an easily 
al
ulate the in�nitesimal displa
ements ÆXa � X 0a�Xathat result from a
ting with M = 1l +A:ÆXa =MabXb �Xa = (Æab +Aab)Xb �Xa = AabXb : (6.10)The number of independent 
omponents in a 3�3 antisymmetri
 matrix is 
learly 12�3�2,and so we 
an say that the symmetry group O(3) of the 2-sphere has 3 parameters.We 
an see dire
tly that the de�ning surfa
e (6.2) is invariant under the in�nitesimaltransformations, sin
e we shall then haveÆ(XaXa) = 2Xa ÆXa = 2Xa AabXb = 0 ; (6.11)where the last step follows from the fa
t that Aab is antisymmetri
 in ab, while XaXb issymmetri
 in ab.Note that not only is the surfa
e (6.2) invariant under the O(3) transformations, butso also is the metri
 on the 2-sphere. How do we write the metri
 in terms of the Xa
oordinates? After all, there are three of them, but the 2-sphere needs only two 
oordinates.The point is that when we say the metri
 on the 2-sphere, we are having in mind the metri
that we would indu
e by taking the ordinary Eu
lidean metri
 in IR3, and then imposingthe rule that all points have to be restri
ted to lie on the surfa
e de�ned by (6.2). Thus the2-sphere metri
 
an be written as ds2 = dXa dXa ; (6.12)subje
t to the 
onstraint (6.2). Clearly (6.12) is also invariant under the O(3) rotations thatwe have been 
onsidering. Bearing in mind that M is a 
onstant matrix, the 
al
ulationsthat showed the invarian
e of (6.1) will work in exa
tly the same way to show the invarian
eof (6.12). Sin
e the metri
 (6.12) and the 
onstraint (6.2) are both invariant under O(3), itfollows that the indu
ed metri
 on the surfa
e of the sphere is invariant under O(3) also.To make 
onta
t with some earlier dis
ussion, let us 
on�rm that (6.12) together with(6.2) does indeed give us the metri
 that we expe
t to see on the 2-sphere. We 
an do this128



most easily by solving the 
onstraint equation (6.2) expli
itly, whi
h 
an be done by makingthe familiar de�nitionsX = sin � 
os� ; Y = sin � sin� ; Z = 
os � : (6.13)These are nothing but the usual de�nitions relating spheri
al polar 
oordinates to Cartesian
oordinates, but with the r 
oordinate set equal to 1 sin
e we have r2 � X2+Y 2+Z2 = 1.Substituting (6.13) into (6.12), we getds2 = d�2 + sin2 � d�2 : (6.14)This is exa
tly what we should get, for the metri
 on a unit 2-sphere.We 
an also now look at what the O(3) symmetry transformations do in terms of the
oordinates (�; �) on the 2-sphere. This is most easily done at the in�nitesimal level, so wejust take (6.10), and put it together with (6.13). First, 
onsider ÆZ:ÆZ = A31X +A32 Y : (6.15)But ÆZ = Æ(
os �) = � sin � Æ�, so we get� sin � Æ� = �A13 sin � 
os��A23 sin � sin� ; (6.16)where we have also used the antisymmetry to re-express A31 as �A13, and A32 as �A23.Thus we have Æ� = A13 
os�+A23 sin� : (6.17)Now, we 
an look at ÆX, whi
h gives� sin � sin� Æ�+ 
os � 
os� Æ� = A12 sin � sin�+A13 
os � : (6.18)But we already know how � transforms, from (6.17), so we 
an plug this ba
k in, and hen
eread o� the transformation for �. Colle
ting the results together, we then have:Æ� = A13 
os�+A23 sin� ;Æ� = �A12 �A13 
ot � sin�+A23 
ot � 
os� : (6.19)This gives us the in�nitesimal transformations of the � and � 
oordinates on the 2-sphere,
orresponding to the a
tion of the in�nitesimal O(3) transformation with parameters A12,A13 and A23.Noti
e that the transformation 
orresponding to the parameter A12 is parti
ularly sim-ple; it is just Æ� = 0 ; Æ� = �A12 : (6.20)129



This means that under this symmetry transformation the � 
oordinate is held �xed, and the� 
oordinate is shifted by an in�nitesimal 
onstant. We 
an easily visualise this symmetrytransformation; we just take a little walk along a line of latitude on the sphere. Obviouslythis is a symmetry. This 
an also be seen by looking at the metri
 (6.14) on the sphere;sending � �! �+
onstant leaves the metri
 unaltered. The other two symmetry trans-formations, asso
iated with the parameters A13 and A23 are a little harder to visualise, interms of the � and � 
oordinates on the 2-sphere, but they again 
orrespond to translationson the surfa
e, whi
h again leave the metri
 un
hanged.6.2 Ve
tor FieldsIn fa
t the in�nitesimal transformations of the 
oordinates � and � that we have just seenallow us to introdu
e the 
on
ept of a ve
tor �eld. We should begin this dis
ussion byforgetting 
ertain things about ve
tors that we learned in kindergarten. There, the 
on
eptof a ve
tor was introdu
ed through the notion of the position ve
tor, whi
h was an arrowjoining a point A to some other point B in three-dimensional Eu
lidean spa
e. This is �neif one is only going to talk about Eu
lidean spa
e in Cartesian 
oordinates, but it is not avalid way des
ribing a ve
tor in general. If the spa
e is 
urved, su
h as the sphere, or evenif it is 
at but des
ribed in non-
artesian 
oordinates, su
h as Eu
lidean 3-spa
e des
ribedin spheri
al polar 
oordinates, the notion of a ve
tor as a line joining two distant pointsA and B breaks down. What we 
an do is take the in�nitesimal limit of this notion, and
onsider the line joining two points A and A+ ÆA. In fa
t what this means is that we thinkof the tangent plane at a point in the spa
e, and imagine ve
tors in terms of in�nitesimaldispla
ements in this plane.To make the thinking a bit more 
on
rete, 
onsider a 2-sphere, su
h as the surfa
e ofthe earth. A line drawn between Ney York and Los Angeles is not a ve
tor; for example,it would not make sense to 
onsider the \sum" of the line from New York to Los Angelesand the line from Los Angeles to Tokyo, and expe
t it to satisfy any meaningful additionrules. However, we 
an pla
e a small 
at sheet on the surfa
e of the earth at any desiredpoint, and draw very short arrows in the plane of the sheet; these are tangent ve
tors atthat parti
ular point on the earth.The 
on
ept of a ve
tor as an in�nitesimal displa
ement makes it sound very like thederivative operator, and indeed this is exa
tly what a ve
tor is. Suppose we draw a pathon the surfa
e of the earth, parameterised by some quantity � that in
reases monotoni
allyas we move along the path. The 
oordinates of a point P on the path will then be given by130



(�(�); �(�)), and the tangent ve
tor at that point isV = ��� : (6.21)Generally, if we are in a spa
e with 
oordinates xi, and there is a path xi(�) parameterisedby �, then the tangent ve
tor at the point P is again given by (6.21). Furthermore, usingthe 
hain rule for di�erentiation, we shall haveV = ��� = dxi(�)d� ��xi : (6.22)The derivatives �i � �=�xi, whi
h in fa
t are what we normally 
all the gradient operator,are a
ting here as a set of basis ve
tors for the tangent spa
e, and we may write the ve
torV as V = V i �i ; (6.23)where V i are the 
omponents of the ve
tor V with respe
t to the basis �i;V i = dxi(�)d� : (6.24)(Of 
ourse here we are using the Einstein summation 
onvention that any dummy index,whi
h o

urs twi
e in a term, is understood to be summed over the range of the index.)Noti
e that there is another signi�
ant 
hange in viewpoint here in 
omparison to the\kindergarten" notion of a ve
tor. We make a 
lear distin
tion betwen the ve
tor itself,whi
h is the geometri
al obje
t V de�ned quite independently of any 
oordinate system by(6.21), and its 
omponents V i, whi
h are 
oordinate-dependent.22 Indeed, if we imaginenow 
hanging to a di�erent set of 
oordinates x0i in the spa
e, related to the original onesby x0i = x0i(xj), then we 
an use the 
hain rule to 
onvert between the two bases:V = V j ��xj = V j �x0i�xj ��x0i � V 0i ��x0i : (6.25)In the last step we are, by de�nition, taking V 0i to be the 
omponents of the ve
tor V withrespe
t to the primed 
oordinate basis. Thus we have the ruleV 0i = �x0i�xj V j ; (6.26)whi
h tells us how to transform the 
omponents of the ve
tor V between the primed andthe unprimed 
oordinate system. This is the fundamental de�ning rule for how a ve
tor22However, it sometimes be
omes 
umbersome to use the longer form of words \the ve
tor whose 
om-ponents are V i," and so we shall sometimes slip into the way of speaking of \the ve
tor V i." One shouldremember, however, that this is a slightly sloppy way of speaking, and the more pre
ise distin
tion betweenthe ve
tor and its 
omponents should always be borne in mind.131



must transform under arbitrary 
oordinate transformations. Su
h transformations are 
alledGeneral Coordinate Transformations.Let us return to the point alluded to previously, about the ve
tor as a linear di�erentialoperator. We have indeed been writing ve
tors as derivative operators, so let's see why thatis very natural. Suppose we have a s
alar �eld  (x) de�ned in the spa
e. (We suppress thei index on the 
oordinates xi in the argument here; think of the x in  (x) as representingthe full set of 
oordinates,  (x1; x2; : : : ; xn).) Now, if we wish to evaluate  at a nearbypoint xi + �i, where �i is in�nitesimal, we 
an just make a Taylor expansion: (x+ �) =  (x) + �i �i  (x) + � � � ; (6.27)and we 
an negle
t the higher terms sin
e � is assumed to be in�nitesimal. Thus we seethat the 
hange in  is given byÆ (x) �  (x+ �)�  (x) = �i �i  (x) ; (6.28)and that the operator that is implementing the translation of  (x) is exa
tly what we earlier
alled a ve
tor �eld, �i �i ; (6.29)where Æxi � (xi + �i)� xi = �i : (6.30)Having introdu
ed the 
on
ept of the ve
tor �eld, let's go ba
k to our dis
ussion ofthe symmetries of the 2-sphere. Re
all that we had in�nitesimal translations of the (�; �)
oordinates, given byÆ� = A13 
os�+A23 sin� ;Æ� = �A12 �A13 
ot � sin�+A23 
ot � 
os� ; (6.31)where A12, A13 and A23 are in�nitesimal 
onstants. Thinking of � and � as the two 
oordi-nates xi in the 2-sphere, we see that we have pre
isely the situation we were just looking at,with in�nitesimal 
omponents �i of ve
tor �elds that 
an be read o� by 
omparing (6.30)with (6.31). Let us give the names K12, K13 and K23 to the three ve
tor �elds asso
iatedwith the transformation parameters A12, A13 and A23 respe
tively. Thus we haveK12 = ��� ;K13 = � 
os� ��� + 
ot � sin� ��� ; (6.32)K23 = � sin� ��� � 
ot � 
os� ��� :132



(We have introdu
ed an overall fa
tor of (�1) in ea
h 
ase, just for 
onvenien
e.)It will be re
alled that the three ve
tor �elds that we have obtained in (6.32) have avery spe
ial property, namely that they desribe transalations on the surfa
e of the spherewhi
h leave the metri
 invariant. They are in fa
t the generators of the symmetry group ofthe 2-sphere. Re
all that the symmetry group was O(3). A
tually, at the in�nitesimal levelwhi
h we are looking at now, we 
an't tell the di�eren
e between O(3) and SO(3), wherethe \S" stands for spe
ial, and indi
ates that the orthogonal O(3) matri
es are furthermorerestri
ted to have determinant equal to +1. The orthogonality 
onditionMT M = 1l impliesthat (detMT ) (detM) = 1 ; (6.33)and hen
e (detM)2 = 1 and so detM = �1, so the additional imposition of the detM = +1
ondition amounts to a dis
rete 
hoi
e that restri
ts the matri
es M to des
ribing purerotations, without re
e
tions. So in the 
ontext of in�nitesimal transformations, it is moreappropriate to think of the symmetry group of the sphere as being SO(3).The set of three ve
tors (6.32) des
ribe the SO(3) rotational symmetries of the 2-sphere.On any spa
e, the ve
tors that des
ribe the 
ontinous symmetries of the spa
e are 
alledKilling ve
tors23. The SO(3) Killing ve
tors (6.32) may seem rather familiar; they areexa
tly what one meets in quantum me
hani
s when studying angular momentum. Theangular momentum operators are pre
isely the generators of rotational translations in Eu-
lidean 3-spa
e, and so not surprisingly, they are synonymous with ve
tor �elds. By thesame token the ordinary linear momentum operators P are the generators of linear trans-lations in Eu
lidean 3-spa
e, and so not surprisingly they are asso
iated with the ve
tor�elds ��x ; ��y ; ��z : (6.34)We shall 
lose this dis
ussion of ve
tor �elds, and Killing ve
tors, by looking a littlemore 
losely at the sense in whi
h the SO(3) Killing ve
tors in (6.32) leave the metri
ds2 = d�2 + sin2 � d� (6.35)on the 2-sphere invariant. To do this, we 
an look �rst at the more general situation of ametri
 on some general n-dimensional spa
e. We 
an write this isds2 = gij dxi dxj ; (6.36)23Named after nothing more sinister than a mathemati
ian 
alled Killing!133



where gij are the 
omponents of a 2-index symmetri
 tensor, 
alled the metri
 tensor. Ingeneral it depends on the 
oordinates xi. Thus in the 
ase of the 2-sphere we have x1 = �,x2 = �, and gij =  1 00 sin2 �! : (6.37)Noti
e that the way we are writing the metri
 in (6.36) is somewhat reminis
ent ofthe way we wrote the ve
tor �eld V in (6.23). In that 
ase, the geometri
al quantity Vwas expanded in a 
oordinate basis, in terms of 
omponents V i multiplying the partialderivatives �=�xi. Here, we are expanding the geometri
al quantity ds2 in terms of its
omponents gij whi
h multiply the 
oordinate di�erentials dxi. The key di�eren
e here isthat the indi
es on the metri
 tensor 
omponents gij live downstairs, whereas the index onthe 
omponents of the ve
tor �eld live upstairs. These are two quite distin
t types of obje
tthat one en
ounters in geometry. We may 
onsider a simpler example of a 1-index obje
t,say Ui, with U = Ui dxi : (6.38)One 
an again work out how the 
omponents Ui transform under a 
hange of 
oordinatebasis by using the 
hain rule:U = Uj dxj = Uj �xj�x0i dx0i � U 0i dx0i ; (6.39)from whi
h we read o� U 0i = �xj�x0i Uj : (6.40)This is the \inverse" of the transformation rule for the ve
tor �eld that we derived inequation (6.26). In a similar fashion, from the intrinsi
 
oordinate independen
e of thegeometri
al quantity ds2 itself, we 
an dedu
e that the 
omponents gij of the metri
 tensortransform as g0ij = �xk�x0i �x`�x0j gk` ; (6.41)under a 
hange of 
oordinate system.We have seen how the 
omponents of ve
tor �elds, su
h as V i and Ui, transform undergeneral 
oordinate transformations. (See (6.26) and (6.40).) More generally, we 
an 
onsidertensors whose 
omponents 
omprise p upstairs indi
es, and q downstairs indi
es:T i1���ipj1���jq : (6.42)These quantities will transform analogously under general 
oordinate transformations, withone transformation fa
tor like in (6.26) for ea
h upstairs index, and one fa
tor like in (6.40)134



for ea
h downstairs index:T 0i1���ipj1���jq = �x0i1�xk1 � � � �x0ip�xkq �x`1�x0j1 � � � �x`q�x0jq T k1���kp `1���`q : (6.43)In fa
t we already en
ountered one su
h example, namely the metri
 tensor, with 
ompo-nents gij , in (6.41). Tensors T i1���ipj1���jq , whi
h by de�nition transform a

ording to (6.43),are said to transform 
ovariantly under general 
oordinate transformations. Similarly, atensor-valued equation where all the terms transform a

ording to this rule are said to be
ovariant equations. This means that the rule for transforming them from the unrpimed
oordinate system to the primed 
oordinate system is simply to put primes on everything.What 
ould be easier!Noti
e that if we make a 
ontra
tion of indi
es in some tensor expression, then theresulting quantity now has the transformation rule that we should expe
t for an obje
twith the redu
ed number of free indi
es. For example, if we take the ve
tors V i and Ui, anmake a 
ontra
tion, we 
an 
onstru
t the s
alar quantity� = V i Ui : (6.44)We 
all this a s
alar be
ause it requires no 
oordinate transformation matrix at all (it
ouldn't, sin
e there are no indi
es for the matrix to hook onto!). Thus under general
oordinate transformations we �nd�0 � V 0i U 0i = �x0i�xk V k �x`�x0i U` = �x`�xk V k U` = Æk̀ V k U` = V k Uk = � : (6.45)More generally, if we 
ontra
t n of the upper indi
es in T i1���ipj1���jq with n of the lowerindi
es, we shall end up with an obje
t with (p � n) free upper indi
es, and (q � n) freelower indi
es, whi
h transforms exa
tly as a tensor with those numbers of upper and lowerindi
es should.To 
lose this se
tion, let us go ba
k to the symmetries of the 2-sphere, or more generally,the symmetries of any metri
.24 If an in�nitesimal translation Æxi = �i of the 
oordinatesleaves the metri
 invariant then we shall have ds2(x+ Æx) = ds2(x), and sogij(x+ Æx) d(xi + �i) d(xj + �j) = gij dxi dxj ; (6.46)where we need only keep quantities up to �rst order in the in�nitesimal �i. Sin
e fromthe 
hain rule we have d�i = (�k �i) dxk, we get, after appropriate 
hanges of the names ofdummy summation indi
es,gij dxi dxj + ��k �k gij + gkj �i �k + gik �j �k� dxi dxj = gij dxi dxj ; (6.47)24Not all metri
 have symmetries, so this dis
ussion applies to su
h symmetries as they may have.135



and so the 
ondition for �i to be the 
omponents of a Killing ve
tor is�k �k gij + gkj �i �k + gik �j �k = 0 : (6.48)A ve
tor with 
omponents �i that satis�es this equation is what is 
alled a Killing ve
tor,and the equation is Killing's equation.It is quite easy to verify that the three Killing ve
tors (6.32) that we obtained earlieron the 2-sphere do indeed satisfy Killing's equation. The easiest one to 
he
k is K12, sin
eit 
orresponds simply to �1 = 0, �2 = 1. Sin
e these 
omponents are 
onstants the last twoterms in (6.48) 
an immediately be seen to be zero, while in the �rst term the dire
tionalderivative �k �k is 
learly just �=��, and so this gives zero sin
e none of the 
omponentsof the 2-sphere metri
 (6.37) depends on �. Che
king that the other two Killing ve
tors inequation (6.32) satisfy (6.48) takes a little more work, and in fa
t one now gets a non-trivial
an
ellation between 
ontributions from the various terms. Of 
ourse there is, logi
ally-speaking, really no need to verify that the ve
tors in (6.32) do indeed satisfy (6.48), sin
ethey were 
onstru
ted pre
isely to have the property of generating symmetries of the metri
.But it is sometimes reassuring to 
he
k things by di�erent methods, to reaÆrm that thereis indeed a 
onsistent unity in the universe!6.3 The Metri
 Tensor and its InverseThe metri
 tensor plays many important rôles in geometry. One of these is that it 
anbe used to lower the index on the 
omponents of a ve
tor V i, to give a quantity whose
omponents gij V j transform just like the Ui we dis
ussed above. To 
he
k this, we justevaluate the quantity gij V j in the primed 
oordinate system, whi
h we 
an easily do sin
ewe know exa
tly how gij and V j transform (see (6.41)):g0ij V 0j = �xk�x0i �x`�x0j gk` �x0j�xm V m : (6.49)But by the 
hain rule, we have �x`�x0j �x0j�xm = �x`�xm ; (6.50)and then by de�nition this gives us Æm̀, so we �nd:g0ij V 0j = �xk�x0i gkm V m : (6.51)This is exa
tly the way that a ve
tor with downstairs 
omponents, like Ui in (6.40) shouldtransform. In fa
t we 
an be e
onomi
al with our use of symbols, and de�neVi � gij V j : (6.52)136



At the moment, the use of the metri
 to lower indi
es looks a bit like a \one-way street,"sin
e having got the index downstairs, we don't yet know how to get it ba
k upstairs again.But this is easily remedied; we just need the inverse metri
. This is literally what is soundslike; we view gij as a matrix, and we de�ne the inverse of the metri
 to be the matrixinverse. We may write its 
omponents as gij . Sin
e we should have g�1 g = 1l, this meanswe should have gij gjk = Æik : (6.53)This 
an be taken as the de�nition of the inverse metri
. It is easy to see, by manipulationspre
isely analogous to those we performed above, that in order for (6.53) to be true in all
oordinate frames, gij should indeed transform like the 
omponents of a tensor with twoupstairs indi
es (see (6.43)). It is then easily veri�ed that if we take Vi de�ned in (6.52),and now raise the index using gij , we get ba
k to where we started:V i = gij Vj : (6.54)More generally, we 
an use gij to raise indi
es on any tensor.Noti
e that we 
an 
onstru
t a s
alar quantity from a ve
tor V i, by using the metri
tensor: V i V j gij : (6.55)This is what we 
an 
all the (magnitude)2 of the ve
tor. It is equivalent to the \dot produ
t"of a ve
tor with itself in traditional ve
tor analysis. In the general 
ontext we are dis
ussinghere one sees that the metri
 tensor gij is essential for being able to 
onstru
t the s
alarfrom V i. Of 
ourse this was e�e
tively true in the 
ontext of Cartesian ve
tor analysis also,but there the metri
 tensor was just Æij , and one hardly noti
ed that one was using it. Moregenerally, we 
an use the metri
 to allow us to 
onstru
t a s
alar from any two ve
tors:V iW j gij : (6.56)6.4 Covariant Di�erentiationA familiar 
on
ept in Cartesian tensor analysis is that the partial derivatives �i � �=�xi
an a
t on a tensor �eld to give another tensor �eld.25 However, a 
ru
ial point in Cartesiantensor analysis is that we do not 
onsider general 
oordinate transformations; rather, werestri
t ourselves only to 
onstant transformation matri
es Mij whi
h, furthermore, are25We now use \tensor" as a generi
 term, whi
h 
an in
lude the parti
ular 
ases of a s
alar, and a ve
tor.137



orthogonal: x0i =Mij xj ; MijMik = Æjk : (6.57)In fa
t we en
ountered pre
isely su
h types of transformation earlier on, when 
onsideringthe O(3) rotational symmetry of the 2-sphere. This was be
ause we were embedding it in3-dimensional Eu
lidean spa
e with Cartesian 
oordinates. For Cartesian Tensors, there isno need to distinguish between upstairs and downstairs indi
es, sin
e the asso
iated metri
tensor is just the Krone
ker delta, gij = Æij , whi
h is its own inverse. Note that from (6.57)we have �x0i�xj =Mij = 
onstant : (6.58)In Cartesian tensor analysis a tensor is any quantity whose 
omponents transform withthe appropriate fa
tors of Mij , as, for example,V 0i =Mij Vj ; ��x0i =Mij ��xj : (6.59)(The se
ond equation here shows that the gradient operator �=�xi is a ve
tor.)Now, from the above it is easy to see that if V i is a Cartesian ve
tor �eld, then thequantity T ij � �V i�xj (6.60)is a Cartesian tensor. We prove this by the standard te
hnique of showing that it transformsproperly for a Cartesian tensor:T 0ij � �V 0i�x0j =Mj` �(Mik V k)�x` =Mj`Mik �V k�x` =Mj`Mik T k` : (6.61)The 
ru
ial step in this proof was the one where the transformation matrixMik was broughtoutside the di�erentiation, be
ause it is a 
onstant matrix. This is the step where thingsare going to be di�erent when we 
onsider the 
ase of tensors under general 
oordinatetransformations.The above was a review of what happens for Cartesian tensors. Now, let's get ba
k to themu
h more general 
ase we are really interested in, of quantities that transform as tensorsunder the 
ompletely arbitrary general 
oordinate transformations, with x0i = x0i(xj). First,let's see what goes wrong with a naive attempt, and then we'll see how to �x it.Suppose V i is a ve
tor under general 
oordinate transformations (so it transforms as in(6.26)). Let us 
onsider the quantity W ij � �V i�xj : (6.62)138



Is this a tensor? To test it, we 
al
ulate W 0ij , to see if it is the proper tensorial transformof W ij. We get: W 0ij � �V 0i�x0j = �x`�x0j ��x`��x0i�xk V k�= �x`�x0j �x0i�xk �V k�x` + �x`�x0j �2x0i�x` �xk V k ;= �x`�x0j �x0i�xk W k` + �x`�x0j �2x0i�x` �xk V k : (6.63)So the answer is no; the �rst term by itself would have been �ne, but the se
ond termhere has spoiled the general 
oordinate transformation behaviour. Of 
ourse there is nomystery behind what we are seeing here; the se
ond term has arisen be
ause the derivativeoperator has not only landed on the ve
tor V k, giving us what we want, but it has alsolanded on the transformation matrix �x0i=�xk. This problem was avoided in the 
ase ofthe Cartesian tensors, be
ause we only required that they transform ni
ely under 
onstanttransformations (6.58).The 
on
ept of di�erentiation is too important for us to give it up in this 
ontext.A

ordingly, what we have to do now is to generalise the notion of a derivative, so that itdoes have the property of yielding tensors when we a
t with it on tensors. What we needto de�ne now is the Covariant Derivative.To abbreviate the writing, let us start to make use of the notation we brie
y introdu
edearlier, where the usual partial derivatives are written as �i:�i � ��xi : (6.64)Now, we shall de�ne the 
ovariant derivative rj of a ve
tor V i as follows:rj V i � �j V i + �ijk V k ; (6.65)where the quantities �ijk satisfy the symmetry 
ondition�ijk = �ikj : (6.66)They are de�ned to have pre
isely the 
orre
t transformation properties under general
oordinate transformations that ensure that the quantityT ij � rj V i (6.67)does transform like a tensor under general 
oordinate transformations. The 
ru
ial pointhere is that �ijk itself is not a tensor. It is 
alled a Conne
tion, in fa
t.139



First, let us see how we would like �ijk to transform, and then, we shall show how to
onstru
t su
h an obje
t. By de�nition, we want it to be su
h that�x0i�xk �x`�x0j r` V k = r0j V 0i � �0j V 0i + �0ijk V 0k : (6.68)Wrtiting out the two sides here, we get the requirement that�x0i�xk �x`�x0j ��` V k + �k`m V m� = �x`�x0j �`� �x0i�xm V m�+ �0ijk �x0k�xm V m= �x`�x0j �x0i�xm �` V m + �x`�x0j �2x0i�x` �xm V m +�0ijk �x0k�xm V m : (6.69)The required equality of the left-hand side of the top line and the right-hand side of thebottom line for all ve
tors V m allows us to dedu
e that we must have�x0i�xm �x`�x0j �k`m = �x0k�xm �0ijk + �x`�x0j �2x0i�x` �xm : (6.70)Multiplying this by �xm=�x0n then gives us the result that�0ijn = �x0i�xk �x`�x0j �xm�x0n �k`m � �xm�x0n �x`�x0j �2x0i�x` �xm : (6.71)This dog's breakfast is the required transformation rule for �ijk. Noti
e that the �rst termon the right-hand side is the \ordinary" type of tensor transformation rule. The presen
eof the se
ond term shows that �ijk is not in fa
t a tensor, be
ause it doesn't transform likeone.The above 
al
ulation is quite messy, but hopefully the essential point 
omes a
ross
learly; the purpose of the ugly se
ond term in the transformation rule for �ijk is pre
iselyto remove the ugly extra term that we en
ountered whi
h prevented �j V i from being atensor.Lu
kily, it is quite easy to provide an expli
it 
onstru
tion for a suitable quantity �ijkthat has the right transformation properties. First, we need to note that we should liketo de�ne a 
ovariant derivative for any tensor, and that it should satisfy Leibnitz's rulefor the di�erentiation of produ
ts. Now the need for the 
ovariant derivative arise be
ausethe transformation of the 
omponents of a ve
tor or a tensor from one 
oordinate frameto another involves non-
onstant transformation matri
es of the form �x0i=�xj . Thereforeon a s
alar, whi
h doesn't have any indi
es, the 
ovariant derivative must be just the samething as the usual partial derivative. Combining this fa
t with the Leibnitz rule, we 
anwork out what the 
ovariant derivative of a ve
tor with a downstairs index must be:�j (V i Ui) = (�j V i)Ui + V i �j Ui ; usual Leibnitz rule ;140



= rj (V i Ui) = (rj V i)Ui + V irj Ui ; 
ovariant Leibnitz rule ; (6.72)= (�j V i + �ijk V k)Ui + V irj Ui ; from de�nition of rj V i :Comparing the top line with the bottom line, the two �j V i terms 
an
el, and we are leftwith V i �j Ui = V irj Ui + �ijk V k Ui : (6.73)Changing the labelling of dummy indi
es toV i �j Ui = V irj Ui + �kji V i Uk ; (6.74)we see that if this is to be true for all possible ve
tors V i then we must haverj Ui = �j Ui � �kjiUk : (6.75)This gives us what we wanted to know, namely how the 
ovariant derivative a
ts on ve
torswith downstairs indi
es.It is straightforward to show, with similar te
hniques to the one we just used, that the
ovariant derivative of an arbitrary tensor with p upstairs indi
es and q downstairs indi
esis given by using the two rules (6.65) and (6.75) for ea
h index; (6.65) for ea
h upstairsindex, and (6.75) for ea
h downstairs index.To make 
lear what we mean by this, 
onsider the two-index tensor gij . We use (6.75)for ea
h downstairs index, givingrk gij = �k gij � �`ki g`j � �`kj gi` : (6.76)A
tually this parti
ular example, if we take gij to be the metri
 tensor, is exa
tly what weneed next. We 
an now give an expli
it 
ontru
tion of the 
onne
tion �ijk. We do this bymaking the additional requirement that we should like the metri
 tensor to be 
ovariantly
onstant, rk gij = 0. This is a very useful property to have, sin
e it means, for example,that if we look at the s
alar produ
t V iW j gij of two ve
tors, we shall haverk(V iW j gij) = (rk V i)W j gij + V i (rkW j) gij : (6.77)Remembering our rule that we shall in fa
t freely write W j gij as Wi, and so on, it shouldbe 
lear that life would be
ome a nightmare if the metri
 
ould not be taken freely throughthe 
ovariant derivative!Lu
kily, it turns out that all the things we have been asking for are possible. We 
an�nd a 
onne
tion �ijk that is symmetri
 in jk, gives us a 
ovariant derivative that satis�es141



the Leibnitz rule, and for whi
h rk gij = 0. We 
an �nd it just by juggling around theindi
es in equation (6.76). To do this, we write out rk gij = 0 using (6.76) three times,with di�erent labellings of the indi
es:�k gij � �`ki g`j � �`kj gi` = 0 ;�i gkj � �`ik g`j � �`ij gk` = 0 ; (6.78)�j gik � �`ji g`k � �`jk gi` = 0 ;Now, add the last two equations and subtra
t the �rst one from this. Using the fa
t that�ijk is symmetri
 in jk, we therefore get�i gkj + �j gik � �k gij � 2�`ij gk` = 0 : (6.79)Multiplying this by the inverse metri
 gkm, we immediately obtain the following expressionfor �ijk (after �nally relabelling indi
es for 
onvenien
e):�ijk = 12gi` (�j g`k + �k gj` � �` gjk) : (6.80)This is known as the Christo�el Conne
tion, or sometimes the AÆne Conne
tion.It is a rather simple matter to 
he
k that �ijk de�ned by (6.80) does indeed have the re-quired transformation property (6.71) under general 
oordinate transformations. A
tually,there is really no need to 
he
k this point, sin
e it is logi
ally guaranteed from the way we
onstru
ted it that it must have this property. So we leave it as an \exer
ise to the reader,"to verify by dire
t 
omputation. The prin
iple should be 
lear enough; one simply uses theexpression for �ijk given in (6.80) to 
al
ulate �0ijk, in terms of �0i and g0ij (whi
h 
an beexpressed in terms of �i and gij using their standard tensorial transformation properties).It then turns out that �0ijk is related to �ijk by (6.71).Noti
e that �ijk is zero if the metri
 
omponents gij are all 
onstants. This explainswhy we never see the need for �ijk if we only look at Cartesian tensors, for whi
h the metri
is just Æij . But as soon as we 
onsider any more general situation, where the 
omponents ofthe metri
 tensor are fun
tions of the 
oordinates, the Christo�el 
onne
tion will be
omenon-vanishing. Note that this does not ne
essarily mean that the metri
 has to be oneon a 
urved spa
e (su
h as the 2-sphere that we met earlier); even a 
at metri
 writtenin \
urvilinear 
oordinates" will have a non-vanishing Christo�el 
onne
tion. As a simpleexample, suppose we take the metri
 on the plane,ds2 = dx2 + dy2 ; (6.81)142



and write it in polar 
oordinates (r; �) de�ned byx = r 
os � ; y = r sin � : (6.82)It is easy to see that (6.81) be
omesds2 = dr2 + r2 d�2 : (6.83)If we label the (r; �) 
oordinates as (x1; x2) then in the metri
 ds2 = gij dxi dxj we shallhave gij =  1 00 r2! ; gij =  1 00 r�2! : (6.84)Using (6.80), simple algebra leads to the following results:�111 = 0 ; �112 = 0 ; �122 = �r ;�211 = 0 ; �112 = 1r ; �222 = 0 : (6.85)Having obtained the Christo�el 
onne
tion for this 
ase, we 
an illustrate how one usesit by taking the example of the Lapla
ian. In Cartesian 
oordinates we know that theLapla
ian of a fun
tion  is just �i�i  , whi
h is again a s
alar. Obviously, in general, weshould �nd a generalisation of �i�i  that is again a s
alar. The answer, 
learly, is that theLapla
ian of  is gij ri �j  ; (6.86)sin
e by 
onstru
tion, we know that this is a s
alar under general 
oordinate transforma-tions. Noti
e that we don't need a 
ovariant derivative for the �j that a
ts dire
tly on  ,sin
e that is already 
ovariant. Thus we have in general that the Lapla
ian 
an be writtenas gij �i �j  � gij �kij �k  : (6.87)Now, let us apply this to our simple example of the metri
 on the plane written in polar
oordinates. Substituting from (6.84) and (6.85), we get�21  + 1r2 �22  + 1r �1  (6.88)where the last term is the one 
oming from the 
ontribution of the Christo�el 
onne
tion.Re-expressing this in a more readable language, we have�2 �r2 + 1r � �r + 1r2 �2 ��2 ; (6.89)143



whi
h 
an also be written as 1r ��r�r � �r �+ 1r2 �2 ��2 : (6.90)This was, of 
ourse, an elaborate way to derive a simple and well-known result, but thatwas the whole point of the illustrative exer
ise; to show �rst how the new method works ina simple \toy" example.In fa
t there is a ni
e way to express the Lapla
ian operator in general that doesn'trequire us to grind out all the 
omponents of the Christo�el 
onne
tion. Noti
e from (6.87)that what we need for the Lapla
ian is the 
ontra
ted set of quantitiesgij �kij ; (6.91)and so from (6.80) we havegij �kij = 12gij gk` (�i g`j + �j gi` � �` gij) ;= gij gk` �i g`j � 12gk` gij �` gij ;= �gij g`j �i gk` � 12gk` gij �` gij ;= �Æì �i gk` � 12gk` gij �` gij ;= ��` gk` � 12gk` gij �` gij : (6.92)Note that in getting to the third line, we have use that gk` g`j = Ækj , whi
h is 
onstant, andso (�i gk`) g`j + gk` (�i g`j) = 0.Now we use one further tri
k, whi
h is to note that as a matrix expression, gij �` gij isjust tr(g�1 �` g). But for any symmetri
 matrix we 
an write26detg = etr log g ; (6.93)and so �` detg = (det g) tr(g�1 �` g) : (6.94)Thus we have 12gij �` gij = 1pg �`pg ; (6.95)where we use the symbol g here to mean the determinant of the metri
 gij .Putting all this together, we havegij ri �j  = gij �i �j  + (�i gij) �j  + gij 1pg (�ipg) �j  ; (6.96)26Prove by diagonalising the matrix, so that g �! diag(�1; �2; : : : ; �n). This means that detg = Qi �i,while etr log g = ePi log �i , and so the result is proven.144



after making some 
onvenient relabellings of dummy indi
es. Now we 
an see that all theterms on the right-hand side assemble together very ni
ely, giving us the following simpleexpression for the Lapla
ian:gij ri �j  = 1pg �i�pg gij �j  � : (6.97)This general expression gives us the Lapla
ian in an arbitrary 
oordinate system, for anarbitrary metri
.As a �rst 
he
k, let us test it on the previous example of the two-dimensional plane withthe metri
 ds2 = dr2 + r2 d�2 in polar 
oordinates. From (6.84) we instantly see that thedeterminant of the metri
 is g = r2, so plugging into (6.97) we getgij ri �j  = 1r �i�r gij �j  � ;= 1r ��r�r � �r �+ 1r2 �2 ��2 ; (6.98)in agreement with our previous result.As a slightly less trivial example, 
onsider Eu
lidean 3-spa
e, written in terms of spher-i
al polar 
oordinates (r; �; �). These, of 
ourse, are related to the Cartesian 
oordinates(X;Y;Z) by X = r sin � 
os� ; Y = r sin � sin� ; Z = 
os � : (6.99)The metri
, written in terms of the spheri
al polar 
oordinates, is thereforeds2 = dr2 + r2 d�2 + r2 sin2 � d�2 : (6.100)The determinant is therefore g = r4 sin2 � and so from (6.97) we get that the Lapla
ian is1r2 ��r�r2 � �r �+ 1r2 h 1sin � ��� � sin � � �� �+ 1sin2 � �2 ��2 i : (6.101)6.5 The n-sphere, SO(n+ 1) and Spheri
al Harmoni
s6.5.1 The n-sphere and its symmetriesIn an earlier dis
ussion we looked in 
onsiderable detail at the 
onstru
tion of the 2-sphere,des
ribed as the surfa
e X2 + Y 2 + Z2 = 1 in IR3. All of that dis
ussion 
an easily begeneralised to the 
ase of an n-dimensional sphere, de�ned by the surfa
eXaXa = 1 ; (6.102)in IRn+1, where now of 
ourse the index a is understood to be summed over (n+1) values.For 
onvenien
e, we sometimes refer to the n-sphere as Sn.145



Obviously mu
h of our previous dis
ussion of the symmetries 
arries over straightfor-wardly to the 
ase of the n-sphere. The 
ondition (6.102) is invariant under rotations de�nedby X 0a =MabXb ; (6.103)where Mab is an O(n+ 1) matrix satisfyingMabMa
 = Æb
 : (6.104)In�nitesimally we 
an again write Mab = Æab + Aab, where the in�nitesimal matrix Aab isantisymmetri
. This matrix has 12n(n + 1) independent 
omponents, so we 
on
lude thatthe dimension of the group O(n+ 1) isdim(O(n+ 1)) = 12n (n+ 1) : (6.105)By the dimension of the group, we mean the number of 
ontinuous parameters needed tospe
ify a group element; we saw for O(3) that the answer was 3. As in the 
ase of O(3), thegroup elements divide into those that have determinant +1, and those that have determinant�1. The former 
orrespond to pure rotations in IRn+1, while the latter 
orrespond torotations together with a re
e
tion. Sin
e the identity element obviously has determinant+1 it follows that all the in�nitesimal transformations must be 
ontained in SO(n+1) too.It would be quite 
ompli
ated to generalise the spheri
al polar 
oordinates that we usedon S2 to the 
ase of Sn, but in fa
t for many purposes we 
an perfe
tly well just use theCartesian 
oordinates Xa on IRn+1, together with the 
onstraint (6.102). For example, we
an write the in�nitesimal SO(n + 1) transformations as ÆXa = �a, where �a = AabXb.Thus we are led to the Killing ve
tors Kab, de�ned byKab � Xa ��Xb �Xb ��Xa ; (6.106)where the ab indi
es here are labels, indi
ating whi
h Killing ve
tor we mean. By 
onstru
-tion we have 12n(n+ 1) Killing ve
tors, sin
e Kab = �Kba. This is the 
orre
t number forthe SO(n+1) symmetry of the n-sphere. If we spe
ialise to the 2-sphere, it is easy to verifythat the three Killing ve
tors K12, K13 and K23 de�ned by (6.106) in this 
ase are just thesame, after the 
hange to spheri
al polar 
oordinates, as the Killing ve
tors (6.32) that wederived previously.Noti
e that the Killing ve
tors (6.106) are nothing but the angular momentum operatorsin (n+1)-dimensional Eu
lidean spa
e. In 3 dimensions we would more 
ommonly use the146



totally-antisymmetri
 epsilon tensor �ab
 to re-express the angular momentum operators interms of a ve
tor index: La = 12�ab
Kb
 = �ab
Xb ��X
 : (6.107)Observe, though, that it is a very spe
ial feature of 3 dimensions that one 
an repla
ean antisymmetri
 2-index quantity like Kab by a ve
tor. In higher dimensions, where the
orresponding totally-antisymmetri
 epsilon tensor has more indi
es, one 
annot turn a 2-index antisymmetri
 tensor into a tensor with fewer indi
es. In fa
t this serves to emphasisethat in a general dimension one should think of rotations as o

urring in planes, rather thanabout axes. It is a 
oin
iden
e of 3 dimensions that a rotation in the (x; y) plane 
an alsobe thought of as a rotation about the z axis.6.5.2 Spheri
al Harmoni
sWhen one �rst meets the spheri
al harmoni
s on the 2-sphere, it is generally in the 
ontext ofperforming a separation of variables in Lapla
e's equation or the wave equation, when usingspheri
al polar 
oordinates. In fa
t we just re-derived the expression for this Lapla
ian inthe previous se
tion, in (6.101). After a standard separation of variables in whi
h a fun
tion (r; �; �) is written as  (r; �; �) = R(r)Y (�; �) ; (6.108)Lapla
e's equation r2 = 0 be
omes1R ddr �r2 dRdr �+ 1Y r2S2 Y = 0 ; (6.109)where r2S2 is the operator appearing in the large square bra
kets in (6.101), namelyr2S2 = 1sin � ��� � sin � ����+ 1sin2 � �2��2 : (6.110)In fa
t this operator is pre
isely the Lapla
ian for the unit 2-sphere, as may easily be 
he
kedby using our general formula (6.97), with the metri
 ds2 = d�2 + sin2 � d�2. Introdu
ing aseparation 
onstant � in the usual way, one is led from (6.109) to 
onsider the equation�r2S2 Y (�; �) = �Y (�; �) : (6.111)This is the equation that determines the spheri
al harmoni
s.A standard way to solve for the spheri
al harmoni
s is to write out the S2 Lapla
ianr2S2expli
itly using (6.110), and perform a further separation of variables by writing Y (�; �) =147



P (�)�(�). This introdu
es another separation 
onstant m2, an one is left to solve theequations sin � dd� � sin � dPd� �+ (� sin2 � �m2)P = 0 ;d2�d�2 +m2 � = 0 : (6.112)The latter has solutions of the form eim�, and to get the proper periodi
ity under 
ompleterotations � �! � + 2� on the sphere, we dedu
e that m must be an integer. After lettingx = 
os � the �rst equation be
omes the generalised Legendre equation,ddx �(1� x2) dPdx �+ ��� m21� x2�P = 0 : (6.113)After a 
onsiderable labour, involving, for example, a 
areful study of the solutions for thisequation obtained as a series expansion (dis
ussed at length in Part I of the 
ourse), one
on
ludes that for the fun
tions P (�) to be regular at � = 0 and � (the north and southpoles of the sphere), the separation 
onstant � must be of the form � = ` (` + 1), where `is an integer, and �` � m � `. Thus after a rather involved 
hain of argument, one arrivesat the spheri
al harmi
s Y`m(�; �) being the 
omplet set of regular eigenfun
tions of theLapla
ian r2S2 on S2, with �r2S2 Y`m = ` (`+ 1)Y`m : (6.114)Of 
ourse one has the feature that sin
e m does not appear in the expression for theeigenvalues, there is a (2` + 1)-fold degenera
y for the spheri
al harmoni
s with a givenvalue of `, sin
e m 
an take any of the integer values between �` and +`.This traditional approa
h to 
onstru
ting the spheri
al harmoni
s is a rather 
al
ula-tional one, whi
h provides very little group-theoreti
 insight into what is going on. We arein fa
t now in a position to give a mu
h simpler, and more elegant, 
onstru
tion of thespheri
al harmoni
s, whi
h provides us with a rather 
lear pi
ture of them as representa-tions of the symmetry group SO(3) of the 2-sphere. In fa
t it is just as easy to 
onstru
tthe spheri
al harmoni
s on all the spheres Sn, for arbitrary dimension n, so there is thatadvantage too.We have des
ribed the unit n-sphere as the surfa
e XaXa = 1 in IRn+1. Let us writethe metri
 on the unit n-sphere as d
2. It is evident that this is related to the Cartesianmetri
 ds2 on IRn+1 by ds2 = dr2 + r2 d
2 ; (6.115)where XaXa = r2. This is 
lear, if you think about how we would measure distan
es inIRn+1 if it were written in \hyperspheri
al polar 
oordinates," r and y�, where y� represent148



the set of angular that one would use to parameterise points on the unit n-sphere. Thesquare of the distan
e between two in�nitesimally separated points in IRn+1 is therefore thesum of the square of the radial-
oordinate separation dr, and the square of the distan
e inthe surfa
e of the sphere that separates the two points. Sin
e d
2 is the metri
 on the unitsphere, the distan
e on the sphere of radius r, where the two points are lo
ated, will bes
aled by the fa
tor r. It is easy to see that (6.115) redu
es to familiar 
ases if we 
onsiderIR2 and IR3, sin
e the metri
s on the unit 1-sphere and 2-sphere are just1-sphere : d
2 = d�2 ;2-sphere : d
2 = d�2 + sin2 � d�2 : (6.116)Lu
kily we don't ever need to de�ne the angular 
oordinates on Sn expli
itly, in order tosolve for the spheri
al harmoni
s. We 
an just let them be 
alled y�, with 1 � � � n, but wedon't need to de�ne how they are related to the Cartesian 
oordinates Xa in IRn+1. (One
an usefully have in mind, though, the pi
ture that they will be de�ned very analogouslyto the way spheri
al polar 
oordinates are related to the (X;Y;Z) 
oordinates on IR3.) Themetri
 on the unit n-sphere 
an then be written asd
2 = h�� dy� dy� : (6.117)The full set of (n+1) hyperspheri
al 
oordinates on IRn+1 will be (r; y�). Let us 
all thesehyperspheri
al 
oordinates xi, with i running from 0 to n:x0 � r ; x� � y� : (6.118)Now, using (6.117), the metri
 (6.115) on IRn+1 isds2 = dr2 + r2 h�� dy� dy� : (6.119)Clearly therefore the determinant g of this metri
 is given byg = rn h ; (6.120)where h is the determinant of the metri
 h�� on the unit n-sphere. Plugging into ourgeneral expression (6.97) for the Lapla
ian, we therefore �nd that in these hyperspheri
alpolar 
oordinates, the Lapla
ian on IRn+1 is given byr2Rn+1 = 1rn ��r �rn ��r�+ 1r2 r2Sn ; (6.121)where r2Sn � 1ph ��y� �phh�� ��y� � (6.122)149



is the Lapla
ian on the unit n-sphere. (The spe
ial 
ases for n = 1 and n = 2 appear in ourexamples (6.98) and (6.101) that we looked at previously.)Having obtained this relation between the Lapla
ians on IRn+1 and Sn, the problemof 
onstru
ting the spheri
al harmoni
s is almost solved. First, we introdu
e the followingfun
tions 	 on IRn+1: 	(X) = Ta1a2���a` Xa1 Xa2 � � �Xa` ; (6.123)where Ta1a2���a` is an `-index 
onstant tensor in IRn+1 whi
h is 
ompletely arbitrary ex
eptfor satisfying the following two 
onditions:(1) Ta1a2���a` is totally symmetri
 in all its indi
es.(2) The tensor T is totally tra
eless, in the sense that the 
ontra
tion of any pair of indi
eson Ta1a2���a` gives zero: Æa1a1 Ta1a2���a` = 0 ; et
. : (6.124)Clearly 
ondition (1) is simply making sure that we eliminate all the \redundant bag-gage" in Ta1a2���a` . Sin
e it appears in (6.123) 
ontra
ted onto the totally symmetri
al prod-u
t Xa1 Xa2 � � �Xa` , it is obvious that any part of Ta1a2���a` that was not totally symmetri
alin the indi
es would give no 
ontribution anyway.Condition (2) serves a di�erent purpose. It implies that if we a
t with the IRn+1 Lapla-
ian r2Rn+1 on 	, we shall get zero: r2Rn+1 	 = 0 : (6.125)This is be
ause from the de�nition of 	 in (6.123), we shall 
learly have�	�Xa = Taa2���a` Xa2 � � �Xa` + Ta1a���a` Xa1 Xa3 � � �Xa` + � � � Ta1a2���a` Xa1 Xa2 � � �Xa`�1= ` Taa2���a` Xa2 � � �Xa` ; (6.126)(all the ` terms are equal, be
ause of the total symmetry). A
ting with another derivative,we therefore get �2	�Xa �Xb = ` (`� 1)Taba3 ���a` Xa3 � � �Xa` : (6.127)(This time, we have immediately used the symmetry of T to 
olle
t the (`� 1) terms thatappear from the se
ond di�erentiation together. Now we see that the IRn+1 Lapla
ian a
tingon 	 gives zero:r2Rn+1 	 = �2	�Xa�Xa = ` (`� 1) Æab Taba3���a` Xa3 � � �Xa` = 0 ; (6.128)150



by virtue of 
ondition (2) above.Now, it only remains to make the following observation. Sin
e the fun
tion 	 de�nedin (6.123) involes a produ
t of ` Cartesian 
oordinates Xa, it is evident that it must beexpressible as 	(X) = r`  (y) ; (6.129)where y represents the angular 
oordinates y� on the unit n-sphere, and  (y) is independentof r. Again, it is helpful to have in mind the IR3 example here, where we haveX = r sin � 
os� ; Y = r sin � sin� ; Z = r 
os � : (6.130)Finally, sin
e we have established that the IRn+1 Lapla
ian annihilates 	 we simply haveto substitute it into (6.121) to dedu
e that1rn ddr �rn dr`dr � + 1r2 r`r2Sn  = 0 : (6.131)Hen
e we arrive at the 
on
lusion that  is an eigenfun
tion of the Lapla
ian on the unitn-sphere, satisfying �r2Sn  = ` (`+ n� 1) : (6.132)Noti
e that is we take n = 2, 
orresponding to the 2-sphere, we reprodu
e the familiareigenvalues ` (`+ 1).Two issues remain to be dis
ussed here. The �rst is that we have 
ertainly produ
edsome eigenfun
tions on the n-sphere by this method, but have we obtained them all? Theanswer is yes, and it 
an be seen as follows. Clearly, any regular fun
tion on the unitn-sphere 
an be smoothly extended out as a regular fun
tion on IRn+1. Conversely, if we
onsider the set of all regular fun
tions on IRn+1, they will proje
t down so as to provideus with all possible regular fun
tions on Sn. Now, the regular fun
tions f(X) on IRn+1 
an
ertainly be expanded in a Taylor series, whi
h will give a sum of terms of the form (6.123),summed over all ` � 0 (without yet imposing the tra
elessness of 
ondition (2) above):f(X) = 1X̀=0 f`(X) ; (6.133)where f`(X) � Ta1a2���a` Xa1 Xa2 � � �Xa` ; (6.134)But the imposition of tra
elessness on Ta1a2���a` is just a matter of organising the terms in thesum, sin
e a pure tra
e 
ontribution in the term f`(X) would 
orrespond to r2 times a termof the form f`�2(X). By the time we restri
ted to the unit n-sphere, by setting r = 1, this151



from f` term would therefore just be repeating what had already been 
onstru
ted in f`�2.So from the viewpoint of 
onstru
ting regular fun
tions on the n-sphere, the imposition oftra
elessness on the tensors Ta1a2���a` is just a matter of avoiding double-
ounting. Thus we
an be sure that our 
onstru
tion of s
alar eigenfun
tions of the Lapla
ian on Sn has givenall all the eigenfun
tions. The fun
tions  , de�ned by (6.123) and (6.129), then, give the
omplete set of spheri
al harmoni
s on Sn.The se
ond issue that we must still address 
on
erns the degnera
ies of the eigenvalues,or, equivalently, the multipli
ities of the eigenfun
tions  for a given value of the integer `.This is easily worked out, sin
e it is just a matter of 
ounting how many independent 
om-ponents the 
onstant tensor Ta1a2���a` has, bearing in mind the two 
onditions of symmetryand tra
elessness that we imposed. It is easy to see that a totally-symmetri
 tensor with `indi
es that ea
h run over (n+ 1) values has(n+ 1)(n+ 2) � � � (n+ `)`! (6.135)independents 
omponents. When we impose the tra
eless 
ondition on su
h a tensor, wetherefore impose a number of 
onditions equal to the number of independent 
omponents ina similar tensor that has only (`� 2) indi
es. Thus the number of independent 
omponentsin our tensor Ta1a2���a` that is totally symmetri
 and tra
eless isd` = (n+ 1)(n+ 2) � � � (n+ `)`! � (n+ 1)(n+ 2) � � � (n+ `� 2)(`� 2)! ;= (n+ 1)(n+ 2) � � � (n+ `� 2)`! �(n+ `� 1)((n) + `)� ` (`� 1)� ;= n (n+ 1)(n+ 2) � � � (n+ `� 2)(2` + n� 1)`! ; (6.136)whi
h 
an be written as d` = (2`+ n� 1) (n+ `� 2)!`! (n� 1)! : (6.137)This gives us the multipli
ity of the eigenfun
tions  with the spe
i�
 eigenvalue�` = ` (`+ n� 1) (6.138)that we found above. Noti
e that if we spe
ialise to the 
ase of the 2-sphere, equation(6.137) redu
es to 2-sphere: d` = 2`+ 1 ; (6.139)as we know it should. 152



6.5.3 Irredu
ible Representations of SO(N)The 
onstru
tion of the eigenfun
tions that we have obtained here, and the results for themultipli
ities of the eigenvalues, have a deeper signi�
an
e than might at �rst be apparent.What we have a
tually been doing here is 
onstru
ting irredu
ible representations of the thesymmetry groups SO(n+ 1) of the n-spheres. To be a bit more pre
ise, the sets of tensorsTa1a2���a` that we have been using are themselves irredu
ible representations of SO(n+ 1).More generally, one 
an 
onsider many di�erent 
lasses of 
onstant tensorHa1a2���ap in IRn+1,and asso
iate them with irredu
ible representations.To make life a little simpler, let us talk about SO(N) rather than SO(n + 1). If webegin with the tensor Ha1a2���ap in IRN , and make no symmetry or tra
elessness requirementat all on it, then the number of independent 
omponents for su
h a tensor will simply beNp, sin
e ea
h index 
an range over N values. This set of tensors with Np 
omponentsis a representation of SO(N), but it is not irredu
ible; we 
an divide it into smaller self-
ontained subsets of 
omponents. The rules for how su
h subdivisions 
an be made are verysimple. We 
an do anything as long as it respe
ts SO(N) 
ovarian
e. What this means isthat we have to treat the indi
es in a totally \demo
rati
" way, and we 
annot single outany one index value, or subset of index values, for spe
ial treatment.Let us take a 
on
rete example. Suppose we take a 2-index tensor Hab in IRN , whi
hhas N2 independent 
omponents. Is this redu
ible, or is it already as irredu
ible as 
anbe? First, the sort of things we 
annot do is to pi
k an index value, say a = 1, and treatthat as spe
ial. We 
annot divide Hab into H��, H1�, H�1 and H11, where 2 � � � N ,and 
laim that we are de
omposing Hab into representations of SO(N); 
learly what we aredoing here is not 
ovariant from an SO(N) point of view. What we 
an do, however, is towrite Hab as the sum of its symmetri
 and antisymmetri
 parts:Hab = Sab +Aab ; (6.140)where Sab � 12 (Hab +Hba) ; Aab � 12(Hab �Hba) : (6.141)Now, we 
an 
ount the number of independent 
omponents in Sab, namely 12N(N +1), andthe number of independent 
omponents in Aab, namely 12N(N � 1). Of 
ourse the sum ofthese two gives us ba
k the original number of 
omponents for the unrestri
ted tensor Hab:12(N(N + 1) + 12N(N � 1) = N2 : (6.142)153



Clearly the de
omposition in (6.140) is 
ompletely 
ovariant with respe
t to SO(N), sin
eit is a tensorial equation, so it is a perfe
tly allowable subdivision for us to make.Have we �nished? Not quite, be
ause there is one more thing we 
an do that respe
tsthe 
ovarian
e, and that is to extra
t the tra
e from the symmetri
 tensor Sab. Thus we
an write Sab = eSab + 1N S Æab ; (6.143)where S is the tra
e of Sab, namely S � Æab Sab : ; (6.144)and so by 
onstru
tion eSab is tra
eless, Æab eSab = 0 : (6.145)Clearly (6.143) and (6.144) are both perfe
tly SO(N)-
ovariant equations; they transform
ovariantly under SO(N) rotations. (We are really ba
k to \kindergarten" Cartesian tensorshere!)With this extra
tion of the tra
e, we have rea
hed the end of the road for the de
ompo-sition of the original 2-index tensor Hab. In other words, we have found that it splits intothree irredu
ible representations of SO(N), with dimensionsdim(Aab) = 12N(N � 1) ; dim( eSab) = 12(N � 1)(N + 2) ; dim(S) = 1 ; (6.146)These are the dimensions of the 2-index antisymmetri
 representation, the 2-index symmet-ri
 tra
eless representation, and the singlet of SO(N) respe
tively.The original Hab representation is really to be thought of as the produ
t of two 1-index representations. The 1-index, or ve
tor representation of SO(N) 
orresponds, as itsname implies, to taking an arbitrary 
onstant ve
tor Ha in IRn. It is 
lear that we 
annotsubdivide this representation any further by means of any allowable 
ovariant rules, and soit is an N -dimensional irredu
ible representation.We have just met four di�erent irredu
ible representations of SO(N), and we have seenthat the following multipli
ation rule applies:N �N = 12N(N � 1) + 12(N � 1)(N + 2) + 1 : (6.147)What this is saying is that the produ
t of the ve
tor representation of SO(N) with itselfgives the three irredu
ible representations whose dimensions are listed on the right-handside. For example, in SO(3) we have3� 3 = 3 + 5 + 1 : (6.148)154



Note that we use the underlining notation to indi
ate that we are talking about grouprepresentation here.27One 
an 
ontinue the pro
ess of examining SO(N) tensors with more and more indi
es,in ea
h 
ase making a 
ovariant de
omposition into the largest possible number of irredu
iblepie
es, and thereby one builds up the 
omplete set of irredu
ible representations of SO(N).It gets a little tri
kier than the examples we have looked at so far, on
e the tensor hasseveral indi
es. For example, 
onsider a 3-index tensor Hab
. This 
ertainly 
ontains atotally-symmetri
 pie
e, and a totally antisymmetri
 pie
e, but it also has more. This
an easily be seen by noting that sum of the independent 
omponents 16N(N + 1)(N + 2)of a symmetri
 3-index tensor and the independent 
omponents 16N(N � 1)(N � 2) of anantisymmetri
 3-index tensor does not add up to the N3 
omponents of an arbitrary 3-indextensor. There is nothing deep or mysterious about this, of 
ourse, and it is really just anexer
ise in symmetries and 
ombinatori
s to work out what the \extra" pie
es are. Of 
ourseone also needs to extra
t all tra
e terms where appropriate, and 
ount those as separateirredu
ible pie
es. A very hand diagrammati
 method, known as Young Tableaux, has beendeveloped for doing all this. However, it takes us beyond the s
ope of this introdu
torydis
ussion, so we shall leave it at that.For our present purposes we don't need anything terribly exoti
, be
ause we saw thatin the 
ontru
tion of the spheri
al harmoni
s it was the totally symmetri
 and tra
elessSO(n+ 1) tensors Ta1a2���a` that were relevant. What we have now learned from the abovedis
ussion is that these tensors are a
tually giving us irredu
ible representations of SO(n+1), and we have already worked out their dimensions d` in (6.137). For the 2-sphere, thisbe
ame d` = 2`+ 1, and so what we are seeing is that the spheri
al harmoni
s on S2 o

urin the following irredu
ible representations of SO(3):d` = 2`+ 1 = 1 ; 3 ; 5 ; 7 ; : : : (6.149)As the dimension d` = 2` + 1 of the representation gets bigger, so, 
orrespondingly, doesthe eigenvalue �` = ` (`+ 1).For the higher-dimensional n-spheres the dimensions of the symmetri
 tra
eless irre-du
ible SO(n + 1) representations be
ome a bit more interesting. For example, from d`given in (6.137) we have the following:SO(4) : d` = (`+ 1)2 = 1 ; 4; ; 9 ; 16 ; : : :27It also serves to show that we are doing profound mathemati
s here, and that we have not reverted tothe kindergarten arithmeti
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SO(5) : d` = 16(`+ 1)(`+ 2)(2`+ 3) = 1 ; 5 ; 14 ; 30 ; : : : (6.150)SO(6) : d` = 112 (`+ 1)(`+ 2)2(`+ 3) = 1 ; 6 ; 20 ; 50 ; : : :These examples are the �rst few representations of the spheri
al harmoni
s on the 3-sphere,4-sphere and 5-sphere respe
tively.We shall bring this 
ourse to a 
on
lusion with a brief dis
ussion of two topi
s related
losely to what has gone before. Ea
h deserves an entire 
ourse in its own right, so 
learlywhat will be said here will be very sket
hy. The �rst of the topi
s is lo
al gauge symmetries,and the se
ond is Riemann 
urvature, and general relativity.6.6 Gauge Invarian
e and Covariant Derivative in Quantum Me
hani
sWe met the 
ovariant derivative in the 
ontext of the di�erentiation of general-
oordinatetensors; it was ne
essary to introdu
e it in order to be able take derivatives of tensors andget tensors again. Exa
tly the same basi
 notion of a 
ovariant derivative arises also inother 
ontexts. Perhaps the simplest of these is in quantum me
hani
s, when we 
onsidera wavefun
tion for a 
harged parti
le in the presen
e of an ele
tromagneti
 �eld.Consider �rst the very simple situation of the S
hr�odinger equation for a free parti
le,28� �h22m ~r2  = i �h � �t : (6.151)Obviously we are free to multiply the wavefun
tion  by an arbitrary 
onstant 
omplexnumber of modulus 1, without 
hanging anything physi
ally; �!  0 = U  ; jU j = 1 : (6.152)We 
an write su
h a 
onstant as U = ei� ; (6.153)where � is a 
onstant real number, whi
h may as well be restri
ted to lie in the range0 � � < 2�. The 
onstant U is a 1 � 1 unitary matrix, sin
e it satis�es U y U = 1. It is infa
t an element of the group U(1).It was important in the transformation (6.152) that U should be a 
onstant, so that it
an pass freely through the derivatives in the S
hr�odinger equation (6.151), thus ensuringthat  0 satis�es the same equation:� �h22m ~r2  0 = i �h � 0�t : (6.154)28In this se
tion we shall be assuming that we are working in 
ate Eu
lidean spa
e, with Cartesian
oordinates, so ~r here just means the usual gradient operator of Cartesian ve
tor analysis.156



Su
h 
onstant phase transformations are 
alled global U(1) transformations, or sometimesrigid U(1) transformations.Suppose, now, that we want to generalise the idea of the phase transformation (6.152), tothe 
ase where we allow the unit-phase quantity U to be dependent on the spatial position,and on time. Su
h a transformation is then 
alled a lo
al U(1) transformation. Obviouslyas it stands this will give trouble in the S
hr�odinger equation, sin
e now when we substitute(6.152) into (6.151), we will pi
k up terms where the spa
e and time derivatives land on thephase fa
tor U . These terms will prevent the transformed wavefun
tion  0 from satisfyingthe simple primed equation (6.154).This dis
ussion should sound rather familiar. It is exa
tly like the situation we fa
ed withderivatives of general-
oordinate tensors, where the derivative landing on the transformationmatrix �x0i=�xj spoilt the tensor-transformation properties. Here, the problem is analogous,namely that (�i 0) is not 
oming out to be the same as (�i )0. In the 
ase of general-
oordinate tensor, we introdu
ed a 
ovariant derivative to solve the problem, and that isexa
tly what we 
an do here too. Thus we shall de�ne29Di  � �i  � i e�h Ai  ; D0  � � �t + i e�h � : (6.155)We now require that Ai and � should transform under the lo
al U(1) transformation, inpre
isely su
h a way as to give us what we want, whi
h is(Di  )0 = U Di  ; (D0 )0 = U D0 : (6.156)Let us look at Di �rst. Writing out what we require for Di in (6.156) we haveD0i  0 = (�i � i e�h A0i) (U  ) ;= U ��i  � i e�h A0i  + U�1 (�iU) � ;= U ��i � i e�h Ai� + hU�1 (�iU) + i e�h (Ai �A0i)i ;= U Di  hU�1 (�iU) + i e�h (Ai �A0i)i : (6.157)The �rst term on the bottom line is exa
tly what we want, so we must require that the quan-tity in square bra
kets be zero. In other words, Ai should have the following transformation29For now, the quantities Ai and � are just a 3-ve
tor and a s
alar, introdu
ed for the purpose of allowingus to make lo
al U(1) transformations. Any similarity to things that may be familiar from ele
tromagnetismis entirely non-
oin
idental, but here we are going to derive ele
tromagetism from the requirement of lo
alU(1) invarian
e. 157



property under the lo
al U(1) transformation:A0i = Ai � i �he U�1 �iU : (6.158)If we parameterise U in the following way,U = ei e�=�h ; (6.159)where � is the lo
al parameter, then we see that (6.158) is nothing butA0i = Ai + �i � : (6.160)In an identi
al fashion, we 
an derive the required lo
al U(1) transformation of thefun
tion � in the 
ovariant time derivative D0 in (6.155), from the se
ond equation in(6.156). We �nd �0 = �� ���t : (6.161)We 
an re
ognise (6.160) and (6.161) as being pre
isely the gauge transformation rulesof the magneti
 ve
tor potential ~A and the ele
trostati
 potential � of ele
trodynami
s:~A0 = ~A+ ~r� ; �0 = �� ���t : (6.162)We have e�e
tively derived ele
tromagnetism, but purely from the 
onsiderations of lo
alU(1) invarian
e in quantum me
hani
s.The �nal step is to write out our new version of the S
hr�odinger equation, using the
ovariant derivative. Thus in (6.151) we repla
e the ordinary derivatives by 
ovariant deriva-tives: � �h22m DiDi  = i �hD0  : (6.163)It is now manifest, from the known 
ovarian
e properties of the transformations in (6.156),that after performing an arbitrary lo
al U(1) transformation the S
hr�odinger equation(6.163) will simply take the same form, but now with primes on  and the 
ovariant deriva-tives. Note that (6.163) is nothing but� �h22m �~r� i e�h ~A�2  + e � = i �h � �t ; (6.164)whi
h is the S
hr�odinger equation for a 
harge parti
le in an ele
tromagneti
 �eld.
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6.7 Curvature, the Riemann Tensor, and General RelativityWe have seen how the Christo�el 
oone
tion �ijk allows us to de�ne a 
ovariant derivative,thereby permitting an extension of the idea that is familiar in Cartesian tensor analysis thatthe derivative operator provides a mapping from tensors into new tensors. We have seenalso that the Christo�el 
onne
tion is non-vanishing not only for a metri
 on a 
urved spa
esu
h as a sphere, but even for a 
at metri
 that happens to be expressed in a non-Cartesian
oordinate system, su
h as polar 
oordinates on the plane.So, for example, if we start with the 
at metri
 on the plane written in Cartesian 
oor-dinates, ds2 = dx2+ dy2, and then make the standard transformation to polar 
oordinates,we �nd that the originally-vanishing Christo�el 
onne
tion be
omes non-vanishing after the
oordinate transformation. The fa
t that this 
an happen is a re
e
tion of the non-tensorialnature of the 
onne
tion. By 
ontrast, if a tensor were vanishing in one 
oordinate frame,it would have to remain zero in all 
oordinate frames. This 
an be seen immediately fromits transformation law, (6.43).How do we 
hara
terise the idea of whether the spa
e is intrinsi
ally 
urved, or not?Of 
ourse one approa
h would be to take the given metri
 and try making 
oordinatetransformations in order to see whether it 
an be re-expressed as the 
at metri
 in someCartesian 
oordinate system. But that would be a very 
lumsy thing to do in general, andthe mere fa
t that one failed to �nd a 
oordinate transformation that did the job mightmean nothing more than that one had not tried hard enough. Besides, it would not be anapproa
h that would provide very mu
h insight into the stru
ture of the metri
, espe
iallyif it turned out that it was not merely 
at spa
e in a funny 
oordinate system.It should 
ome as no surprise, in the light of the previous observations, that the wayto 
hara
terise the 
urvature of a spa
e is by means of a tensor quantity. The requiredobje
t, 
alled the Riemann Tensor, has four indi
es, with 
ertain symmetry properties, andis denoted by Rijk`. If the metri
 is 
at then the Riemann tensor is zero. Sin
e it is atensor, this vanishing is unaltered under any general 
oordinate transformation, and so itprovides a genuinely 
oordinate-independent test for whether the metri
 is 
apable of beingtransformed into the standard Cartesian metri
 by a suitable 
oordinate transformation.At least as importantly, however, a non-vanishing Riemann tensor provides very usefulinformation about a spa
e that is 
urved.How do we de�ne the Riemann tensor? It turns out that it 
an be 
onstru
ted by taking
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a derivative of the Christo�el 
onne
tion, in an appropriate way. Spe
i�
ally, it is given byRijk` = �k �ij` � �` �ijk + �ikm �mj` � �i`m �mjk : (6.165)Looking at this, it is not manifestly apparent that it should be a tensor at all. Afterall, it is 
onstru
ted by taking partial derivatives of something that is itself not a tensor.Remarkably, however, it turns out that this is a tensor. In prin
iple, it 
an be proven by thetime-honoured method of 
al
ulating it in a primed 
oordinate frame, using the knownmtransformation properties of �i and �ijk, and showing that it is related to the 
omponentsin the original unprimed frame in the way it should be for a tensor. There is nothing
on
eptually diÆ
ult involved in 
he
king this, but it is somewhat tedious. We shall leaveit as an exer
ise for the interested reader.The �rst thing to noti
e from (6.165) is that the Riemann tensor is indeed obviouslyzero if we take gij to be the 
at metri
 in Cartesian 
oordinates, gij = Æij , sin
e alreadythat means that �ijk = 0, as we saw before. Together with the knowledge that Rijk` reallyis a tesnor, this shows that Rijk` = 0 for 
at spa
e in any 
oordinate system.There are further tensor quantities that 
an be 
onstru
ed from the Riemann tesnor, bymaking index 
ontra
tions. These therefore 
ontain less information than the full Riemanntensor, but they are nevertheless of great importan
e. First, we 
an de�ne the Ri

i Tensor,Rij = Rkikj : (6.166)One 
an show from the de�nition of the Riemann tensor that Rij is a
tually symmetri
 inits two indi
es, Rij = Rji. By 
ontra
ting with the inverse metri
 we 
an also form a s
alar,
alled the Ri

i S
alar R, given by R = gij Rij : (6.167)The Riemann tensor itself also has 
ertain symmetries. To state these, it is 
onvenientwe lower the �rst index, de�ning (in the standard way)Rijk` = gimRmjk` : (6.168)The symmetries are then: Rijk` = Rk`ij = �Rjik` = �Rij`k ;Rijk` +Rik`j +Ri`jk = 0 ; (6.169)all of whi
h 
an, with some algebra, be proven from the previous de�nitions. Thus Rijk` issymmetri
 under the inter
hange of the �rst pair of indi
es with the se
ond pair, and it is160



antisymmetri
 under the ex
hange of the �rst two indi
es, and under the ex
hange of thelast two indi
es. It also has the 
y
li
 symmetri
 given in the se
ond line.Let us 
onsider the 2-sphere, with the metri
 ds2 = d�2 + sin2 � d�2, as an example.Taking the 
oordinates to be x1 = �, x2 = �, we havegij =  1 00 sin2 �! ; gij =  1 00 1sin2 � ! : (6.170)Simple algebra using (6.80) leads to the following results for the 
omonents of the Christo�el
onne
tion: �111 = 0 ; �112 = 0 ; �122 = � sin � 
os � ;�211 = 0 ; �212 = 
ot � ; �222 = 0 : (6.171)From the symmetries of the Riemann tensor given above, it follows that in two dimensionsthere is only one independnet 
omponent, and one easily �nds that this is given byR1212 = sin2 � : (6.172)The Ri

i tensor Rij and Ri

i s
alar R then turn out to beR11 = 1 ; R22 = sin2 � ; R12 = R21 = 0 ; R = 2 : (6.173)Noti
e that by 
omparing with (6.170), we see that the Ri

i tensor 
an be written asRij = gij : (6.174)Metri
s whose Ri

i tensors satisfy this type of equation, Rij = � gij , are 
alled EinsteinMetri
s, and they are of great importan
e in mathemati
s and in theoreti
al physi
s.We 
on
lude this se
tion with some remarks about one of the most important physi-
al appli
ations of the geometri
al theory of tensors that we have been studying, namelyEinstein's theory of General Relativity. This is the theory that des
ribes the phenomenonof gravity, superseding the Newtonian theory of gravity. One of the 
ornerstones of gen-eral relativity is the fa
t that the \for
e of gravity" is a frame-dependent 
on
ept, beingindistinguishable (by means of lo
al experiments) from the e�e
ts of a

eleration. Thus one
an, for example, always render the for
e of gravity vanishing at some point, by puttingoneself in a freely-falling frame (not ne
essarily a wise thing to do!). Conversely, one 
anprodu
e a gravitational for
e that is lo
ally indistinguishable from the for
e of gravity on161



the surfa
e of the earth, even out in the far rea
hes of spa
e, by turning on the ro
ket-motorof a spa
e
raft so that is a

elerates at 32 feet per se
ond per se
ond.30In general relativity the four-dimensional Minkowsi spa
etime metri
 of spe
ial relativ-ity is repla
ed by a more general four-dimensional spa
etime metri
. As in our previousdis
ussions, in some 
ases this might be just a rewriting of the Minkowski metri
 after some
hange of 
oordinates. On the other hand, it might be a genuinly 
urved metri
. It shouldperhaps 
ome as no surprise, in the light of previous remarks, that the \for
e of gravity"is 
hara
terised by the Christo�el 
onne
tion �ijk. The frame-dependen
e of the 
on
eptof the gravitational for
e is now understandable, sin
e it is des
ribed by the non-tensorialquantities �ijk. For instan
e, in a small lo
al region any spa
e looks nearly like a pat
hof 
at spa
e (think of a small region on the surfa
e of the earth, for example), and thismeans that one 
an �nd a 
oordinate transformation in whi
h the metri
 be
omes like theMinkowski metri
 at a point, and its �rst derivatives vanish at that same point. This impliesthat in this 
oordinate system the Christo�el 
onne
tion vanishes at that point, and thenthere is no \for
e of gravity." The 
oordinate system that one has pi
ked that does this jobis the \lo
al inertial frame" or \free-fall frame."The pre
ise way in whi
h the Christo�el 
onne
tion des
ribes the \for
e of gravity" is asfollows. Consider the worldline of a parti
le that is a
ted on by no for
es other than gravity.Assuming the parti
le is massive, we 
an use the elapse of proper time � , as measured in therest frame of the parti
le, to parameterise its path in spa
etime, xi = xi(�). The equationthat governs its motion, 
alled the Geodesi
 Equation, is thend2xid�2 + �ijk dxjd� dxkd� = 0 : (6.175)This equation is the analogue in general relativity of Newton's se
ond law of motion, appliedto a massive parti
le in a gravitational �eld. In the Newtonian limit of weak gravitational�elds and low velo
ities, the �rst term in the geodesi
 equation be
omes the a

eleration30These evident fa
ts, whi
h are su
h important foundations in General Relativity, are still, 
uriously,often denied by the \old guard" of adherents to the Newtonian s
hool of thought. Thus one still frequentlyen
ounters, espe
ially in undergraduate me
hani
s 
lasses, the 
ounter-Einsteinian assertion that \
entrifugalfor
es are �
titious." The trouble stems from an uneasiness, in the old Newtonian pi
ture, with the modern
on
ept that all 
oordinate frames should be equally valid. Thus \inertial frames" were singled out as theonly ones that were kosher, and so for
es resulting from a

eleration relative to these were deemed to be�
titious. It is interesting to note that the Newtonian and the Einsteinian physi
ist will disagree on what
onstitutes an inertial frame. A Newtonian physi
ist will say that an observer standing in a laboratoryon the earth is in an inertial frame, whereas the Einsteinian physi
ist will say that an observer who is infree-fall, having jumped out of the laboratory window, is in a (lo
al) inertial frame.162



of the parti
le, while in the se
ond term the 
omponents �a00 of the Christo�el 
onne
tionbe
ome the dominant ones, where 0 represents the time dire
tion, and the a index rangesover the three spatial dire
tions. In fa
t in the Newtonian limit, in Cartesian 
oordinates,these 
omponents are given by �a00 = �a �, where � is the Newtonian gravitational po-tential. Furthermore, at low velo
ities we have dx0=d� � 1, jdxa=d� j << 1 (we use unitswhere the speed of light is 
 = 1), and so the geodesi
 equation limits tod2xadt2 = � ���xa ; (6.176)whi
h is Newton's se
ond law for the motion of a parti
le in a gravitational �eld. Even in theNewtonian limit, however, we see the radi
ally di�erent interpretations of the Newtonianand the Einsteinian viewpoints. The Newtonian physi
ist will only interpret the right-handside of (6.176) as a gravitational for
e if he has �rst 
he
ked to see that the 
oordinatesystem is one that is deemed to \inertial" in the Newtonian sense. By 
ontrast, the generalrelativist pla
es all 
oordinate systems on a demo
rati
 footing, and universally interprets(6.175) as the equation des
ribing the motion of the parti
le in the gravitational �eld,without any preferen
e for one 
oordinate system over another.Although we 
an make gravity vanish \at a point," we 
annot in general make it vanisheverywhere by 
hoi
e of 
oordinate frame, ex
ept in the spe
ial 
ase of a 
at spa
etime.This is like the di�eren
e between the 
at 2-plane and the 2-sphere; lo
ally, they both looklike bits of 
at spa
e, but larger ex
ursions reveal that the plane is 
at, while the sphere is
urved. In general relativity the 
urvature of spa
etime is brought about by the presen
eof matter, or other disturban
es (su
h as gravitational waves). The pre
ise way in whi
hthis happens is des
ribed by the Einstein �eld equations, whi
h readRij � 12Rgij = 8� GTij : (6.177)The quantities on the left-hand side are the Ri

i tensor Rij and Ri

i s
alar R of the spa
e-time metri
 gij . On the right-hand side Tij is the energy-momentum tensor of the matter,whi
h des
ribes the distribution of energy, and momentum, in the spa
etime. Finally, G isNewton's 
onstant.31 These �eld equations are the gravitational analogue of the Maxwell�eld equations �� F �� = �4� J� ; (6.178)(or ~r � ~E = 4� �, ~r� ~B� � ~E=�t = 4� ~J if you prefer). Just as the Maxwell �eld equationsdes
ribe how the distribution of 
harges and 
urrents generates ele
tromagneti
 �elds, so31So there is still a pla
e for Newton in the New Order!163



the Einstein �eld equations des
ribe how the distribution of masses and momentum 
uxgenerate 
urvature. Unlike ele
trodynami
s, however, the general theory of relativity isa non-linear theory, whi
h makes it 
onsiderably more 
ompli
ated and subtle. Betweenthem, the geodesi
 equation (6.175) whi
h tells matter how to respond to the geometry, andthe Einstein equation (6.177) whi
h tells geometry how to respond to the matter, 
onstituteone of the most elegant and intriguing of our fundamental physi
al laws.
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